Filters:
NameProjectTypeCompare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Uncompare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Uncompare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Uncompare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Uncompare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Uncompare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Uncompare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Maia, Sobreiro Social Housing
Vienna, Am Kempelenpark
Oulu, Kaukovainio
Izmir, District of Karşıyaka
Freiburg, Waldsee
Istanbul, Kadikoy district, Caferaga
Ankara, Çamlık District
Aalborg East, Aalborg Municipality, Region of Northern Jutland, Denmark
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityMaia, Sobreiro Social HousingVienna, Am KempelenparkOulu, KaukovainioIzmir, District of KarşıyakaFreiburg, WaldseeIstanbul, Kadikoy district, CaferagaAnkara, Çamlık DistrictAalborg East, Aalborg Municipality, Region of Northern Jutland, Denmark
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynonoyesyesyesyesyesyesno
PED relevant case studyyesnonononononoyesyes
PED Lab.noyesnonononononoyes
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesyesyesyesyesyesyesyes
Annual energy surplusnonoyesnoyesnonoyesno
Energy communityyesnonononoyesyesyesno
Circularitynononoyesnonononono
Air quality and urban comfortyesnononoyesnononono
Electrificationyesnonoyesnoyesnoyesno
Net-zero energy costnonononoyesnonoyesno
Net-zero emissionnononononoyesnoyesno
Self-sufficiency (energy autonomous)nonononononononono
Maximise self-sufficiencynoyesnonoyesnonoyesyes
Othernonononononononono
Other (A1P004)
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhasePlanning PhasePlanning PhaseIn operationPlanning PhasePlanning PhasePlanning PhasePlanning PhasePlanning Phase
A1P006: Start Date
A1P006: Start date10/2107/1610/2211/2101/2010/2211/22
A1P007: End Date
A1P007: End date10/2402/2510/2511/2412/2209/2511/25
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts
  • Monitoring data available within the districts,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets
  • Monitoring data available within the districts,
  • GIS open datasets
A1P009: OtherOther
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
      • Data from the local energy provider available (restricted usage for some data points because of data security reasons,
      • renewable energy potential,
      • own calculations based on publicly available data,
      • Some data can be found in https://geoportal.freiburg.de/freigis/
      • Alpagut, B., Lopez Romo, A., Hernández, P., Tabanoğlu, O., & Hermoso Martinez, N. (2021). A GIS-Based Multicriteria Assessment for Identification of Positive Energy Districts Boundary in Cities. Energies, 14(22), 7517.
      A1P011: Geographic coordinates
      X Coordinate (longitude):23.814588-8.37355716.39529225.51759508409350727.1100497.88585713584291729.0263195268751732.79536910.007
      Y Coordinate (latitude):38.07734941.13580448.17359864.9928809817313238.49605447.98653520708004540.9884139524746139.88181257.041028
      A1P012: Country
      A1P012: CountryGreecePortugalAustriaFinlandTurkeyGermanyTurkeyTurkeyDenmark
      A1P013: City
      A1P013: CityMunicipality of KifissiaMaiaViennaOuluİzmirFreiburg im BreisgauIstanbulAnkaraAalborg
      A1P014: Climate Zone (Köppen Geiger classification)
      A1P014: Climate Zone (Köppen Geiger classification).CsaCsbCwbDfcCsaCfbCsbDsbDfb
      A1P015: District boundary
      A1P015: District boundaryVirtualVirtualGeographicGeographicVirtualGeographicGeographicVirtual
      OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhoodRegional (close to virtual)
      A1P016: Ownership of the case study/PED Lab
      A1P016: Ownership of the case study/PED Lab:PublicPrivateMixedPrivateMixedMixedPrivatePublic
      A1P017: Ownership of the land / physical infrastructure
      A1P017: Ownership of the land / physical infrastructure:Multiple OwnersSingle OwnerSingle OwnerMultiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersMultiple Owners
      A1P018: Number of buildings in PED
      A1P018: Number of buildings in PED226621294113257
      A1P019: Conditioned space
      A1P019: Conditioned space [m²]1970010279528407011605222600
      A1P020: Total ground area
      A1P020: Total ground area [m²]6000032600492000011517275080031308000
      A1P021: Floor area ratio: Conditioned space / total ground area
      A1P021: Floor area ratio: Conditioned space / total ground area000030000
      A1P022: Financial schemes
      A1P022a: Financing - PRIVATE - Real estatenononoyesnonononono
      A1P022a: Add the value in EUR if available [EUR]
      A1P022b: Financing - PRIVATE - ESCO schemenonononononononono
      A1P022b: Add the value in EUR if available [EUR]
      A1P022c: Financing - PRIVATE - Othernoyesnonononononono
      A1P022c: Add the value in EUR if available [EUR]
      A1P022d: Financing - PUBLIC - EU structural fundingnonononononononono
      A1P022d: Add the value in EUR if available [EUR]
      A1P022e: Financing - PUBLIC - National fundingnoyesnonononononono
      A1P022e: Add the value in EUR if available [EUR]
      A1P022f: Financing - PUBLIC - Regional fundingnoyesnonononononono
      A1P022f: Add the value in EUR if available [EUR]
      A1P022g: Financing - PUBLIC - Municipal fundingnononoyesnoyesnonono
      A1P022g: Add the value in EUR if available [EUR]
      A1P022h: Financing - PUBLIC - Othernonononononononono
      A1P022h: Add the value in EUR if available [EUR]
      A1P022i: Financing - RESEARCH FUNDING - EUnoyesnoyesyesyesyesyesno
      A1P022i: Add the value in EUR if available [EUR]1193355
      A1P022j: Financing - RESEARCH FUNDING - Nationalnonononoyesyesnoyesyes
      A1P022j: Add the value in EUR if available [EUR]
      A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononononono
      A1P022k: Add the value in EUR if available [EUR]
      A1P022l: Financing - RESEARCH FUNDING - Othernonononononononono
      A1P022l: Add the value in EUR if available [EUR]
      A1P022: Other
      A1P023: Economic Targets
      A1P023: Economic Targets
      • Positive externalities,
      • Boosting local and sustainable production
      • Positive externalities,
      • Boosting local and sustainable production
      • Positive externalities,
      • Boosting local and sustainable production
      • Job creation,
      • Positive externalities,
      • Other
      • Boosting local and sustainable production
      • Positive externalities,
      • Boosting local businesses,
      • Boosting local and sustainable production
      A1P023: OtherDeveloping and demonstrating new solutionsBoosting new investors to the area, - Increasing the touristic value of area and urban mobility at the area, - Increasing the regional value (housing price, etc.), - Providing economic advantages by switching to positive energy production
      A1P024: More comments:
      A1P024: More comments:The urban morphology of Çamlık District differs in several ways, compared with the typical urban fabric in Türkiye, along with the capital city of Ankara. The houses on the site are composed of three-story attached single-housing units with multiple rows, creating a total of 257 housing units in total. Low-rise buildings coupled with suitably oriented rooftop surfaces brings about significant advantages in the site. Dense greenery in the site also results in reduced cooling energy demand in the buildings.
      A1P025: Estimated PED case study / PED LAB costs
      A1P025: Estimated PED case study / PED LAB costs [mil. EUR]5
      Contact person for general enquiries
      A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaAdelina RodriguesGerhard HoferSamuli RinneOzlem SenyolDr. Annette SteingrubeMr. Dogan UNERIProf. Dr. İpek Gürsel DİNOKristian Olesen
      A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamMaia Municipality (CM Maia) – Energy and Mobility divisione7 energy innovation & engineeringCity of OuluKarsiyaka MunicipalityFraunhofer Institute for solar energy systemsMunicipality of KadikoyMiddle East Technical UniversityAalborg University
      A1P028: AffiliationMunicipality / Public BodiesMunicipality / Public BodiesSME / IndustryMunicipality / Public BodiesMunicipality / Public BodiesResearch Center / UniversityMunicipality / Public BodiesResearch Center / UniversityResearch Center / University
      A1P028: Other
      A1P029: Emailgiavasoglou@kifissia.grdscm.adelina@cm-maia.ptgerhard.hofer@e-sieben.atsamuli.rinne@ouka.fiozlemkocaer2@gmail.comAnnette.Steingrube@ise.fraunhofer.dedogan.uneri@kadikoy.bel.tripekg@metu.edu.trKristian@plan.aau.dk
      Contact person for other special topics
      A1P030: NameStavros Zapantis - vice mayorCarolina Gonçalves (AdEPorto)Samuli RinneHasan Burak CavkaMrs. Damla MUHCU YILMAZAssoc. Prof. Onur TaylanAlex Søgaard Moreno
      A1P031: Emailstavros.zapantis@gmail.comcarolinagoncalves@adeporto.eusamuli.rinne@ouka.fihasancavka@iyte.edu.trdamla.muhcu@kadikoy.bel.trotaylan@metu.edu.trasm@aalborg.dk
      Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYes
      A2P001: Fields of application
      A2P001: Fields of application
      • Energy production
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies
      • Energy efficiency,
      • Energy production,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies,
      • Waste management
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies,
      • Water use,
      • Indoor air quality
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • Urban comfort (pollution, heat island, noise level etc.)
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Waste management
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies
      • Energy efficiency,
      • Energy production,
      • Construction materials
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies
      A2P001: Other
      A2P002: Tools/strategies/methods applied for each of the above-selected fields
      A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy production: - installation of photovoltaic systems for renewable on-site energy production; - installation of a BIPV demonstrator for the City Hall building. Energy flexibility: - implementation of an energy community through an active citizens involvement process. Digital technologies: - smart-meters installation in some dwellings in order to monitor consumption and suggest more sustainable energy behaviours. [PCP] Through https://balcaodigital.e-redes.pt/consumptions/history “Espaço Municipal” (https://www.espacomunicipal.pt/pt/) might access history of consumption up to midnight of the previous day. E-mobility: - Installation of new charging stations for electric vehicles; Urban comfort and air quality: - Monitoring units for air pollutants concentration (PM2.5, PM10, NO2) [PCP] Currently we are monitoring CO, O3, NO2, SO2, noise, PM2.5 and PM10 at a point 267 m east from the four buildings southeast of Sobreiro area:Different kinds of waste heat streams are utilized by heat pumps. These are district heating return water (actually this is an indirect way to cool down the flue gas in the scrubber), ventilation exhaust air and sewage water. As a normal case, in ventilation also air-to-air heat exchanges are used. PV power is harvested also, in vertical and more horizontal panels. Buildings are well insulated to decrease the needed amount of heating energy in the first place.Methods involve studying the feasibility of digital PED references for the case cities about their energy, environmental, and economic performance by EnergyPlus tool. In case of insufficient energy data and the need of high resolution data, ‘Gaussian mixture model and expectation-maximization algorithm’ and ‘time-series decomposition-recombination’ method will be used to supplement data to EnergyPlus. The feasibility results will be returned to stakeholders for iterative discussion, and the iterative results will be used to update digital references. Replication plans are developed based on such a cooperation process for strategies to implement PEDs. If a PED is demonstrated during the project period, the measured data will be used to verify the feasibility model to optimize previous results (WP7– R3 & R4). In the MAKING-CITY project, the overall PED design method is developed, which will be further optimised in this project. In addition, PED-ACT will use the methods and knowledge, including how to choose a suitable PED in a city, energy balance calculation, and technologies available for PED. The RUGGEDISED project outputs the governance model into the replication plan in PED-ACT. Its ‘smart city open-data decision platform’ will illustrate an excellent example for the database in PED-ACT. The IEA EBC Annex 83 and Cost Action 19126 create the basis for data collection, developing existing PED databases, characterization of PED, and review of regulations of PED, as well as development of simulation tools. The UBEM project further enables a detailed high-resolution energy balance calculation of PED.Energy system modelingThe energy consumption and efficiency of the energy model of Çamlık Site, created using EnergyPlus software, have been evaluated under the scenarios specified below. At each stage, a new system was incorporated to explore the potential of the area becoming a PED. In this context, four scenarios were created to compare different energy scenarios for the Ankara pilot area and to observe the impact of the included systems on energy efficiency: V_base; V_ER; V_ER,HP; V_ER,HP,PV. The basic scenario (V_base) was created using the current state without any improvement to the building envelope. This scenario was developed to determine the annual energy needs of the entire site without any intervention and serves as a reference point for the other developed models. The second scenario (V_ER) was created to improve the building envelopes of all residential units in the area, altering the U-values according to Türkiye's current building standards (TS-825). The third scenario (V_ER,HP) primarily includes a heat pump model that can use electrical energy to produce higher thermal energy and is added on top of the improvements in the second scenario. Finally, the V_ER,HP,PV scenario combines building envelope improvements, the heat pump, and the solar PV system.Stakeholder engagement, expert energy system analysis, future scenarios
      A2P003: Application of ISO52000
      A2P003: Application of ISO52000NoNoYesYesYesYesNo
      A2P004: Appliances included in the calculation of the energy balance
      A2P004: Appliances included in the calculation of the energy balanceYesNoYesYesNoYesNo
      A2P005: Mobility included in the calculation of the energy balance
      A2P005: Mobility included in the calculation of the energy balanceNoNoNoNoYesNoNo
      A2P006: Description of how mobility is included (or not included) in the calculation
      A2P006: Description of how mobility is included (or not included) in the calculationNot included. However, there is a charging place for a shared EV in one building.Mobility is not included in the calculations.All energy demands are included in energy balance, either fuel demands or electrical demand of transport sector; Projection is made of future share of electric mobilty, rest is covered with synthetic fuels to achieve climate neutralityMobility is not included in the calculations.Large combined industrial, residential, and commercial area with complex flows of in- and outgoing traffic.
      A2P007: Annual energy demand in buildings / Thermal demand
      A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]2.13.862135.7150.943.446218
      A2P008: Annual energy demand in buildings / Electric Demand
      A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.21.22631.760.100.528148
      A2P009: Annual energy demand for e-mobility
      A2P009: Annual energy demand for e-mobility [GWh/annum]
      A2P010: Annual energy demand for urban infrastructure
      A2P010: Annual energy demand for urban infrastructure [GWh/annum]
      A2P011: Annual renewable electricity production on-site during target year
      A2P011: PVyesyesnoyesyesnoyesyesno
      A2P011: PV - specify production in GWh/annum [GWh/annum]0.11.0280.513.4240
      A2P011: Windnonononononononoyes
      A2P011: Wind - specify production in GWh/annum [GWh/annum]
      A2P011: Hydrononononononononono
      A2P011: Hydro - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_elnonononononononono
      A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_peat_elnonononononononono
      A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
      A2P011: PVT_elnonononononononono
      A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
      A2P011: Othernonononononononoyes
      A2P011: Other - specify production in GWh/annum [GWh/annum]
      A2P012: Annual renewable thermal production on-site during target year
      A2P012: Geothermalnonononononononono
      A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Solar Thermalnoyesnonononoyesnono
      A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.08
      A2P012: Biomass_heatnonononononononono
      A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: Waste heat+HPnononoyesnonononoyes
      A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]2.2300
      A2P012: Biomass_peat_heatnonononononononono
      A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: PVT_thnonononononononono
      A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_firewood_thnonononononononono
      A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Othernonononononononono
      A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
      A2P013: Renewable resources on-site - Additional notes
      A2P013: Renewable resources on-site - Additional notesHeat is produced from DH return, refrigeration and exhaust air. The mentioned 2200 MWh/a includes HP el. consumption (about 1/6 of that)53 MW PV potential in all three quarters; no other internal renewable energy potentials knownTwo scenarios are conducted regarding Kadikoy PED energy generation. For the second scenario, just 0.53GWh/annum PV production is proposed.Very little wind production currently exists in the area. The electricity production of the waste incineration plant will be included at a later date. Aalborg East is partly a remarkable area for hosting a Portland cement factory that accounts for a substantial share of Denmark’s total CO2 emissions. In turn, it also provides waste heat to the district heating grid for all of Aalborg city and some of the smaller towns that are connected to the same DH grid.
      A2P014: Annual energy use
      A2P014: Annual energy use [GWh/annum]2.35.088132.50.743.976620
      A2P015: Annual energy delivered
      A2P015: Annual energy delivered [GWh/annum]0.49399
      A2P016: Annual non-renewable electricity production on-site during target year
      A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]000
      A2P017: Annual non-renewable thermal production on-site during target year
      A2P017: Gasnonononoyesnonoyesno
      A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Coalnonononononononono
      A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Oilnonononononononono
      A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Othernonononononononoyes
      A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]300
      A2P018: Annual renewable electricity imports from outside the boundary during target year
      A2P018: PVnononoyesyesnoyesnono
      A2P018 - PV: specify production in GWh/annum if available [GWh/annum]0.707-0.26
      A2P018: Windnononoyesnonononono
      A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
      A2P018: Hydronononoyesnonononono
      A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_elnononoyesnonononono
      A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_peat_elnononoyesnonononono
      A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: PVT_elnonononononononono
      A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Othernonononononononono
      A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
      A2P019: Annual renewable thermal imports from outside the boundary during target year
      A2P019: Geothermalnonononononononono
      A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Solar Thermalnonononononononono
      A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_heatnononoyesnonononono
      A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]0.7
      A2P019: Waste heat+HPnonononononononono
      A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_peat_heatnonononononononono
      A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: PVT_thnonononononononono
      A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_firewood_thnonononononononono
      A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Othernonononononononono
      A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
      A2P020: Share of RES on-site / RES outside the boundary
      A2P020: Share of RES on-site / RES outside the boundary0003.28571428571431.45403111739750-2.269230769230800
      A2P021: GHG-balance calculated for the PED
      A2P021: GHG-balance calculated for the PED [tCO2/annum]0
      A2P022: KPIs related to the PED case study / PED Lab
      A2P022: Safety & Security
      A2P022: HealthEncouraging a healthy lifestyle
      A2P022: Education
      A2P022: MobilityModal Split, Fuel mix in mobility, Energy use for transportation, Access to public transport, Public infrastructure promoting low-carbon mobility, Number of public EV charging stations, Energy delivered for EV chargingyes
      A2P022: EnergyFinal energy consumption, Primary energy consumption, Energy imported to PED, Energy exported from PED, RES production, PED energy balance, Energy savings in the PED, GHG emissions, Reduction of emissions, Final energy consumption per capita, Primary energy consumption per capita, Primary energy sources (shares), Buildings connected to DH-network or renewable energy grid, GHG emissions per capita, System flexibility for energy players, RES storage usage, Peak load reductionyes
      A2P022: Water
      A2P022: Economic developmentTotal investments, Payback time, Economic value of savings
      A2P022: Housing and CommunityDevelopment of housing prices, Housing cost overburden rate, Citizen engagement/empowerment to climate conscious actions, Inhabitants in dense areas, Energy povertyyes
      A2P022: WasteRecycling rate
      A2P022: OtherSmart Cities strategies, Quality of open data
      A2P023: Technological Solutions / Innovations - Energy Generation
      A2P023: Photovoltaicsnoyesnoyesyesyesyesyesyes
      A2P023: Solar thermal collectorsnoyesnononoyesyesnoyes
      A2P023: Wind Turbinesnonononononononono
      A2P023: Geothermal energy systemnononononoyesnonono
      A2P023: Waste heat recoverynononoyesnoyesnonoyes
      A2P023: Waste to energynononononoyesnonoyes
      A2P023: Polygenerationnonononononononono
      A2P023: Co-generationnononoyesnoyesnonono
      A2P023: Heat Pumpnoyesnoyesyesyesyesyesyes
      A2P023: Hydrogennononononoyesnonono
      A2P023: Hydropower plantnononononoyesnonono
      A2P023: Biomassnononoyesnoyesnonoyes
      A2P023: Biogasnononononoyesnonono
      A2P023: Other
      A2P024: Technological Solutions / Innovations - Energy Flexibility
      A2P024: A2P024: Information and Communication Technologies (ICT)noyesnoyesnoyesnonono
      A2P024: Energy management systemnoyesnoyesnoyesnonoyes
      A2P024: Demand-side managementnononononoyesnonoyes
      A2P024: Smart electricity gridnononononoyesnonoyes
      A2P024: Thermal Storagenononoyesnoyesnonoyes
      A2P024: Electric Storagenoyesnononoyesnonoyes
      A2P024: District Heating and Coolingnononoyesnoyesnonoyes
      A2P024: Smart metering and demand-responsive control systemsnoyesnononoyesnonoyes
      A2P024: P2P – buildingsnononononoyesnonono
      A2P024: Other
      A2P025: Technological Solutions / Innovations - Energy Efficiency
      A2P025: Deep Retrofittingnoyesnoyesyesyesnoyesyes
      A2P025: Energy efficiency measures in historic buildingsnononononoyesnonono
      A2P025: High-performance new buildingsnononoyesnonononono
      A2P025: Smart Public infrastructure (e.g. smart lighting)noyesnonononononono
      A2P025: Urban data platformsnononoyesnoyesnonono
      A2P025: Mobile applications for citizensnonononononononono
      A2P025: Building services (HVAC & Lighting)noyesnoyesyesnonoyesno
      A2P025: Smart irrigationnonononononononono
      A2P025: Digital tracking for waste disposalnoyesnonononononono
      A2P025: Smart surveillancenonononononononoyes
      A2P025: Other
      A2P026: Technological Solutions / Innovations - Mobility
      A2P026: Efficiency of vehicles (public and/or private)noyesnoyesnoyesnonono
      A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nononoyesnoyesnonono
      A2P026: e-Mobilitynoyesnoyesnoyesnonono
      A2P026: Soft mobility infrastructures and last mile solutionsnononoyesnoyesnonono
      A2P026: Car-free areanonononononononono
      A2P026: Other
      A2P027: Mobility strategies - Additional notes
      A2P027: Mobility strategies - Additional notes
      A2P028: Energy efficiency certificates
      A2P028: Energy efficiency certificatesYesYesNoNoNoNoYes
      A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingThe Municipal Buildings have an energy certificate, according to the Portuguese legislation.The obligatory buildijng energy classification
      A2P029: Any other building / district certificates
      A2P029: Any other building / district certificatesNoNoNoNoNoNoNo
      A2P029: If yes, please specify and/or enter notes
      A3P001: Relevant city /national strategy
      A3P001: Relevant city /national strategy
      • Energy master planning (SECAP, etc.),
      • Promotion of energy communities (REC/CEC)
      • Urban Renewal Strategies,
      • Energy master planning (SECAP, etc.),
      • Promotion of energy communities (REC/CEC),
      • Climate change adaption plan/strategy (e.g. Climate City contract)
      • Smart cities strategies,
      • Urban Renewal Strategies,
      • Energy master planning (SECAP, etc.),
      • New development strategies,
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Energy master planning (SECAP, etc.),
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Smart cities strategies
      • Urban Renewal Strategies,
      • Energy master planning (SECAP, etc.),
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Smart cities strategies,
      • Urban Renewal Strategies,
      • New development strategies,
      • National / international city networks addressing sustainable urban development and climate neutrality
      A3P002: Quantitative targets included in the city / national strategy
      A3P002: Quantitative targets included in the city / national strategyCarbon neutrality by 2035Karşıyaka Municipality is the first local government in Turkey to sign the Covenant of Mayors in 2011. During this period, the greenhouse gas inventory of the district was carried out three times and reduction targets were set for 2020 and 2030. In the 2021 Sustainable Energy and Climate Action Plan prepared as of the end of 2021, Karşıyaka Municipality has targeted a 40% reduction in its emissions for 2030 compared to the base year 2018. In the 2021 Sustainable Energy and Climate Action Plan, Karşıyaka Municipality aims to reduce its greenhouse gas emissions from 3.96 tCO2e / person in 2018 to 2.37 tCO2e / person in 2030. System solutions such as the use of renewable energy sources, air, ground or water source heat pump, cogeneration and microcogeneration are analysed by designers in order to fully or partially meet the energy requirements for heating, cooling, ventilation, hot water, electricity and lighting for all buildings with a floor area of less than 20,000 square metres. If at least 50% of the building's total energy consumption costs are covered by one or more of these applications, the points are taken in the assessment table in the Building and housing estate business certification guide of 2023.Climate neutrality by 2035Reduction of 1018000 tons CO2 by 2030
      A3P003: Strategies towards decarbonization of the gas grid
      A3P003: Strategies towards decarbonization of the gas grid
      • Other
      • Electrification of Heating System based on Heat Pumps
      • Electrification of Heating System based on Heat Pumps,
      • Biogas,
      • Hydrogen
      • Electrification of Heating System based on Heat Pumps,
      • Electrification of Cooking Methods
      • Electrification of Heating System based on Heat Pumps
      • Electrification of Heating System based on Heat Pumps,
      • Biogas
      A3P003: OtherAt a national level there are some studies regarding the decarbonization of the gas grid, but no concrete strategies so far.
      A3P004: Identification of needs and priorities
      A3P004: Identification of needs and prioritiesDeveloping and demonstrating solutions for carbon neutralityAccording to the model developed for the district, the electrification of heating and cooling is necessary.Therefore, there needs to be the implementation of a heat pump. The building-integrated photovoltaic panelsshould follow. Through net-metering practices, the district is expected to reach energy positivity throughthis scenario.Freiburg has ambitious goals and wants to achieve climate neutrality until 2035, the PED concept could help to develop suitable strategies on district levelAccording to the model developed for the district, the electrification of heating and cooling is necessary with heat pumps. Rooftop photovoltaic panels also have the potential for renewable energy generation. Through net-metering practices, the district is expected to reach energy positivity through this scenario.Decarbonize part of Aalborg city as a way of working incrementally towards being a zero-emission city.
      A3P005: Sustainable behaviour
      A3P005: Sustainable behaviourE. g. visualizing energy and water consumptionEnergy efficiency by renovation measures for buildings and measures for saving electricity; electrification by installation of heat pumps and photovoltaics and switching to electric cars, additional measures not directly related to PED like sustainable diet and sharing economy- Stakeholder engagement; - Focus on implementing renewable energy production where possible; - Rretrofitting and energy optimization of existing buildings.
      A3P006: Economic strategies
      A3P006: Economic strategies
      • Innovative business models,
      • PPP models,
      • Existing incentives
      • Open data business models,
      • Innovative business models,
      • PPP models,
      • Life Cycle Cost,
      • Circular economy models
      • Demand management Living Lab,
      • Local trading,
      • Existing incentives
      • Innovative business models,
      • PPP models,
      • Circular economy models,
      • Demand management Living Lab,
      • Local trading
      • Life Cycle Cost,
      • Circular economy models
      A3P006: Other
      A3P007: Social models
      A3P007: Social models
      • Co-creation / Citizen engagement strategies,
      • Prevention of energy poverty,
      • Digital Inclusion,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Citizen Social Research,
      • Policy Forums,
      • Quality of Life,
      • Strategies towards social mix,
      • Affordability,
      • Prevention of energy poverty,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Affordability
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Citizen Social Research,
      • Prevention of energy poverty,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Affordability
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Policy Forums,
      • Citizen/owner involvement in planning and maintenance
      A3P007: Other
      A3P008: Integrated urban strategies
      A3P008: Integrated urban strategies
      • City Vision 2050,
      • SECAP Updates,
      • Building / district Certification
      • Strategic urban planning,
      • District Energy plans,
      • City Vision 2050,
      • SECAP Updates
      • Digital twinning and visual 3D models,
      • District Energy plans,
      • SECAP Updates
      • Strategic urban planning,
      • Digital twinning and visual 3D models,
      • District Energy plans
      • Strategic urban planning,
      • Digital twinning and visual 3D models,
      • District Energy plans,
      • City Vision 2050,
      • SECAP Updates
      • Digital twinning and visual 3D models,
      • District Energy plans
      • Strategic urban planning,
      • District Energy plans
      A3P008: Other
      A3P009: Environmental strategies
      A3P009: Environmental strategies
      • Energy Neutral,
      • Net zero carbon footprint,
      • Pollutants Reduction
      • Energy Neutral,
      • Net zero carbon footprint
      • Energy Neutral,
      • Low Emission Zone,
      • Pollutants Reduction
      • Energy Neutral,
      • Low Emission Zone,
      • Net zero carbon footprint
      • Energy Neutral,
      • Low Emission Zone
      • Energy Neutral,
      • Net zero carbon footprint
      A3P009: OtherEnergy Positive, Low Emission Zone
      A3P010: Legal / Regulatory aspects
      A3P010: Legal / Regulatory aspectsCurrent energy tariffs disincentivize both individual and collective PV systems – meaning energy communities are not economically feasible, housing associations and public buildings struggle with finding a secure RoI for solar panels, and citizens and local industry lack an incentive to install solar panels on their own
      B1P001: PED/PED relevant concept definition
      B1P001: PED/PED relevant concept definitionThe original idea is that the area produces at least as much it consumes.The pilot area was selected on the basis of several criteria: its location within areas prioritised by Karşıyaka Municipality for combating climate change, compliance with the building regulations set out in the Green Building-Site-Operation (2023) guide, which are in line with Municipality's energy policy, the presence of open spaces that allow various applications for renewable energy, proximity to public facilities such as schools and municipal services, the availability of data on energy consumption (e.g. electricity and natural gas bills) and architectural features, the potential for community building, the suitability for solar energy systems, considering orientation and roof structure, and the potential for future building renovations. The aim of the initiative is to explore the feasibility of transforming the district into a Positive Energy District (PED).Assessment methods for this ped (and for germany) is defined in this project at the moment and will be tested at that case studyÇamlık District, unlike many other districts in Ankara, has a specific urban morphology that draws near the other pilot zones considered by the partners of PED-ACT. The site has three-storey single housing units, along with a fair amount of greenery around. Furthermore, the roof areas enable large amounts of PV installment, which results in higher amounts of local renewable energy potential. Therefore, the district is a good fit for PED development.The large scale provides interesting opportunities for both urban development and strategic energy planning; the diverse mix of buildings and functions also allow for interesting discussions regarding PEDs. Another interesting facet is that the district heating grid is almost fully supplied by waste heat.
      B1P002: Motivation behind PED/PED relevant project development
      B1P002: Motivation behind PED/PED relevant project developmentDeveloping systems towards carbon neutrality. Also urban renewal.City is interested in transforming the quarter, as many buildings are old, have private owner structures and have decentralised heating systems. As the city wants to become climate neutral by 2035 action is needed now. In the research project PED urban the idea is to focus on the future energy system of the quarter and use it as a case study to develop a common assessment method for PEDs in alignment with european efforts in that regardPED-ACT project.The area has an interesting history of development and has recently undergone several urban improvements. This is coupled with a strong local network of business owners and other stakeholders, all with an interest in developing the area in the best way possible. This made for an interesting case from a planning perspective to investigate how this network would pick up on the concept of PED and whether they could see any potential utility in relation to their everyday experiences.
      B1P003: Environment of the case study area
      B2P003: Environment of the case study areaUrban areaSuburban areaUrban areaSuburban areaUrban areaSuburban areaSuburban area
      B1P004: Type of district
      B2P004: Type of district
      • Renovation
      • New construction,
      • Renovation
      • Renovation
      • Renovation
      • Renovation
      • Renovation
      • Renovation
      B1P005: Case Study Context
      B1P005: Case Study Context
      • Re-use / Transformation Area,
      • New Development
      • New Development,
      • Retrofitting Area
      • Retrofitting Area
      • Retrofitting Area
      • Re-use / Transformation Area,
      • Retrofitting Area
      • Retrofitting Area
      • Retrofitting Area
      B1P006: Year of construction
      B1P006: Year of construction20051986
      B1P007: District population before intervention - Residential
      B1P007: District population before intervention - Residential3500589823.37916.931
      B1P008: District population after intervention - Residential
      B1P008: District population after intervention - Residential35005898
      B1P009: District population before intervention - Non-residential
      B1P009: District population before intervention - Non-residential
      B1P010: District population after intervention - Non-residential
      B1P010: District population after intervention - Non-residential
      B1P011: Population density before intervention
      B1P011: Population density before intervention000000000
      B1P012: Population density after intervention
      B1P012: Population density after intervention0000.05833333333333300.0011987804878049000
      B1P013: Building and Land Use before intervention
      B1P013: Residentialnononoyesyesyesyesyesno
      B1P013 - Residential: Specify the sqm [m²]10279550800
      B1P013: Officenonoyesnonoyesyesnono
      B1P013 - Office: Specify the sqm [m²]
      B1P013: Industry and Utilitynononononoyesnonono
      B1P013 - Industry and Utility: Specify the sqm [m²]
      B1P013: Commercialnonoyesyesnoyesyesnono
      B1P013 - Commercial: Specify the sqm [m²]
      B1P013: Institutionalnononononoyesnonono
      B1P013 - Institutional: Specify the sqm [m²]
      B1P013: Natural areasnononoyesnoyesnonono
      B1P013 - Natural areas: Specify the sqm [m²]
      B1P013: Recreationalnononoyesnoyesnonono
      B1P013 - Recreational: Specify the sqm [m²]
      B1P013: Dismissed areasnonononononononono
      B1P013 - Dismissed areas: Specify the sqm [m²]
      B1P013: Othernonononononoyesnono
      B1P013 - Other: Specify the sqm [m²]Cultural Center, Sports Center / Total building and land use data of neigborhood 13,878 residential, 4,441 commercial using before intervention. For project area & 49 building area m2
      B1P014: Building and Land Use after intervention
      B1P014: Residentialnonoyesyesyesyesyesyesno
      B1P014 - Residential: Specify the sqm [m²]10279550800
      B1P014: Officenonoyesnonoyesyesnono
      B1P014 - Office: Specify the sqm [m²]
      B1P014: Industry and Utilitynononononoyesnonono
      B1P014 - Industry and Utility: Specify the sqm [m²]
      B1P014: Commercialnonoyesyesnoyesyesnono
      B1P014 - Commercial: Specify the sqm [m²]
      B1P014: Institutionalnononononoyesnonono
      B1P014 - Institutional: Specify the sqm [m²]
      B1P014: Natural areasnononoyesnoyesnonono
      B1P014 - Natural areas: Specify the sqm [m²]
      B1P014: Recreationalnononoyesnoyesnonono
      B1P014 - Recreational: Specify the sqm [m²]
      B1P014: Dismissed areasnonononononononono
      B1P014 - Dismissed areas: Specify the sqm [m²]
      B1P014: Othernonononononoyesnono
      B1P014 - Other: Specify the sqm [m²]
      B2P001: PED Lab concept definition
      B2P001: PED Lab concept definitionAn ongoing process and dialogue with local stakeholders to determine the future development of the area.
      B2P002: Installation life time
      B2P002: Installation life timePermanent installationNo new installation will be made throughout the project. Rather the project will attempt to establish a local PED network with the aim of empowering the stakeholders to better engage with sustainable technologies.
      B2P003: Scale of action
      B2P003: ScaleVirtualDistrict
      B2P004: Operator of the installation
      B2P004: Operator of the installationCM Maia, IPMAIA, NEW, AdEP.Kristian Olesen
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P005: Replication framework: Applied strategy to reuse and recycling the materialsReplication is primarily focused on the establishment of a local network with an interest in and understanding of PED.
      B2P006: Circular Economy Approach
      B2P006: Do you apply any strategy to reuse and recycling the materials?NoNo
      B2P006: Other
      B2P007: Motivation for developing the PED Lab
      B2P007: Motivation for developing the PED Lab
      • Strategic
      • Civic
      B2P007: Other
      B2P008: Lead partner that manages the PED Lab
      B2P008: Lead partner that manages the PED LabMunicipalityResearch center/University
      B2P008: Other
      B2P009: Collaborative partners that participate in the PED Lab
      B2P009: Collaborative partners that participate in the PED Lab
      • Academia,
      • Private,
      • Industrial,
      • Citizens, public, NGO,
      • Other
      • Academia,
      • Private
      B2P009: OtherEnergy Agency
      B2P010: Synergies between the fields of activities
      B2P010: Synergies between the fields of activities
      B2P011: Available facilities to test urban configurations in PED Lab
      B2P011: Available facilities to test urban configurations in PED Lab
      • Buildings,
      • Demand-side management,
      • Prosumers,
      • Renewable generation,
      • Energy storage,
      • Efficiency measures,
      • Lighting,
      • E-mobility,
      • Information and Communication Technologies (ICT),
      • Ambient measures,
      • Social interactions
      B2P011: Other
      B2P012: Incubation capacities of PED Lab
      B2P012: Incubation capacities of PED Lab
      • Monitoring and evaluation infrastructure,
      • Tools, spaces, events for testing and validation
      B2P013: Availability of the facilities for external people
      B2P013: Availability of the facilities for external peopleDepends on the building: _Tecmaia is open to the public but the buildings are for the exclusive use of companies allocated at the industrial site; _The municipal buildings have public access; _The residential buildings have an exclusive use for the residents.
      B2P014: Monitoring measures
      B2P014: Monitoring measures
      • Execution plan,
      • Available data,
      • Type of measured data
      B2P015: Key Performance indicators
      B2P015: Key Performance indicators
      • Energy,
      • Environmental,
      • Social,
      • Economical / Financial
      B2P016: Execution of operations
      B2P016: Execution of operationsCurrent PED status (WP5 SPARCS): Conceptualization and methodology definition of the (virtual) PED for Maia Municipality with real monitoring and assessment in order to replicate and scale up to a city-level PED. The financial investments were already targeted.
      B2P017: Capacities
      B2P017: Capacities_Energy production and storage, _Monitoring; _Digitization.
      B2P018: Relations with stakeholders
      B2P018: Relations with stakeholdersThe relationship with stakeholders (municipal companies, industry, citizens, etc) has been fundamental for the definition of the PED. In this sense, some sessions were organized to gather different points of view in order to trace the best path for the PED. Also, the participation of Maia Municipality in EU projects, as EHHUR and OMEGA-X, makes possible the share of knowledge between different partners.
      B2P019: Available tools
      B2P019: Available tools
      • Energy modelling,
      • Social models,
      • Business and financial models,
      • Fundraising and accessing resources,
      • Matching actors
      B2P019: Available tools
      B2P020: External accessibility
      B2P020: External accessibility
      C1P001: Unlocking Factors
      C1P001: Recent technological improvements for on-site RES production5 - Very important4 - Important1 - Unimportant5 - Very important5 - Very important3 - Moderately important4 - Important5 - Very important2 - Slightly important
      C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important4 - Important1 - Unimportant2 - Slightly important4 - Important3 - Moderately important4 - Important2 - Slightly important4 - Important
      C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant
      C1P001: Storage systems and E-mobility market penetration4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant3 - Moderately important
      C1P001: Decreasing costs of innovative materials4 - Important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant
      C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important4 - Important1 - Unimportant3 - Moderately important4 - Important2 - Slightly important5 - Very important4 - Important4 - Important
      C1P001: The ability to predict Multiple Benefits4 - Important1 - Unimportant4 - Important4 - Important3 - Moderately important4 - Important4 - Important2 - Slightly important
      C1P001: The ability to predict the distribution of benefits and impacts4 - Important1 - Unimportant2 - Slightly important4 - Important2 - Slightly important4 - Important4 - Important4 - Important
      C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important4 - Important1 - Unimportant3 - Moderately important2 - Slightly important4 - Important5 - Very important2 - Slightly important5 - Very important
      C1P001: Social acceptance (top-down)5 - Very important4 - Important1 - Unimportant5 - Very important5 - Very important4 - Important3 - Moderately important5 - Very important4 - Important
      C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important4 - Important1 - Unimportant2 - Slightly important5 - Very important4 - Important4 - Important4 - Important4 - Important
      C1P001: Presence of integrated urban strategies and plans3 - Moderately important5 - Very important1 - Unimportant4 - Important5 - Very important4 - Important5 - Very important5 - Very important3 - Moderately important
      C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important4 - Important1 - Unimportant4 - Important4 - Important4 - Important4 - Important4 - Important5 - Very important
      C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important4 - Important1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important4 - Important5 - Very important2 - Slightly important
      C1P001: Availability of RES on site (Local RES)4 - Important1 - Unimportant4 - Important5 - Very important4 - Important4 - Important4 - Important2 - Slightly important
      C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important4 - Important1 - Unimportant4 - Important5 - Very important2 - Slightly important3 - Moderately important5 - Very important5 - Very important
      C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P001: Any other UNLOCKING FACTORS (if any)
      C1P002: Driving Factors
      C1P002: Climate Change adaptation need4 - Important5 - Very important1 - Unimportant1 - Unimportant5 - Very important4 - Important4 - Important5 - Very important2 - Slightly important
      C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important4 - Important1 - Unimportant5 - Very important5 - Very important4 - Important5 - Very important5 - Very important4 - Important
      C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important
      C1P002: Urban re-development of existing built environment3 - Moderately important4 - Important1 - Unimportant5 - Very important3 - Moderately important2 - Slightly important5 - Very important5 - Very important5 - Very important
      C1P002: Economic growth need2 - Slightly important4 - Important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important
      C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important4 - Important1 - Unimportant3 - Moderately important5 - Very important2 - Slightly important4 - Important3 - Moderately important3 - Moderately important
      C1P002: Territorial and market attractiveness2 - Slightly important4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important
      C1P002: Energy autonomy/independence5 - Very important4 - Important1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important4 - Important5 - Very important1 - Unimportant
      C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P002: Any other DRIVING FACTOR (if any)
      C1P003: Administrative barriers
      C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important5 - Very important1 - Unimportant2 - Slightly important4 - Important4 - Important4 - Important4 - Important4 - Important
      C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important
      C1P003: Lack of public participation3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant5 - Very important3 - Moderately important
      C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important4 - Important3 - Moderately important3 - Moderately important4 - Important2 - Slightly important
      C1P003:Long and complex procedures for authorization of project activities5 - Very important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important5 - Very important5 - Very important3 - Moderately important
      C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant4 - Important5 - Very important5 - Very important
      C1P003: Complicated and non-comprehensive public procurement4 - Important4 - Important1 - Unimportant2 - Slightly important5 - Very important2 - Slightly important4 - Important5 - Very important3 - Moderately important
      C1P003: Fragmented and or complex ownership structure3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important5 - Very important4 - Important5 - Very important5 - Very important3 - Moderately important
      C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important5 - Very important2 - Slightly important5 - Very important5 - Very important5 - Very important
      C1P003: Lack of internal capacities to support energy transition3 - Moderately important4 - Important1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important4 - Important5 - Very important1 - Unimportant
      C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P003: Any other Administrative BARRIER (if any)
      C1P004: Policy barriers
      C1P004: Lack of long-term and consistent energy plans and policies4 - Important3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important3 - Moderately important2 - Slightly important5 - Very important2 - Slightly important
      C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important2 - Slightly important3 - Moderately important5 - Very important3 - Moderately important
      C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P004: Any other Political BARRIER (if any)
      C1P005: Legal and Regulatory barriers
      C1P005: Inadequate regulations for new technologies4 - Important4 - Important1 - Unimportant3 - Moderately important5 - Very important4 - Important4 - Important5 - Very important1 - Unimportant
      C1P005: Regulatory instability3 - Moderately important4 - Important1 - Unimportant2 - Slightly important5 - Very important2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant
      C1P005: Non-effective regulations4 - Important4 - Important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant4 - Important5 - Very important2 - Slightly important
      C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important4 - Important1 - Unimportant1 - Unimportant5 - Very important5 - Very important2 - Slightly important5 - Very important3 - Moderately important
      C1P005: Building code and land-use planning hindering innovative technologies4 - Important4 - Important1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important2 - Slightly important4 - Important3 - Moderately important
      C1P005: Insufficient or insecure financial incentives4 - Important4 - Important1 - Unimportant2 - Slightly important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important
      C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important4 - Important1 - Unimportant4 - Important3 - Moderately important2 - Slightly important4 - Important3 - Moderately important3 - Moderately important
      C1P005: Shortage of proven and tested solutions and examples3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important2 - Slightly important2 - Slightly important2 - Slightly important
      C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P005: Any other Legal and Regulatory BARRIER (if any)
      C1P006: Environmental barriers
      C1P006: Environmental barriers- Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Air and Water Pollution: 2 - Natural Disasters: 1 - Water Scarcity: 1- Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Air and Water Pollution: 2 - Water Scarcity: 1 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Natural Disasters: 1
      C1P007: Technical barriers
      C1P007: Lack of skilled and trained personnel4 - Important4 - Important1 - Unimportant2 - Slightly important5 - Very important4 - Important4 - Important1 - Unimportant2 - Slightly important
      C1P007: Deficient planning3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant2 - Slightly important3 - Moderately important
      C1P007: Retrofitting work in dwellings in occupied state4 - Important4 - Important1 - Unimportant1 - Unimportant5 - Very important4 - Important5 - Very important5 - Very important5 - Very important
      C1P007: Lack of well-defined process4 - Important4 - Important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important4 - Important1 - Unimportant4 - Important
      C1P007: Inaccuracy in energy modelling and simulation4 - Important4 - Important1 - Unimportant3 - Moderately important5 - Very important2 - Slightly important4 - Important1 - Unimportant2 - Slightly important
      C1P007: Lack/cost of computational scalability4 - Important4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant
      C1P007: Grid congestion, grid instability4 - Important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant
      C1P007: Negative effects of project intervention on the natural environment3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important
      C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important4 - Important1 - Unimportant1 - Unimportant4 - Important4 - Important5 - Very important1 - Unimportant4 - Important
      C1P007: Difficult definition of system boundaries3 - Moderately important4 - Important1 - Unimportant5 - Very important4 - Important4 - Important5 - Very important4 - Important5 - Very important
      C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P007: Any other Thecnical BARRIER (if any)
      C1P008: Social and Cultural barriers
      C1P008: Inertia4 - Important3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important4 - Important2 - Slightly important5 - Very important2 - Slightly important
      C1P008: Lack of values and interest in energy optimization measurements5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important3 - Moderately important5 - Very important2 - Slightly important
      C1P008: Low acceptance of new projects and technologies5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important2 - Slightly important3 - Moderately important4 - Important1 - Unimportant
      C1P008: Difficulty of finding and engaging relevant actors5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant5 - Very important2 - Slightly important
      C1P008: Lack of trust beyond social network4 - Important4 - Important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important4 - Important5 - Very important1 - Unimportant
      C1P008: Rebound effect4 - Important4 - Important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important4 - Important3 - Moderately important2 - Slightly important
      C1P008: Hostile or passive attitude towards environmentalism5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important2 - Slightly important
      C1P008: Exclusion of socially disadvantaged groups2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important
      C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important4 - Important1 - Unimportant3 - Moderately important4 - Important4 - Important3 - Moderately important5 - Very important1 - Unimportant
      C1P008: Hostile or passive attitude towards energy collaboration3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
      C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P008: Any other Social BARRIER (if any)
      C1P009: Information and Awareness barriers
      C1P009: Insufficient information on the part of potential users and consumers4 - Important1 - Unimportant2 - Slightly important3 - Moderately important4 - Important3 - Moderately important3 - Moderately important2 - Slightly important
      C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts4 - Important1 - Unimportant2 - Slightly important4 - Important2 - Slightly important2 - Slightly important5 - Very important5 - Very important
      C1P009: Lack of awareness among authorities4 - Important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important3 - Moderately important4 - Important3 - Moderately important
      C1P009: Information asymmetry causing power asymmetry of established actors4 - Important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important3 - Moderately important5 - Very important4 - Important
      C1P009: High costs of design, material, construction, and installation4 - Important1 - Unimportant3 - Moderately important5 - Very important4 - Important4 - Important5 - Very important3 - Moderately important
      C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P009: Any other Information and Awareness BARRIER (if any)
      C1P010: Financial barriers
      C1P010: Hidden costs4 - Important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important4 - Important5 - Very important4 - Important
      C1P010: Insufficient external financial support and funding for project activities4 - Important1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important
      C1P010: Economic crisis4 - Important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important4 - Important5 - Very important1 - Unimportant
      C1P010: Risk and uncertainty4 - Important1 - Unimportant3 - Moderately important4 - Important4 - Important5 - Very important4 - Important5 - Very important
      C1P010: Lack of consolidated and tested business models4 - Important1 - Unimportant3 - Moderately important4 - Important3 - Moderately important5 - Very important3 - Moderately important4 - Important
      C1P010: Limited access to capital and cost disincentives4 - Important1 - Unimportant2 - Slightly important5 - Very important2 - Slightly important3 - Moderately important5 - Very important2 - Slightly important
      C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P010: Any other Financial BARRIER (if any)
      C1P011: Market barriers
      C1P011: Split incentives5 - Very important1 - Unimportant2 - Slightly important5 - Very important2 - Slightly important5 - Very important5 - Very important2 - Slightly important
      C1P011: Energy price distortion4 - Important1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important5 - Very important4 - Important2 - Slightly important
      C1P011: Energy market concentration, gatekeeper actors (DSOs)4 - Important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important4 - Important3 - Moderately important3 - Moderately important
      C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P011: Any other Market BARRIER (if any)
      C1P012: Stakeholders involved
      C1P012: Government/Public Authorities
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Planning/leading
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      C1P012: Research & Innovation
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation
      C1P012: Financial/Funding
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • None
      • Design/demand aggregation,
      • Construction/implementation
      C1P012: Analyst, ICT and Big Data
      • Monitoring/operation/management
      • None
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      C1P012: Business process management
      • Planning/leading,
      • Monitoring/operation/management
      • None
      • None
      C1P012: Urban Services providers
      • Planning/leading
      • None
      • Planning/leading,
      • Design/demand aggregation
      C1P012: Real Estate developers
      • Design/demand aggregation,
      • Construction/implementation
      • None
      • None
      C1P012: Design/Construction companies
      • Design/demand aggregation
      • Construction/implementation
      • Construction/implementation
      C1P012: End‐users/Occupants/Energy Citizens
      • Monitoring/operation/management
      • Planning/leading,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Social/Civil Society/NGOs
      • Monitoring/operation/management
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation
      C1P012: Industry/SME/eCommerce
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • None
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Other
      C1P012: Other (if any)
      Summary

      Authors (framework concept)

      Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

      Contributors (to the content)

      Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

      Implemented by

      Boutik.pt: Filipe Martins, Jamal Khan
      Marek Suchánek (Czech Technical University in Prague)