Filters:
NameProjectTypeCompare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Uncompare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Uncompare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Uncompare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Uncompare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Uncompare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Uncompare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Uncompare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Uncompare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Groningen, PED North
Freiburg, Waldsee
Leipzig, Baumwollspinnerei district
Lubia (Soria), CEDER-CIEMAT
Furuset project, Oslo
Fleuraye west, Carquefou
Uden, Loopkantstraat
Vantaa, Aviapolis
Barcelona, SEILAB & Energy SmartLab
Vidin, Himik and Bononia
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityGroningen, PED NorthFreiburg, WaldseeLeipzig, Baumwollspinnerei districtLubia (Soria), CEDER-CIEMATFuruset project, OsloFleuraye west, CarquefouUden, LoopkantstraatVantaa, AviapolisBarcelona, SEILAB & Energy SmartLabVidin, Himik and Bononia
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynonoyesyesnoyesyesnoyesnoyes
PED relevant case studyyesnonononononoyesyesnono
PED Lab.noyesnonoyesnononoyesyesno
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesyesyesnoyesyesyesyesnoyes
Annual energy surplusnoyesnononononoyesnonoyes
Energy communityyesyesyesnonononononoyesno
Circularitynoyesnonononononoyesnono
Air quality and urban comfortyesnonoyesyesnononononono
Electrificationyesnoyesyesnononoyesnoyesno
Net-zero energy costnonononononononononono
Net-zero emissionnoyesyesnoyesyesyesnonoyesno
Self-sufficiency (energy autonomous)nonononoyesnonononoyesno
Maximise self-sufficiencynonononononononononono
Othernononoyesnoyesyesnonoyesno
Other (A1P004)Net-zero emission; Annual energy surplusEnergy efficient; Sustainable neighbourhood; Social aspects/affordabilityEnergy neutral; Energy efficient; Social aspects/affordability; Sustainable neighbourhoodGreen IT
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhaseImplementation PhasePlanning PhaseImplementation PhaseImplementation PhaseIn operationCompletedIn operationPlanning PhaseIn operationPlanning Phase
A1P006: Start Date
A1P006: Start date12/1811/2111/1901/1306/1701/2301/201112/18
A1P007: End Date
A1P007: End date12/2311/2412/2331/2205/2312/2702/201312/30
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
  • Monitoring data available within the districts,
  • General statistical datasets,
  • GIS open datasets
  • General statistical datasets
  • General statistical datasets,
  • GIS open datasets
  • General statistical datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
    • TNO, Hanze, RUG,
    • Ped noord book
    • Data from the local energy provider available (restricted usage for some data points because of data security reasons,
    • renewable energy potential,
    • own calculations based on publicly available data,
    • Some data can be found in https://geoportal.freiburg.de/freigis/
      • http://www.ceder.es/redes-inteligentes,
      • O. Izquierdo-Monge, Paula Peña-Carro et al. Conversion of a network section with loads, storage systems and renewable generation sources into a smart microgrid. Appl. Sci. 2021, 11(11), 5012. https://doi.org/10.3390/app11115012,
      • O. Izquierdo-Monge, Paula Peña-Carro et al. A Methodology for the Conversion of a Network Section with Generation Sources, Storage and Loads into an Electrical Microgrid Based on Raspberry Pi and Home Assistant. ICSC-Cities 2020, CCIS 1359 proceedings. Springer. https:// doi.org/10.1007/978-3-030-69136-3_1
      • Inger Andresen, Tonje Healey Trulsrud, Luca Finocchiaro, Alessandro Nocente, Meril Tamm, Joana Ortiz, Jaume Salom, Abel Magyari, Linda Hoes-van Oeffelen, Wouter Borsboom, Wim Kornaat, Niki Gaitani, Design and performance predictions of plus energy neighbourhoods – Case studies of demonstration projects in four different European climates, Energy and Buildings, Volume 274, 2022, 112447, ISSN 0378-7788, https://doi.org/10.1016/j.enbuild.2022.112447. (https://www.sciencedirect.com/science/article/pii/S0378778822006181),
      • Deliverable, Report: Integrated Energy Design for Sustainable Plus Energy Neighbourhoods (syn.ikia),
      • Deliverable, Report: DEMONSTRATION CASE OF SUSTAINABLE PLUS ENERGY NEIGHBOURHOODS IN MARINE CLIMATE (syn.ikia),
      • https://www.synikia.eu/no/bibliotek/
        A1P011: Geographic coordinates
        X Coordinate (longitude):23.8145886.5351217.88585713584291712.318458-2.50810.896711-1.5141975.619124.9588212.122.8826
        Y Coordinate (latitude):38.07734953.23484647.98653520708004551.32649241.60359.94182347.29856451.660660.30548841.343.9936
        A1P012: Country
        A1P012: CountryGreeceNetherlandsGermanyGermanySpainNorwayFranceNetherlandsFinlandSpainBulgaria
        A1P013: City
        A1P013: CityMunicipality of KifissiaGroningenFreiburg im BreisgauLeipzigLubia - SoriaOsloCarquefouUdenVantaaBarcelona and TarragonaVidin
        A1P014: Climate Zone (Köppen Geiger classification)
        A1P014: Climate Zone (Köppen Geiger classification).CsaCfaCfbDfbCfbCfbCfbCfbDfbCsaCfa
        A1P015: District boundary
        A1P015: District boundaryVirtualFunctionalVirtualFunctionalGeographicGeographicGeographicVirtualGeographic
        OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhoodGeographic
        A1P016: Ownership of the case study/PED Lab
        A1P016: Ownership of the case study/PED Lab:MixedMixedPublicMixedPublicPrivateMixedPublicMixed
        A1P017: Ownership of the land / physical infrastructure
        A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersSingle OwnerMultiple OwnersSingle OwnerSingle OwnerMultiple OwnersSingle OwnerMultiple Owners
        A1P018: Number of buildings in PED
        A1P018: Number of buildings in PED72941261074
        A1P019: Conditioned space
        A1P019: Conditioned space [m²]1.0128407017000236098759.53
        A1P020: Total ground area
        A1P020: Total ground area [m²]17.132492000030000640000087000038603881000195234.80
        A1P021: Floor area ratio: Conditioned space / total ground area
        A1P021: Floor area ratio: Conditioned space / total ground area00010001001
        A1P022: Financial schemes
        A1P022a: Financing - PRIVATE - Real estatenoyesnononononoyesyesnono
        A1P022a: Add the value in EUR if available [EUR]7804440
        A1P022b: Financing - PRIVATE - ESCO schemenonononononononononono
        A1P022b: Add the value in EUR if available [EUR]
        A1P022c: Financing - PRIVATE - Othernoyesnonononononoyesnono
        A1P022c: Add the value in EUR if available [EUR]
        A1P022d: Financing - PUBLIC - EU structural fundingnonononononononononono
        A1P022d: Add the value in EUR if available [EUR]
        A1P022e: Financing - PUBLIC - National fundingnoyesnonononononononoyes
        A1P022e: Add the value in EUR if available [EUR]
        A1P022f: Financing - PUBLIC - Regional fundingnonononononoyesnononono
        A1P022f: Add the value in EUR if available [EUR]
        A1P022g: Financing - PUBLIC - Municipal fundingnoyesyesnononononoyesnono
        A1P022g: Add the value in EUR if available [EUR]
        A1P022h: Financing - PUBLIC - Othernonononononononononono
        A1P022h: Add the value in EUR if available [EUR]
        A1P022i: Financing - RESEARCH FUNDING - EUnoyesyesnononononoyesnono
        A1P022i: Add the value in EUR if available [EUR]
        A1P022j: Financing - RESEARCH FUNDING - Nationalnonoyesnoyesnononononono
        A1P022j: Add the value in EUR if available [EUR]
        A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononoyesnononononono
        A1P022k: Add the value in EUR if available [EUR]
        A1P022l: Financing - RESEARCH FUNDING - Othernonononononononononono
        A1P022l: Add the value in EUR if available [EUR]
        A1P022: OtherMultiple different funding schemes depending on the development site within the District and Lab.
        A1P023: Economic Targets
        A1P023: Economic Targets
        • Boosting local businesses,
        • Boosting local and sustainable production
        • Boosting local and sustainable production,
        • Boosting consumption of local and sustainable products
        • Boosting local businesses
        • Positive externalities,
        • Boosting local businesses,
        • Boosting local and sustainable production
        • Job creation,
        • Boosting local and sustainable production
        A1P023: OtherSustainable and replicable business models regarding renewable energy systems
        A1P024: More comments:
        A1P024: More comments:The Centre for the Development of Renewable Energy (CEDER)is specialized in applied research, development and promotion of renewable energy. Among the facilities of this Centre, the urban laboratory CEDER-CIEMAT assess the performance of different configurations of energy networks at the district level. This PED-Lab infrastructure is an energy district that connects six office buildings with energy generation installations by means of two energy rings: electrical grid (in operation phase) and thermal network (in the implementation phase). The buildings of this PED Lab can act as energy demanders or suppliers depending on the climatic and operational conditions. The majority of these buildings are constructed with conventional technologies but some of them are implemented with efficient and sustainable measures. The thermal network is composed by two biomass boilers, 300 kW power each, and water tanks with 90 kWh of thermal storage. This network will shortly be expanded with a low temperature (90°C) and high temperature (150°-250°C) rings. The low-temperature ring is made up by two Stirling engine cogeneration boilers (one biomass gasification boiler and one gas boiler). The high-temperature ring has a thermal generator made up of Fresnel solar concentrators and an ORC cogeneration system fed directly from the solar concentrator. The high-temperature ring is interconnected with the low-temperature ring through an oil/water heat exchanger. This network has thermal storage systems in the modalities of: aquifers, boreholes, phase change materials, cold storage with geothermal exchange ground recovery and thermal storage at very low temperature with zeolites. The electrical grid incorporates different renewable generation technologies (50 kW wind turbine and eight different photovoltaic systems, a reversible hydraulic system), and engine generator of 100 kVA, electricity storages (batteries) and flexible loads.The project is a follow-up from the “Social Beautiful” concept which was developed in collaboration between Labyrint (Support in sheltered housing), Area (housing company), the municipality of Uden, and Hendriks Coppelmans (developer). The concept aims to provide an answer to changes in various policy areas and the changing demands of society. The Social Beautiful concept consists of the following elements: 1. Living, working, and community services are brought together in one location. A multifunctional residential and service centre is being realized at the location. 2. Housing is shaped by the realization of financially accessible homes suitable for the target group. The housing design is tailored to the target group. it may also include sheltered / protected living. 3. Work takes place at the location or from the same location. The work has a social function within the neighbourhood. Wage-related work must contribute to providing structure in the daily activities of the residents. 4. Neighbourhood management is organized from the location in the surrounding neighbourhood. A service package is provided from the residential and service centre that contributes to the ability of neighbourhood residents to live independently for longer, to strengthen the social network, and to improve the quality of life and safety in the neighbourhood. 5. The houses are suitable for use at all times for regular rental. Communal facilities must be realized within the contours of a regular apartment. The objective is to offer a suitable living and working situation to a group of vulnerable citizens. In this way they become a fully-fledged part of society. They not only make use of the facilities themselves, but also give substance to the level of facilities in the municipality. Due to the integrated approach, they experience a greater sense of well-being and security.Semi-Virtual Energy Integration Laboratory (SEILAB) The Energy Smart Lab is an infrastructure conceived as a flexible and versatile platform for innovative technological developments for both industry and competitive R+D projects. The areas of expertise of this laboratory pivot around the following technologies: – Power Electronics for the integration and control of the elements within a building or community: Renewable Energy Sources (RES), Energy Storage Systems and Electric Vehicles (EV) – ICT Platform for smart communications and energy management of systems, building, networks and communities. – Energy System Integration technologies for smart and flexible buildings and grids including RES and EV. The laboratory operation is based on the hardware emulation approach, which allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation. The laboratory is pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.
        A1P025: Estimated PED case study / PED LAB costs
        A1P025: Estimated PED case study / PED LAB costs [mil. EUR]7804440
        Contact person for general enquiries
        A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaJasper Tonen, Elisabeth KoopsDr. Annette SteingrubeSimon BaumDr. Raquel RamosChristoph GollnerChristoph GollnerTonje Healey TrulsrudEira LinkoDr. Jaume Salom, Dra. Cristina CorcheroDaniela Kostova
        A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamMunicipality of GroningenFraunhofer Institute for solar energy systemsCENERO Energy GmbHCentre for the Development of Renewable Energy (CEDER) - Centre for Energy, Environment and Technology Research (CIEMAT)FFGFFGNorwegian University of Science and Technology (NTNU)City of VantaaIRECGreen Synergy Cluster
        A1P028: AffiliationMunicipality / Public BodiesMunicipality / Public BodiesResearch Center / UniversityOtherResearch Center / UniversityOtherOtherResearch Center / UniversityMunicipality / Public BodiesResearch Center / UniversityOther
        A1P028: OtherCENERO Energy GmbHCluster
        A1P029: Emailgiavasoglou@kifissia.grJasper.tonen@groningen.nlAnnette.Steingrube@ise.fraunhofer.desib@cenero.deraquel.ramos@ciemat.eschristoph.gollner@ffg.atchristoph.gollner@ffg.attonje.h.trulsrud@ntnu.noeira.linko@vantaa.fiJsalom@irec.catdaniela@greensynergycluster.eu
        Contact person for other special topics
        A1P030: NameStavros Zapantis - vice mayorSimon BaumDr. Oscar Seco
        A1P031: Emailstavros.zapantis@gmail.comsib@cenero.deoscar.seco@ciemat.es
        Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYesYes
        A2P001: Fields of application
        A2P001: Fields of application
        • Energy production
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Waste management
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Waste management
        • Energy efficiency,
        • Energy flexibility,
        • Energy production
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • Digital technologies,
        • Indoor air quality
        • Energy efficiency,
        • Energy flexibility,
        • Energy production
        • Energy efficiency,
        • Energy production,
        • Digital technologies,
        • Indoor air quality
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • Waste management,
        • Indoor air quality,
        • Construction materials
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies,
        • Construction materials,
        • Other
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies
        • Energy efficiency,
        • Energy production
        A2P001: Other
        A2P002: Tools/strategies/methods applied for each of the above-selected fields
        A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streamsEnergy system modelingEnergy efficiency: - Buildings energy retrofit. Energy production: - Biomass Boiler capacity: 0.6 MW. Annual production: 1.2 GWh - Solar thermal collectors: 70 kW, planned extended to: 0.47MW - Geotermal & Absorption Pumps: 100 kW - Share of renewables after extension: 100% (30% solar thermal and 70% biomass) - AOC 50kW wind turbine. Awaiting installation of a two-way AC-AC converter for subsequent connection to the grid - Bornay Inclin 3 kW wind turbine, connected to 24 Vdc batteries, to be connected to the grid by means of Xantrex inverter/charger - 9kW photovoltaic park (66PV panels, brand BP Solar,type BP5140,of 140W) connected to the grid by means of two INGECON SUN 5 inverters - 5kW photovoltaic pergola (24PV panels, brand Solon, type P200, of 210W) connected to the grid by means of one INGECON SUN 5 inverter - 8.28kW photovoltaic roof (36PV panels, Brand LDK, type LDK-230P-20), connected to the grid by means of one INGECONSUN 10 inverter - 12kW photovoltaic roof (80PV panels, brand Gamesa, type GS-1501), connected to the grid. - Reversible hydraulic system connected to a 60 kW electric generator and a pumping system. -Stirling engine with a heat lamp based on natural gas, a helium cool lamp, 10kWe maximum power delivered and global performance of approximately 33%. Energy flexibility: - Thermal storage systems: water tanks 90kW, aquifers, boreholes, phase change materials, cold storage with geothermal exchange ground recovery and thermal storage at very low temperature with zeolites. - Electrical storage systems: batteries (lead-acid and lithium-ion). - Flexible loads. Control systems and Digital technologies: - Full monitoring campaign. - Smart-meters installation to monitor consumption and suggest another energy behaviours. - Dynamic simulation tools to optimize the energy performance. Urban comfort and air quality: - Meteorological stations to monitor the climate evolution. - Microclimatic simulation tools to quantify the thermal behaviour.Energy efficiency: Energy efficient envelope, with good insulation, triple glazing windows and airtight envelope. (EPC = 0) Energy Flexibility: MCP controls for the heat pump in the apartments. Energy production: PV panels on the roof, Ground source heat pumps Waste management: construction waste was kept to a minimum and sorted and collected separately as much as possible. Indoor air quality: Exhaust ventilation and opening of windows Construction materials: low carbon emission building materialsPilot collaboration with landowners. Carbon footprint assessment and planning guidelines in zoning planning. Green infrastructure requirements. Examples of considered energy solutions: waste heat recovery and utilization, geothermal, air-water heat pumps, district heating return water, photovoltaics, A-class energy efficiency, smart control and monitoring, energy storages, E-mobility above national requirements, coolingEnergy SmartLab capacities - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. Energy SmartLab systems - SAFT Li-ion battery: maximum stored energy 20000 Wh, rated power 150 kW, rated discharge current 200 A, rated charge current 34 A, operating voltage 189 V – 227 V – 254 V, capacity 82 Ah. – Ultracapacitors: maximum stored energy 57 Wh, rated power 10 kW, rated current 20 A, peak current (<1s) 200 Apk, operating voltage 250 V – 500 V, capacity 1,65 F. – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah - 5 microgrid emulators (emulated power 5.5 kVA, max generation connected 10kVA, max consumption connected 10 kVA) - 1 grid emulator (Rated power: 200 kVA, Rated current per phase: 350 A, Rated current per neutral conductor: 35)
        A2P003: Application of ISO52000
        A2P003: Application of ISO52000NoYesNoYesNoNo
        A2P004: Appliances included in the calculation of the energy balance
        A2P004: Appliances included in the calculation of the energy balanceNoYesYesNoYesNo
        A2P005: Mobility included in the calculation of the energy balance
        A2P005: Mobility included in the calculation of the energy balanceNoYesNoNoYesYes
        A2P006: Description of how mobility is included (or not included) in the calculation
        A2P006: Description of how mobility is included (or not included) in the calculationMobility, till now, is not included in the energy model.All energy demands are included in energy balance, either fuel demands or electrical demand of transport sector; Projection is made of future share of electric mobilty, rest is covered with synthetic fuels to achieve climate neutralitynot includedThe calculation of the energy balance will be further developed and specified under the Neutralpath-project. Mobility related emissions are taken into account in the carbon footprint calculation of each zoning plan in the development area.– Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah
        A2P007: Annual energy demand in buildings / Thermal demand
        A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]2.3135.7151.650.148
        A2P008: Annual energy demand in buildings / Electric Demand
        A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.3331.760.109
        A2P009: Annual energy demand for e-mobility
        A2P009: Annual energy demand for e-mobility [GWh/annum]0
        A2P010: Annual energy demand for urban infrastructure
        A2P010: Annual energy demand for urban infrastructure [GWh/annum]
        A2P011: Annual renewable electricity production on-site during target year
        A2P011: PVyesnonoyesyesnonoyesyesyesno
        A2P011: PV - specify production in GWh/annum [GWh/annum]0.058
        A2P011: Windnonononoyesnononononono
        A2P011: Wind - specify production in GWh/annum [GWh/annum]
        A2P011: Hydrononononoyesnononononono
        A2P011: Hydro - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_elnonononoyesnononononono
        A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_peat_elnonononononononononono
        A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
        A2P011: PVT_elnonononononononononono
        A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
        A2P011: Othernonononononononononono
        A2P011: Other - specify production in GWh/annum [GWh/annum]
        A2P012: Annual renewable thermal production on-site during target year
        A2P012: Geothermalnoyesnonoyesnonoyesyesnono
        A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Solar Thermalnoyesnonoyesnononononono
        A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_heatnoyesnonoyesnononononono
        A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.1
        A2P012: Waste heat+HPnoyesnonoyesnononoyesnono
        A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_peat_heatnonononononononononono
        A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: PVT_thnoyesnonononononononono
        A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_firewood_thnonononoyesnononononono
        A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Othernonononononononononono
        A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
        A2P013: Renewable resources on-site - Additional notes
        A2P013: Renewable resources on-site - Additional notesGeothermal heatpump systems, Waste heat from data centers53 MW PV potential in all three quarters; no other internal renewable energy potentials known*Annual energy use below is presentedin primary energy consumption
        A2P014: Annual energy use
        A2P014: Annual energy use [GWh/annum]132.52.4210.194
        A2P015: Annual energy delivered
        A2P015: Annual energy delivered [GWh/annum]0.0368
        A2P016: Annual non-renewable electricity production on-site during target year
        A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]
        A2P017: Annual non-renewable thermal production on-site during target year
        A2P017: Gasnononononononononoyesno
        A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Coalnonononononononononono
        A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Oilnonononononononononono
        A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Othernonononononononononono
        A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P018: Annual renewable electricity imports from outside the boundary during target year
        A2P018: PVnonononononononoyesnono
        A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
        A2P018: Windnonononononononoyesnono
        A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
        A2P018: Hydrononononononononoyesnono
        A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_elnonononononononoyesnono
        A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_peat_elnonononononononononono
        A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: PVT_elnonononononononononono
        A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Othernonononononononononono
        A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
        A2P019: Annual renewable thermal imports from outside the boundary during target year
        A2P019: Geothermalnonononononononononono
        A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Solar Thermalnonononononononononono
        A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_heatnonononononononoyesnono
        A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Waste heat+HPnonononononononoyesnono
        A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_peat_heatnonononononononononono
        A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: PVT_thnonononononononononono
        A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_firewood_thnonononononononononono
        A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Othernonononononononononono
        A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
        A2P020: Share of RES on-site / RES outside the boundary
        A2P020: Share of RES on-site / RES outside the boundary00000000000
        A2P021: GHG-balance calculated for the PED
        A2P021: GHG-balance calculated for the PED [tCO2/annum]-0.00043
        A2P022: KPIs related to the PED case study / PED Lab
        A2P022: Safety & SecurityPersonal Safety
        A2P022: HealthHealthy community
        A2P022: Education
        A2P022: MobilityyesMode of transport; Access to public transportSustainable mobility
        A2P022: EnergyyesapplyEnergy efficiency in buildings; Net energy need; Gross energy need; Total energy needNOn-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/self-consumption, net energy/net power, peak delivered/peak expoted, total greenhouse gas emission
        A2P022: Water
        A2P022: Economic developmentcapital costs, operational cots, overall economic performance (5 KPIs)
        A2P022: Housing and CommunityyesDelivery and proximity to amenitiesdemographic composition, diverse community, social cohesion
        A2P022: Waste
        A2P022: OtherGHG emissions; Power/load; Life cycle cost (LCC); Demographic needs and consultation plan; Public SpaceSmartness and flecibility, Indoor Environmental Quality, Social performance - Equity (affordable housing, access to servicees and amenitioes, afforability of energy, living conditions, sustinable mobility, universal design)
        A2P023: Technological Solutions / Innovations - Energy Generation
        A2P023: Photovoltaicsnoyesyesnoyesnoyesyesyesyesyes
        A2P023: Solar thermal collectorsnoyesyesnoyesnononononono
        A2P023: Wind Turbinesnonononoyesnononononono
        A2P023: Geothermal energy systemnoyesyesnoyesnonoyesyesnoyes
        A2P023: Waste heat recoverynoyesyesnoyesnononoyesnono
        A2P023: Waste to energynoyesyesnononononoyesnono
        A2P023: Polygenerationnonononoyesnononoyesnono
        A2P023: Co-generationnonoyesnoyesnononononono
        A2P023: Heat Pumpnoyesyesnoyesnonoyesyesnoyes
        A2P023: Hydrogennonoyesnoyesnononononono
        A2P023: Hydropower plantnonoyesnoyesnononononono
        A2P023: Biomassnonoyesnoyesnononoyesnono
        A2P023: Biogasnonoyesnononononononono
        A2P023: OtherThe technological solutions can vary within the PED Lab area and will be specified case by case.
        A2P024: Technological Solutions / Innovations - Energy Flexibility
        A2P024: A2P024: Information and Communication Technologies (ICT)noyesyesnoyesnononoyesyesno
        A2P024: Energy management systemnoyesyesnoyesnonoyesyesyesno
        A2P024: Demand-side managementnoyesyesnoyesnonoyesyesnono
        A2P024: Smart electricity gridnonoyesnoyesnoyesnoyesyesno
        A2P024: Thermal Storagenoyesyesnoyesnononoyesnono
        A2P024: Electric Storagenoyesyesnoyesnononoyesyesyes
        A2P024: District Heating and Coolingnoyesyesnoyesnononoyesnono
        A2P024: Smart metering and demand-responsive control systemsnoyesyesnoyesnonoyesyesnono
        A2P024: P2P – buildingsnonoyesnononononononono
        A2P024: OtherThe technological solutions can vary within the PED Lab area and will be specified case by case.
        A2P025: Technological Solutions / Innovations - Energy Efficiency
        A2P025: Deep Retrofittingnonoyesnoyesnononononoyes
        A2P025: Energy efficiency measures in historic buildingsnoyesyesnononononononono
        A2P025: High-performance new buildingsnoyesnonononoyesyesyesnono
        A2P025: Smart Public infrastructure (e.g. smart lighting)noyesnonononononononono
        A2P025: Urban data platformsnoyesyesnononononononono
        A2P025: Mobile applications for citizensnonononononononononono
        A2P025: Building services (HVAC & Lighting)nonononoyesnonoyesyesyesno
        A2P025: Smart irrigationnonononononononononono
        A2P025: Digital tracking for waste disposalnonononononononononono
        A2P025: Smart surveillancenonononononononononono
        A2P025: OtherThe technological solutions can vary within the PED Lab area and will be specified case by case.
        A2P026: Technological Solutions / Innovations - Mobility
        A2P026: Efficiency of vehicles (public and/or private)nonoyesnononononoyesyesno
        A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nonoyesnononononoyesnono
        A2P026: e-Mobilitynoyesyesnononononoyesnono
        A2P026: Soft mobility infrastructures and last mile solutionsnonoyesnononononoyesnono
        A2P026: Car-free areanonononoyesnononononono
        A2P026: Other
        A2P027: Mobility strategies - Additional notes
        A2P027: Mobility strategies - Additional notesTest-Concept for bidirectional charging.
        A2P028: Energy efficiency certificates
        A2P028: Energy efficiency certificatesYesNoYesYesYes
        A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingEnergy Performance CertificateIn Spain it is mandatory the Energy Performance Certificate in order to buy or rent a house or a dwellingEPC = 0, energy neutral building
        A2P029: Any other building / district certificates
        A2P029: Any other building / district certificatesNoNoYesNo
        A2P029: If yes, please specify and/or enter notes300 LOGEMENTS PASSIFS CERTIFIÉS PASSIVHAUS
        A3P001: Relevant city /national strategy
        A3P001: Relevant city /national strategy
        • Energy master planning (SECAP, etc.),
        • Promotion of energy communities (REC/CEC)
        • Energy master planning (SECAP, etc.),
        • New development strategies,
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Smart cities strategies
        • Smart cities strategies,
        • New development strategies,
        • Promotion of energy communities (REC/CEC),
        • Climate change adaption plan/strategy (e.g. Climate City contract)
        • Urban Renewal Strategies
        • Smart cities strategies,
        • Urban Renewal Strategies
        • Energy master planning (SECAP, etc.),
        • New development strategies,
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Smart cities strategies,
        • New development strategies
        • Energy master planning (SECAP, etc.),
        • New development strategies
        A3P002: Quantitative targets included in the city / national strategy
        A3P002: Quantitative targets included in the city / national strategyClimate neutrality by 2035- Testing the combination of renewable technologies at district level. - Optimization of the generation side based on the weather forecasting and demand side. - Optimization of the control system, connected to the central node, to design and perform virtual analyses based on the combination of all the systems and infrastructures. - Optimization of ICT systems. - Design and management of a virtual analysis - Optimization of efficient measures: building performance, user´s behaviour… - Combination of flexible storage systems to operate the global installation.Carbon-Neutral Vantaa by 2030 (min. 80 % reduction of yearly emissions, capture or compensation os the residual 20 %),
        A3P003: Strategies towards decarbonization of the gas grid
        A3P003: Strategies towards decarbonization of the gas grid
        • Electrification of Heating System based on Heat Pumps,
        • Electrification of Cooking Methods,
        • Biogas
        • Electrification of Heating System based on Heat Pumps,
        • Biogas,
        • Hydrogen
        • Biogas
        • Electrification of Heating System based on Heat Pumps,
        • Biogas,
        • Hydrogen
        A3P003: Other
        A3P004: Identification of needs and priorities
        A3P004: Identification of needs and prioritiesFreiburg has ambitious goals and wants to achieve climate neutrality until 2035, the PED concept could help to develop suitable strategies on district level- Create a thermal energy storage tank to be used for air conditioning the buildings. - Some buildings need to be renovated both to increase the energy performance, the seismic behaviour and spaces liveability and comfort. - Optimizing the coupling between technologies. - Guarantee the flexibility to operate the renewable installations to operate in different phases and with different configurations. - CEDER is a public research center and needs to have connected any energy system to the same grid. - CEDER has an industrial develop area where some experimental thermal storage system could be tested.-Allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation -Pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.
        A3P005: Sustainable behaviour
        A3P005: Sustainable behaviourIn Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.Energy efficiency by renovation measures for buildings and measures for saving electricity; electrification by installation of heat pumps and photovoltaics and switching to electric cars, additional measures not directly related to PED like sustainable diet and sharing economy- Minimize the building energy consumption while maintaining indoor comfort levels. - Onsite renewable production with flexible storage elements to fix demand side and generation side. - Flexible control solutions through digitalization systems.-Improving the development of Net Zero Energy Buildings and Flexible Energy buildings.
        A3P006: Economic strategies
        A3P006: Economic strategies
        • Innovative business models,
        • Blockchain
        • Demand management Living Lab,
        • Local trading,
        • Existing incentives
        • Innovative business models,
        • Other
        • Demand management Living Lab
        • Circular economy models
        • Innovative business models,
        • PPP models,
        • Life Cycle Cost,
        • Circular economy models
        • Demand management Living Lab
        A3P006: Otheroperational savings through efficiency measures
        A3P007: Social models
        A3P007: Social models
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Citizen Social Research,
        • Prevention of energy poverty,
        • Citizen/owner involvement in planning and maintenance
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Citizen/owner involvement in planning and maintenance,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Behavioural Change / End-users engagement
        • Digital Inclusion,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Quality of Life
        • Co-creation / Citizen engagement strategies,
        • Social incentives,
        • Quality of Life
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Citizen Social Research,
        • Policy Forums,
        • Quality of Life,
        • Strategies towards social mix,
        • Affordability,
        • Prevention of energy poverty,
        • Citizen/owner involvement in planning and maintenance,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Digital Inclusion,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Quality of Life,
        • Prevention of energy poverty
        A3P007: Other
        A3P008: Integrated urban strategies
        A3P008: Integrated urban strategies
        • Strategic urban planning,
        • District Energy plans,
        • City Vision 2050,
        • SECAP Updates
        • Strategic urban planning,
        • Digital twinning and visual 3D models,
        • District Energy plans
        • District Energy plans,
        • Building / district Certification
        • Strategic urban planning,
        • SECAP Updates
        • Strategic urban planning,
        • City Vision 2050,
        • SECAP Updates
        A3P008: Other
        A3P009: Environmental strategies
        A3P009: Environmental strategies
        • Energy Neutral
        • Other
        • Energy Neutral,
        • Low Emission Zone,
        • Pollutants Reduction,
        • Greening strategies
        • Energy Neutral
        • Energy Neutral,
        • Net zero carbon footprint,
        • Carbon-free
        • Net zero carbon footprint,
        • Life Cycle approach,
        • Greening strategies,
        • Nature Based Solutions (NBS)
        • Energy Neutral,
        • Low Emission Zone,
        • Pollutants Reduction,
        • Greening strategies
        • Pollutants Reduction,
        • Greening strategies
        A3P009: OtherPositive Energy Balance for the demo site
        A3P010: Legal / Regulatory aspects
        A3P010: Legal / Regulatory aspectsAt national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricity- European Commission has legislated on Energy Community (Renewable energy directive - 2018/2001/EU and Common rules for the internal electricity market directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.- European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.
        B1P001: PED/PED relevant concept definition
        B1P001: PED/PED relevant concept definitionAssessment methods for this ped (and for germany) is defined in this project at the moment and will be tested at that case studyThe demonstration projects is a new residential development, which consists of an apartment complex which includes 39 apartments spread over 3 floors. It is a sustainble plus energy neighbouhood, and has reached a plus energy balance on its first year in operation. It has MPC controls on the individual heat pumps to improve the energy flexibility of the apartments. It includes the "social beatiful" concepts with a strong emphasis on the social sustainability of the project.Neutralpath-project is working with the cocept of PCEDs = Positive and Clean Energy Districts (energy-efficient and energy-flexible districts with net zero greenhouse gas emissions and a surplus of renewable energy). Aviapolis Climate-Neutral Lab will work with both PCED and PCED relevant cases within the district.
        B1P002: Motivation behind PED/PED relevant project development
        B1P002: Motivation behind PED/PED relevant project developmentCity is interested in transforming the quarter, as many buildings are old, have private owner structures and have decentralised heating systems. As the city wants to become climate neutral by 2035 action is needed now. In the research project PED urban the idea is to focus on the future energy system of the quarter and use it as a case study to develop a common assessment method for PEDs in alignment with european efforts in that regardThe need for social housing and the ambition to create a great living environment with a high-performance apartment complex, supplied with renewable energy. It results in lower energy bills for the tenants and high-quality homes.According to Vantaa city strategy 2021-2025 Aviapolis area aims to become the greenest airport city in Europe. The district is transforming from a logistics and business focused area to a lively urban district which gives an opportunity to rethink the areas energy solutions. With Neutralpath-project Vantaa aims to support the development of the district's energy system and explore innovative, energy efficient and fossil free district energy solutions.
        B1P003: Environment of the case study area
        B2P003: Environment of the case study areaSuburban areaRuralSuburban areaUrban areaUrban area
        B1P004: Type of district
        B2P004: Type of district
        • Renovation
        • New construction,
        • Renovation
        • New construction
        • New construction
        • New construction,
        • Renovation
        • Renovation
        B1P005: Case Study Context
        B1P005: Case Study Context
        • Retrofitting Area
        • Preservation Area
        • New Development,
        • Retrofitting Area
        • New Development
        • New Development
        • Re-use / Transformation Area,
        • New Development
        • Retrofitting Area
        B1P006: Year of construction
        B1P006: Year of construction
        B1P007: District population before intervention - Residential
        B1P007: District population before intervention - Residential5898
        B1P008: District population after intervention - Residential
        B1P008: District population after intervention - Residential5898
        B1P009: District population before intervention - Non-residential
        B1P009: District population before intervention - Non-residential
        B1P010: District population after intervention - Non-residential
        B1P010: District population after intervention - Non-residential
        B1P011: Population density before intervention
        B1P011: Population density before intervention00000000000
        B1P012: Population density after intervention
        B1P012: Population density after intervention000.001198780487804900000000
        B1P013: Building and Land Use before intervention
        B1P013: Residentialnonoyesnononononoyesnoyes
        B1P013 - Residential: Specify the sqm [m²]64 787,57
        B1P013: Officenonoyesnononononoyesnono
        B1P013 - Office: Specify the sqm [m²]
        B1P013: Industry and Utilitynonoyesnononononoyesnono
        B1P013 - Industry and Utility: Specify the sqm [m²]
        B1P013: Commercialnonoyesnononononoyesnoyes
        B1P013 - Commercial: Specify the sqm [m²]262,33
        B1P013: Institutionalnonoyesnononononoyesnono
        B1P013 - Institutional: Specify the sqm [m²]
        B1P013: Natural areasnonoyesnononononononono
        B1P013 - Natural areas: Specify the sqm [m²]
        B1P013: Recreationalnonoyesnononononoyesnono
        B1P013 - Recreational: Specify the sqm [m²]
        B1P013: Dismissed areasnonononononononoyesnono
        B1P013 - Dismissed areas: Specify the sqm [m²]
        B1P013: Othernonononononononononono
        B1P013 - Other: Specify the sqm [m²]
        B1P014: Building and Land Use after intervention
        B1P014: Residentialnonoyesnonoyesyesyesyesnono
        B1P014 - Residential: Specify the sqm [m²]2394
        B1P014: Officenonoyesnonoyesnonoyesnono
        B1P014 - Office: Specify the sqm [m²]
        B1P014: Industry and Utilitynonoyesnonoyesyesnoyesnono
        B1P014 - Industry and Utility: Specify the sqm [m²]10000
        B1P014: Commercialnonoyesnononoyesnoyesnono
        B1P014 - Commercial: Specify the sqm [m²]
        B1P014: Institutionalnonoyesnononononoyesnoyes
        B1P014 - Institutional: Specify the sqm [m²]35322.21
        B1P014: Natural areasnonoyesnononononononono
        B1P014 - Natural areas: Specify the sqm [m²]
        B1P014: Recreationalnonoyesnononoyesnoyesnono
        B1P014 - Recreational: Specify the sqm [m²]
        B1P014: Dismissed areasnonononononononononono
        B1P014 - Dismissed areas: Specify the sqm [m²]
        B1P014: Othernonononononononononono
        B1P014 - Other: Specify the sqm [m²]
        B2P001: PED Lab concept definition
        B2P001: PED Lab concept definitionGroningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.Neutralpath-project is working with the cocept of PCEDs = Positive and Clean Energy Districts (energy-efficient and energy-flexible districts with net zero greenhouse gas emissions and a surplus of renewable energy). Aviapolis Climate-Neutral Lab will work with both PCED and PCED relevant cases within the district.addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation
        B2P002: Installation life time
        B2P002: Installation life timeThe MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.CEDER will follow an integrative approach including technology for a permanent installation.
        B2P003: Scale of action
        B2P003: ScaleDistrictDistrictDistrictDistrictVirtual
        B2P004: Operator of the installation
        B2P004: Operator of the installationThe Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.CIEMAT. Data detail in contact: mariano.martin@ciemat.es and oscar.izquiedo@ciemat.esThe City of Vantaa manages the lab, working closely with landowners and other stakeholders such as energy companies, solution providers, universities and citizens.IREC
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P005: Replication framework: Applied strategy to reuse and recycling the materialsGroningen does not have a strategy to reuse and recyle materials
        B2P006: Circular Economy Approach
        B2P006: Do you apply any strategy to reuse and recycling the materials?NoNoNo
        B2P006: Other
        B2P007: Motivation for developing the PED Lab
        B2P007: Motivation for developing the PED Lab
        • Civic
        • Strategic
        • Strategic
        • Strategic,
        • Private
        B2P007: Other
        B2P008: Lead partner that manages the PED Lab
        B2P008: Lead partner that manages the PED LabMunicipalityResearch center/UniversityMunicipalityResearch center/University
        B2P008: Other
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Collaborative partners that participate in the PED Lab
        • Academia,
        • Private,
        • Industrial,
        • Other
        • Academia,
        • Industrial
        • Academia,
        • Private,
        • Industrial,
        • Citizens, public, NGO
        B2P009: Otherresearch companies, monitoring company, ict company
        B2P010: Synergies between the fields of activities
        B2P010: Synergies between the fields of activitiesThe operation of the laboratory with all the components of the energy networks requires a collaborative work between various departments and entities. On the one hand, it is necessary to optimize the operation of renewable systems based on the weather conditions, forecast of the demand side and the flexibility of the generation systems. On the other hand, the optimization of the energy demands through a more sustainable behaviour of both the building and the users want to be acquired. For this, it is necessary to take into account technical aspects but also market, comfort and encourage the user participation, creating a decision-making matrix that allows optimizing the operation of the global system.
        B2P011: Available facilities to test urban configurations in PED Lab
        B2P011: Available facilities to test urban configurations in PED Lab
        • Buildings,
        • Demand-side management,
        • Energy storage,
        • Energy networks,
        • Waste management,
        • Lighting,
        • E-mobility,
        • Information and Communication Technologies (ICT),
        • Social interactions,
        • Business models
        • Buildings,
        • Demand-side management,
        • Prosumers,
        • Renewable generation,
        • Energy storage,
        • Energy networks,
        • Efficiency measures,
        • Information and Communication Technologies (ICT),
        • Ambient measures,
        • Social interactions
        • Demand-side management,
        • Energy storage,
        • Energy networks,
        • Efficiency measures,
        • Information and Communication Technologies (ICT)
        B2P011: Other
        B2P012: Incubation capacities of PED Lab
        B2P012: Incubation capacities of PED Lab
        • Tools for prototyping and modelling
        • Monitoring and evaluation infrastructure,
        • Tools for prototyping and modelling
        • Monitoring and evaluation infrastructure,
        • Tools for prototyping and modelling,
        • Tools, spaces, events for testing and validation
        B2P013: Availability of the facilities for external people
        B2P013: Availability of the facilities for external people
        B2P014: Monitoring measures
        B2P014: Monitoring measures
        • Execution plan,
        • Available data,
        • Type of measured data,
        • Equipment,
        • Level of access
        • Equipment
        • Equipment
        B2P015: Key Performance indicators
        B2P015: Key Performance indicators
        • Energy,
        • Social,
        • Economical / Financial
        • Energy,
        • Environmental,
        • Economical / Financial
        • Energy,
        • Environmental,
        • Social,
        • Economical / Financial
        • Energy,
        • Environmental
        B2P016: Execution of operations
        B2P016: Execution of operations
        B2P017: Capacities
        B2P017: Capacities- Innovative grid configuration to connect bio boilers and solar thermal on buildings. - Environmental & air quality evaluation. - Testing and evaluation of high efficient heating & cooling systems: Gas, biomass, geothermal and absorption H&C pumps … - Definition and implementation of the different regulation modes for the global system. Using the data from the research focused-partners, several regulation modes for the DH network could be defined and implemented in order to obtain an optimal operation of the network. - Innovation in MPC control to enable harvesting 100% renewables in the most efficient way. - Physical integration of the technologies with the existing facilities at the living lab. - Connection between the solar thermal collectors to achieve the lowest heat losses, providing the possibility to use the grid as high or low temperature DH, according to the demand schedule of the buildings. - Test the bio-boiler of the last generation and ultra-low emissions biomass condensing boiler in order to increase efficiency and reduce GHG and air pollutant emissions of the DH plant. - Control of the supply temperature of the DH grid to enable 100% renewables harvesting in the most efficient way. - Research of the incidence of a normal building or a bioclimatic building in the DH grid demand. - Methodologies for concept validation: Definition of the minimum requirements to verify the suitability of the solutions proposed. - Tests campaign: Experimental operation and characterization in a relevant environment, to exploit the technologies at their best and test different demand profiles, different configuration and loads, with real time monitoring and continuous commissioning to control the performance of the technology. - Validation and upgrading recommendation for the DH&C at district level. - Evaluation of innovation actions for potential energy interventions with demand response in buildings. - The complete available infrastructure (MV and LV electric systems, transformation hubs, end consumption, generation sources, communication elements, etc.) belongs to CEDER-CIEMAT, making this the perfect scenario to test and try the performance of “Smart Grid” and “Microgrid” projects. - The type of electric grid, its voltage levels (MV or LV), its variety of real loads (different buildings with different profiles: industrial buildings, offices and so on) and its sources of renewable generation and storage, mean it is ideal for intermediate tests between a small-scale laboratory and final deployment of the real product.- Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network.
        B2P018: Relations with stakeholders
        B2P018: Relations with stakeholdersCEDER - CIEMAT is a public research body assigned to the Ministry of Science and Innovation under the General Secretariat for Research, focusing on energy and environment. To develop this lab CIEMAT has relations with private renewable companies, research centers and academia institutions.
        B2P019: Available tools
        B2P019: Available tools
        • Energy modelling,
        • Social models,
        • Business and financial models
        • Energy modelling
        • Energy modelling
        • Energy modelling
        B2P019: Available tools
        B2P020: External accessibility
        B2P020: External accessibilityCIEMAT is a public body, so it´s open to any institution according the actual regulation and agreements.To follow the lab and Vantaa's activities in Neutralpath, fill in the following form: https://neutralpath.eu/fi/tayta-lomake-liittyaksesi-cn-labiin/
        C1P001: Unlocking Factors
        C1P001: Recent technological improvements for on-site RES production5 - Very important3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant4 - Important
        C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important
        C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important4 - Important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important3 - Moderately important
        C1P001: Storage systems and E-mobility market penetration4 - Important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important5 - Very important5 - Very important4 - Important
        C1P001: Decreasing costs of innovative materials4 - Important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important3 - Moderately important2 - Slightly important
        C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important5 - Very important3 - Moderately important
        C1P001: The ability to predict Multiple Benefits3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important4 - Important3 - Moderately important
        C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important4 - Important2 - Slightly important
        C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important5 - Very important4 - Important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important
        C1P001: Social acceptance (top-down)5 - Very important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant4 - Important
        C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important4 - Important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant5 - Very important
        C1P001: Presence of integrated urban strategies and plans3 - Moderately important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant5 - Very important
        C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important2 - Slightly important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important4 - Important4 - Important5 - Very important
        C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important5 - Very important
        C1P001: Availability of RES on site (Local RES)4 - Important4 - Important5 - Very important1 - Unimportant1 - Unimportant5 - Very important5 - Very important4 - Important5 - Very important
        C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important5 - Very important5 - Very important4 - Important
        C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant5 - Very important
        C1P001: Any other UNLOCKING FACTORS (if any)Real-estate market situation
        C1P002: Driving Factors
        C1P002: Climate Change adaptation need4 - Important2 - Slightly important4 - Important4 - Important1 - Unimportant1 - Unimportant5 - Very important4 - Important4 - Important4 - Important
        C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important3 - Moderately important4 - Important5 - Very important1 - Unimportant1 - Unimportant5 - Very important5 - Very important4 - Important5 - Very important
        C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant3 - Moderately important
        C1P002: Urban re-development of existing built environment3 - Moderately important4 - Important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant4 - Important5 - Very important4 - Important3 - Moderately important
        C1P002: Economic growth need2 - Slightly important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important5 - Very important
        C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant1 - Unimportant5 - Very important4 - Important4 - Important4 - Important
        C1P002: Territorial and market attractiveness2 - Slightly important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant5 - Very important
        C1P002: Energy autonomy/independence5 - Very important2 - Slightly important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important2 - Slightly important
        C1P002: Any other DRIVING FACTOR4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P002: Any other DRIVING FACTOR (if any)Earthquakes due to gas extraction
        C1P003: Administrative barriers
        C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important3 - Moderately important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant
        C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant5 - Very important
        C1P003: Lack of public participation3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important5 - Very important
        C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
        C1P003:Long and complex procedures for authorization of project activities5 - Very important4 - Important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important
        C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important
        C1P003: Complicated and non-comprehensive public procurement4 - Important3 - Moderately important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important5 - Very important
        C1P003: Fragmented and or complex ownership structure3 - Moderately important4 - Important4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important5 - Very important
        C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important5 - Very important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important4 - Important3 - Moderately important
        C1P003: Lack of internal capacities to support energy transition3 - Moderately important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important5 - Very important
        C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant
        C1P003: Any other Administrative BARRIER (if any)Delay in the Environmental Dialogue processing in the municipality
        C1P004: Policy barriers
        C1P004: Lack of long-term and consistent energy plans and policies4 - Important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important
        C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important
        C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important5 - Very important
        C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P004: Any other Political BARRIER (if any)
        C1P005: Legal and Regulatory barriers
        C1P005: Inadequate regulations for new technologies4 - Important4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important5 - Very important
        C1P005: Regulatory instability3 - Moderately important3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important5 - Very important
        C1P005: Non-effective regulations4 - Important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important2 - Slightly important4 - Important
        C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important3 - Moderately important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important5 - Very important
        C1P005: Building code and land-use planning hindering innovative technologies4 - Important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important2 - Slightly important
        C1P005: Insufficient or insecure financial incentives4 - Important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important5 - Very important
        C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important2 - Slightly important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important
        C1P005: Shortage of proven and tested solutions and examples2 - Slightly important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important4 - Important1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER (if any)
        C1P006: Environmental barriers
        C1P006: Environmental barriers3 - Moderately important
        C1P007: Technical barriers
        C1P007: Lack of skilled and trained personnel4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important5 - Very important
        C1P007: Deficient planning3 - Moderately important2 - Slightly important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important
        C1P007: Retrofitting work in dwellings in occupied state4 - Important2 - Slightly important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P007: Lack of well-defined process4 - Important3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important
        C1P007: Inaccuracy in energy modelling and simulation4 - Important4 - Important2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important
        C1P007: Lack/cost of computational scalability4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
        C1P007: Grid congestion, grid instability4 - Important4 - Important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important
        C1P007: Negative effects of project intervention on the natural environment3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important
        C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important
        C1P007: Difficult definition of system boundaries3 - Moderately important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
        C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Any other Thecnical BARRIER (if any)
        C1P008: Social and Cultural barriers
        C1P008: Inertia4 - Important2 - Slightly important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important3 - Moderately important
        C1P008: Lack of values and interest in energy optimization measurements5 - Very important3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important5 - Very important
        C1P008: Low acceptance of new projects and technologies5 - Very important2 - Slightly important2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important4 - Important
        C1P008: Difficulty of finding and engaging relevant actors5 - Very important2 - Slightly important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important4 - Important
        C1P008: Lack of trust beyond social network4 - Important4 - Important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
        C1P008: Rebound effect4 - Important2 - Slightly important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
        C1P008: Hostile or passive attitude towards environmentalism5 - Very important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important2 - Slightly important
        C1P008: Exclusion of socially disadvantaged groups2 - Slightly important5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important
        C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important4 - Important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important
        C1P008: Hostile or passive attitude towards energy collaboration2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
        C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Any other Social BARRIER (if any)
        C1P009: Information and Awareness barriers
        C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important
        C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important4 - Important
        C1P009: Lack of awareness among authorities2 - Slightly important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important5 - Very important
        C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important
        C1P009: High costs of design, material, construction, and installation4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important5 - Very important
        C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P009: Any other Information and Awareness BARRIER (if any)
        C1P010: Financial barriers
        C1P010: Hidden costs2 - Slightly important2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important
        C1P010: Insufficient external financial support and funding for project activities3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important5 - Very important
        C1P010: Economic crisis1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important4 - Important5 - Very important
        C1P010: Risk and uncertainty3 - Moderately important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important4 - Important5 - Very important5 - Very important
        C1P010: Lack of consolidated and tested business models3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important5 - Very important
        C1P010: Limited access to capital and cost disincentives2 - Slightly important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important
        C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P010: Any other Financial BARRIER (if any)
        C1P011: Market barriers
        C1P011: Split incentives5 - Very important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important4 - Important5 - Very important
        C1P011: Energy price distortion4 - Important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important5 - Very important
        C1P011: Energy market concentration, gatekeeper actors (DSOs)4 - Important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important
        C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P011: Any other Market BARRIER (if any)
        C1P012: Stakeholders involved
        C1P012: Government/Public Authorities
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        • Planning/leading
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation
        • Planning/leading
        • Planning/leading,
        • Monitoring/operation/management
        C1P012: Research & Innovation
        • Planning/leading,
        • Design/demand aggregation,
        • Monitoring/operation/management
        • Construction/implementation,
        • Monitoring/operation/management
        • Design/demand aggregation
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Design/demand aggregation
        • None
        C1P012: Financial/Funding
        • Design/demand aggregation,
        • Construction/implementation
        • None
        • None
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Analyst, ICT and Big Data
        • Design/demand aggregation,
        • Monitoring/operation/management
        • None
        • Monitoring/operation/management
        • Design/demand aggregation
        • None
        C1P012: Business process management
        • Planning/leading
        • None
        • Construction/implementation,
        • Monitoring/operation/management
        • None
        C1P012: Urban Services providers
        • Design/demand aggregation,
        • Monitoring/operation/management
        • None
        • Planning/leading
        C1P012: Real Estate developers
        • Construction/implementation
        • None
        • None
        • Planning/leading,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Design/Construction companies
        • Construction/implementation
        • Construction/implementation
        • Construction/implementation
        • Planning/leading,
        • Design/demand aggregation
        • Construction/implementation
        • Design/demand aggregation,
        • Construction/implementation
        C1P012: End‐users/Occupants/Energy Citizens
        • None
        • Planning/leading,
        • Construction/implementation,
        • Monitoring/operation/management
        • Monitoring/operation/management
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Monitoring/operation/management
        • Construction/implementation
        C1P012: Social/Civil Society/NGOs
        • Planning/leading,
        • Design/demand aggregation
        • Construction/implementation,
        • Monitoring/operation/management
        • None
        • Design/demand aggregation
        C1P012: Industry/SME/eCommerce
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • None
        • Construction/implementation,
        • Monitoring/operation/management
        • Construction/implementation
        • Design/demand aggregation,
        • Construction/implementation
        C1P012: Other
        C1P012: Other (if any)
        Summary

        Authors (framework concept)

        Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

        Contributors (to the content)

        Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

        Implemented by

        Boutik.pt: Filipe Martins, Jamal Khan
        Marek Suchánek (Czech Technical University in Prague)