Filters:
NameProjectTypeCompare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Uncompare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Uncompare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Uncompare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Uncompare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Uncompare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Uncompare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Uncompare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Uncompare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Maia, Sobreiro Social Housing
Barcelona, Santa Coloma de Gramenet
Stor-Elvdal, Campus Evenstad
Groningen, PED North
Tartu, City centre area
Oslo, Verksbyen
Borlänge, Rymdgatan’s Residential Portfolio
Vidin, Himik and Bononia
Ankara, Çamlık District
Uden, Loopkantstraat
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityMaia, Sobreiro Social HousingBarcelona, Santa Coloma de GramenetStor-Elvdal, Campus EvenstadGroningen, PED NorthTartu, City centre areaOslo, VerksbyenBorlänge, Rymdgatan’s Residential PortfolioVidin, Himik and BononiaAnkara, Çamlık DistrictUden, Loopkantstraat
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynonoyesnononoyesnoyesyesno
PED relevant case studyyesnonoyesnoyesnoyesnoyesyes
PED Lab.noyesnonoyesyesnonononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesyesyesyesyesyesyesyesyesyes
Annual energy surplusnonoyesyesyesnoyesyesyesyesyes
Energy communityyesnononoyesnonoyesnoyesno
Circularitynonononoyesyesnonononono
Air quality and urban comfortyesnoyesnononoyesnononono
Electrificationyesnonononoyesnoyesnoyesyes
Net-zero energy costnononononononononoyesno
Net-zero emissionnonononoyesyesyesnonoyesno
Self-sufficiency (energy autonomous)nonononononononononono
Maximise self-sufficiencynoyesnononoyesnoyesnoyesno
Othernononoyesnonononononono
Other (A1P004)Energy-flexibility
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhasePlanning PhaseImplementation PhaseIn operationImplementation PhaseImplementation PhaseImplementation PhasePlanning PhasePlanning PhasePlanning PhaseIn operation
A1P006: Start Date
A1P006: Start date10/2101/1312/1802/1607/1812/1810/2206/17
A1P007: End Date
A1P007: End date10/2412/2412/2307/2208/2412/3009/2505/23
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts
  • Monitoring data available within the districts,
  • Meteorological open data
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards
  • Open data city platform – different dashboards
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
      • TNO, Hanze, RUG,
      • Ped noord book
          • Inger Andresen, Tonje Healey Trulsrud, Luca Finocchiaro, Alessandro Nocente, Meril Tamm, Joana Ortiz, Jaume Salom, Abel Magyari, Linda Hoes-van Oeffelen, Wouter Borsboom, Wim Kornaat, Niki Gaitani, Design and performance predictions of plus energy neighbourhoods – Case studies of demonstration projects in four different European climates, Energy and Buildings, Volume 274, 2022, 112447, ISSN 0378-7788, https://doi.org/10.1016/j.enbuild.2022.112447. (https://www.sciencedirect.com/science/article/pii/S0378778822006181),
          • Deliverable, Report: Integrated Energy Design for Sustainable Plus Energy Neighbourhoods (syn.ikia),
          • Deliverable, Report: DEMONSTRATION CASE OF SUSTAINABLE PLUS ENERGY NEIGHBOURHOODS IN MARINE CLIMATE (syn.ikia),
          • https://www.synikia.eu/no/bibliotek/
          A1P011: Geographic coordinates
          X Coordinate (longitude):23.814588-8.3735572.1611.0787707735317466.53512126.72273710.98617335443299215.39449522.882632.7953695.6191
          Y Coordinate (latitude):38.07734941.13580441.3961.4260442039911253.23484658.38071359.2242971664204660.48660943.993639.88181251.6606
          A1P012: Country
          A1P012: CountryGreecePortugalSpainNorwayNetherlandsEstoniaNorwaySwedenBulgariaTurkeyNetherlands
          A1P013: City
          A1P013: CityMunicipality of KifissiaMaiaBarcelonaEvenstad, Stor-Elvdal municipalityGroningenTartuFredrikstadBorlängeVidinAnkaraUden
          A1P014: Climate Zone (Köppen Geiger classification)
          A1P014: Climate Zone (Köppen Geiger classification).CsaCsbCsaDwcCfaDfbCfbDsbCfaDsbCfb
          A1P015: District boundary
          A1P015: District boundaryVirtualVirtualGeographicGeographicFunctionalFunctionalGeographicGeographicGeographicGeographicGeographic
          OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhood
          A1P016: Ownership of the case study/PED Lab
          A1P016: Ownership of the case study/PED Lab:PublicPrivatePublicMixedPrivatePrivateMixedMixedPrivatePrivate
          A1P017: Ownership of the land / physical infrastructure
          A1P017: Ownership of the land / physical infrastructure:Multiple OwnersSingle OwnerSingle OwnerMultiple OwnersMultiple OwnersSingle OwnerSingle OwnerMultiple OwnersMultiple OwnersSingle Owner
          A1P018: Number of buildings in PED
          A1P018: Number of buildings in PED221622718210742571
          A1P019: Conditioned space
          A1P019: Conditioned space [m²]21542100001.01352173550370098759.53226002360
          A1P020: Total ground area
          A1P020: Total ground area [m²]17.1327931449945195234.80508003860
          A1P021: Floor area ratio: Conditioned space / total ground area
          A1P021: Floor area ratio: Conditioned space / total ground area00000000101
          A1P022: Financial schemes
          A1P022a: Financing - PRIVATE - Real estatenonononoyesyesyesnononoyes
          A1P022a: Add the value in EUR if available [EUR]65000007804440
          A1P022b: Financing - PRIVATE - ESCO schemenonononononononononono
          A1P022b: Add the value in EUR if available [EUR]
          A1P022c: Financing - PRIVATE - Othernoyesnonoyesnononononono
          A1P022c: Add the value in EUR if available [EUR]
          A1P022d: Financing - PUBLIC - EU structural fundingnononononoyesnonononono
          A1P022d: Add the value in EUR if available [EUR]4000000
          A1P022e: Financing - PUBLIC - National fundingnoyesnoyesyesyesnonoyesnono
          A1P022e: Add the value in EUR if available [EUR]8000000
          A1P022f: Financing - PUBLIC - Regional fundingnoyesnonononononononono
          A1P022f: Add the value in EUR if available [EUR]
          A1P022g: Financing - PUBLIC - Municipal fundingnonononoyesnononononono
          A1P022g: Add the value in EUR if available [EUR]
          A1P022h: Financing - PUBLIC - Othernonononononononononono
          A1P022h: Add the value in EUR if available [EUR]
          A1P022i: Financing - RESEARCH FUNDING - EUnoyesyesnoyesnonononoyesno
          A1P022i: Add the value in EUR if available [EUR]503903
          A1P022j: Financing - RESEARCH FUNDING - Nationalnononoyesnononononoyesno
          A1P022j: Add the value in EUR if available [EUR]
          A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononononononono
          A1P022k: Add the value in EUR if available [EUR]
          A1P022l: Financing - RESEARCH FUNDING - Othernonononononononononono
          A1P022l: Add the value in EUR if available [EUR]
          A1P022: Other
          A1P023: Economic Targets
          A1P023: Economic Targets
          • Positive externalities,
          • Boosting local and sustainable production
          • Positive externalities
          • Boosting local businesses,
          • Boosting local and sustainable production
          • Boosting local businesses,
          • Boosting local and sustainable production
          • Positive externalities
          • Positive externalities,
          • Boosting local businesses,
          • Boosting consumption of local and sustainable products
          • Boosting local and sustainable production
          A1P023: Other
          A1P024: More comments:
          A1P024: More comments:The total development consists of more than 1500 dwellings, a kindergarten, a school, and commercial buildings. Two of the residential blocks are included as demonstration projects in syn.ikia. The two blocks have 20 dwellings in each and are 6 stories high.The urban morphology of Çamlık District differs in several ways, compared with the typical urban fabric in Türkiye, along with the capital city of Ankara. The houses on the site are composed of three-story attached single-housing units with multiple rows, creating a total of 257 housing units in total. Low-rise buildings coupled with suitably oriented rooftop surfaces brings about significant advantages in the site. Dense greenery in the site also results in reduced cooling energy demand in the buildings.The project is a follow-up from the “Social Beautiful” concept which was developed in collaboration between Labyrint (Support in sheltered housing), Area (housing company), the municipality of Uden, and Hendriks Coppelmans (developer). The concept aims to provide an answer to changes in various policy areas and the changing demands of society. The Social Beautiful concept consists of the following elements: 1. Living, working, and community services are brought together in one location. A multifunctional residential and service centre is being realized at the location. 2. Housing is shaped by the realization of financially accessible homes suitable for the target group. The housing design is tailored to the target group. it may also include sheltered / protected living. 3. Work takes place at the location or from the same location. The work has a social function within the neighbourhood. Wage-related work must contribute to providing structure in the daily activities of the residents. 4. Neighbourhood management is organized from the location in the surrounding neighbourhood. A service package is provided from the residential and service centre that contributes to the ability of neighbourhood residents to live independently for longer, to strengthen the social network, and to improve the quality of life and safety in the neighbourhood. 5. The houses are suitable for use at all times for regular rental. Communal facilities must be realized within the contours of a regular apartment. The objective is to offer a suitable living and working situation to a group of vulnerable citizens. In this way they become a fully-fledged part of society. They not only make use of the facilities themselves, but also give substance to the level of facilities in the municipality. Due to the integrated approach, they experience a greater sense of well-being and security.
          A1P025: Estimated PED case study / PED LAB costs
          A1P025: Estimated PED case study / PED LAB costs [mil. EUR]257804440
          Contact person for general enquiries
          A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaAdelina RodriguesJaume SalomÅse Lekang SørensenJasper Tonen, Elisabeth KoopsJaanus TammTonje Healey TrulsrudJingchun ShenDaniela KostovaProf. Dr. İpek Gürsel DİNOTonje Healey Trulsrud
          A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamMaia Municipality (CM Maia) – Energy and Mobility divisionIRECSINTEF / The Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart CitiesMunicipality of GroningenTartu City GovernmentNorwegian University of Science and technology (NTNU)Högskolan DalarnaGreen Synergy ClusterMiddle East Technical UniversityNorwegian University of Science and Technology (NTNU)
          A1P028: AffiliationMunicipality / Public BodiesMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversityMunicipality / Public BodiesMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversityOtherResearch Center / UniversityResearch Center / University
          A1P028: OtherCluster
          A1P029: Emailgiavasoglou@kifissia.grdscm.adelina@cm-maia.ptjsalom@irec.catase.sorensen@sintef.noJasper.tonen@groningen.nlJaanus.tamm@tartu.eetonje.h.trulsrud@ntnu.nojih@du.sedaniela@greensynergycluster.euipekg@metu.edu.trtonje.h.trulsrud@ntnu.no
          Contact person for other special topics
          A1P030: NameStavros Zapantis - vice mayorCarolina Gonçalves (AdEPorto)Joan Estrada AliberasKaspar AlevXingxing ZhangAssoc. Prof. Onur Taylan
          A1P031: Emailstavros.zapantis@gmail.comcarolinagoncalves@adeporto.euj_estrada@gencat.catKaspar.alev@tartu.eexza@du.seotaylan@metu.edu.tr
          Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYesYesYes
          A2P001: Fields of application
          A2P001: Fields of application
          • Energy production
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Urban comfort (pollution, heat island, noise level etc.),
          • Digital technologies
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • Digital technologies
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies,
          • Construction materials
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Urban comfort (pollution, heat island, noise level etc.),
          • Waste management
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Urban comfort (pollution, heat island, noise level etc.),
          • Digital technologies,
          • Indoor air quality
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Urban comfort (pollution, heat island, noise level etc.),
          • Digital technologies,
          • Indoor air quality
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Construction materials
          • Energy efficiency,
          • Energy production
          • Energy efficiency,
          • Energy production,
          • Construction materials
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • Waste management,
          • Indoor air quality,
          • Construction materials
          A2P001: Other
          A2P002: Tools/strategies/methods applied for each of the above-selected fields
          A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy production: - installation of photovoltaic systems for renewable on-site energy production; - installation of a BIPV demonstrator for the City Hall building. Energy flexibility: - implementation of an energy community through an active citizens involvement process. Digital technologies: - smart-meters installation in some dwellings in order to monitor consumption and suggest more sustainable energy behaviours. [PCP] Through https://balcaodigital.e-redes.pt/consumptions/history “Espaço Municipal” (https://www.espacomunicipal.pt/pt/) might access history of consumption up to midnight of the previous day. E-mobility: - Installation of new charging stations for electric vehicles; Urban comfort and air quality: - Monitoring units for air pollutants concentration (PM2.5, PM10, NO2) [PCP] Currently we are monitoring CO, O3, NO2, SO2, noise, PM2.5 and PM10 at a point 267 m east from the four buildings southeast of Sobreiro area:- Integrated energy design process of both active and passive elements - Multicriteria analysis of energy system, environmental variables, indoor comfort and economic parameters - Energy modelling - Predictive control to optimize performance within the neighbourhoodCampus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. The vision for Campus Evenstad is an energy-flexible Campus Evenstad in an emission-free Europe. The area consists of approx. 20 buildings managed and owned by Statsbygg; the Norwegian government’s building commissioner, property manager and developer. The oldest building is from the 1700-century and the newest is the administration centre (2017) which is a Zero Emission Building (ZEB) with the highest ambitions (ZEB-COM). Their concept has been to realize Campus Evenstad as an energy pilot, where innovative energy solutions are demonstrated, showing how local areas can become more self-sufficient in energy. The energy system at Evenstad consists of several innovative energy solutions that are new in a Norwegian and European context. They are combined in local infrastructure for electricity and heat, which has led to new knowledge and learning about how the solutions work together, and how the interaction is between the local and the national energy system. The solutions consist of solar cells (PV), solar collectors, combined heat and power plant (CHP) based on wood chips, biofuel boiler, electric boiler, grid connection, district heating, heat storage, stationary battery and bidirectional electric vehicle (EV) charging (V2G). Statsbygg has gained a lot of operational experience from Campus Evenstad - both from individual technologies and from the interaction between these, which benefits Statsbygg's 2,200 buildings and 3 million m2 around Norway. Sharing of experiences is central. Campus Evenstad is a pilot in the Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart Cities were several of the solutions has been developed and studied.Energy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streamsEnergy efficiency: - buildings retrofitting - combined public and private financing - low temperature central heating - LED lighting Energy production: - installation of photovoltaic (PV) systems for renewable on-site energy production; Digital technologies: - smart-meters smart home system. Smart city information platform E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services implementation. Urban comfort and air quality - Control units for air pollutants concentration (PM2.5, PM10, NO2) - Sustainable Energy and Climate Action Plan - SECAP)Energy efficiency: energy-efficient buildings that comply with the Norwegian Passive House standard. Energy Flexibility: sharing of PV energy between the dwellings Energy production: BIPV on the roof and facades, and a ground source heat pump for thermal energy. E-mobility: EV charging Urban comfort: a large green park in the neighbourhood with a small lake and recreational areas Digital technologies: Smart Home Systems for lighting, heating and ventilation Indoor air quality: balanced ventilationLoad calculation and system optimisation: City Energy Analyst Identification of stranded assets for asset owners and investors to understand the carbon risks: CRREMThe energy consumption and efficiency of the energy model of Çamlık Site, created using EnergyPlus software, have been evaluated under the scenarios specified below. At each stage, a new system was incorporated to explore the potential of the area becoming a PED. In this context, four scenarios were created to compare different energy scenarios for the Ankara pilot area and to observe the impact of the included systems on energy efficiency: V_base; V_ER; V_ER,HP; V_ER,HP,PV. The basic scenario (V_base) was created using the current state without any improvement to the building envelope. This scenario was developed to determine the annual energy needs of the entire site without any intervention and serves as a reference point for the other developed models. The second scenario (V_ER) was created to improve the building envelopes of all residential units in the area, altering the U-values according to Türkiye's current building standards (TS-825). The third scenario (V_ER,HP) primarily includes a heat pump model that can use electrical energy to produce higher thermal energy and is added on top of the improvements in the second scenario. Finally, the V_ER,HP,PV scenario combines building envelope improvements, the heat pump, and the solar PV system.Energy efficiency: Energy efficient envelope, with good insulation, triple glazing windows and airtight envelope. (EPC = 0) Energy Flexibility: MCP controls for the heat pump in the apartments. Energy production: PV panels on the roof, Ground source heat pumps Waste management: construction waste was kept to a minimum and sorted and collected separately as much as possible. Indoor air quality: Exhaust ventilation and opening of windows Construction materials: low carbon emission building materials
          A2P003: Application of ISO52000
          A2P003: Application of ISO52000NoNoNoNoYesNoNoYesYes
          A2P004: Appliances included in the calculation of the energy balance
          A2P004: Appliances included in the calculation of the energy balanceYesNoYesNoYesNoYesNoYesNo
          A2P005: Mobility included in the calculation of the energy balance
          A2P005: Mobility included in the calculation of the energy balanceNoNoYesNoNoNoNoYesNoNo
          A2P006: Description of how mobility is included (or not included) in the calculation
          A2P006: Description of how mobility is included (or not included) in the calculationAt Campus Evenstad there is infrastructure for EV charging and bidirectional charging (V2G). EV charging is included in the energy balance.Mobility, till now, is not included in the energy model.Mobility is not included in the calculations.not included
          A2P007: Annual energy demand in buildings / Thermal demand
          A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]0.772.39.10.160.67773.4460.148
          A2P008: Annual energy demand in buildings / Electric Demand
          A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.760.330.0530.036560.5280.109
          A2P009: Annual energy demand for e-mobility
          A2P009: Annual energy demand for e-mobility [GWh/annum]0
          A2P010: Annual energy demand for urban infrastructure
          A2P010: Annual energy demand for urban infrastructure [GWh/annum]0
          A2P011: Annual renewable electricity production on-site during target year
          A2P011: PVyesyesyesyesnoyesyesnonoyesyes
          A2P011: PV - specify production in GWh/annum [GWh/annum]0.050.0650.183.42400.058
          A2P011: Windnonononononononononono
          A2P011: Wind - specify production in GWh/annum [GWh/annum]
          A2P011: Hydrononononononononononono
          A2P011: Hydro - specify production in GWh/annum [GWh/annum]
          A2P011: Biomass_elnononoyesnonononononono
          A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]0.050
          A2P011: Biomass_peat_elnonononononononononono
          A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
          A2P011: PVT_elnononononononoyesnonono
          A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.01818
          A2P011: Othernonoyesnononononononono
          A2P011: Other - specify production in GWh/annum [GWh/annum]
          A2P012: Annual renewable thermal production on-site during target year
          A2P012: Geothermalnonononoyesnononononoyes
          A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
          A2P012: Solar Thermalnoyesnoyesyesyesnonononono
          A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.0450.5
          A2P012: Biomass_heatnononoyesyesnononononono
          A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.350.1
          A2P012: Waste heat+HPnonononoyesnononononono
          A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_peat_heatnonononononononononono
          A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
          A2P012: PVT_thnonononoyesnonoyesnonono
          A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]0.0825
          A2P012: Biomass_firewood_thnonononononononononono
          A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
          A2P012: Othernonononononononononono
          A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
          A2P013: Renewable resources on-site - Additional notes
          A2P013: Renewable resources on-site - Additional notes-Rooftop PV 39.1 kWp -4 pipe air-to-water heat pump to cover heating and coolingListed values are measurements from 2018. Renewable energy share is increasing.Geothermal heatpump systems, Waste heat from data centers*Annual energy use below is presentedin primary energy consumption
          A2P014: Annual energy use
          A2P014: Annual energy use [GWh/annum]0.0331.5000.3183.9760.194
          A2P015: Annual energy delivered
          A2P015: Annual energy delivered [GWh/annum]0.03010.20550.0368
          A2P016: Annual non-renewable electricity production on-site during target year
          A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]000
          A2P017: Annual non-renewable thermal production on-site during target year
          A2P017: Gasnononononononononoyesno
          A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Coalnonononononononononono
          A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Oilnonononononononononono
          A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Othernononononononoyesnonono
          A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]0
          A2P018: Annual renewable electricity imports from outside the boundary during target year
          A2P018: PVnonononononononononono
          A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
          A2P018: Windnonononononononononono
          A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
          A2P018: Hydrononononononononononono
          A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_elnonononononononononono
          A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_peat_elnonononononononononono
          A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: PVT_elnonononononononononono
          A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Othernononononononoyesnonono
          A2P018 - Other: specify production in GWh/annum if available [GWh/annum]0.187
          A2P019: Annual renewable thermal imports from outside the boundary during target year
          A2P019: Geothermalnonononononononononono
          A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Solar Thermalnonononononononononono
          A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_heatnonononononononononono
          A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Waste heat+HPnonononononononononono
          A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_peat_heatnonononononononononono
          A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
          A2P019: PVT_thnonononononononononono
          A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_firewood_thnonononononononononono
          A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Othernononononononoyesnonono
          A2P019 Other: Please specify imports in GWh/annum [GWh/annum]0
          A2P020: Share of RES on-site / RES outside the boundary
          A2P020: Share of RES on-site / RES outside the boundary00000000.53839572192513000
          A2P021: GHG-balance calculated for the PED
          A2P021: GHG-balance calculated for the PED [tCO2/annum]980-6.0356.93-0.00043
          A2P022: KPIs related to the PED case study / PED Lab
          A2P022: Safety & SecurityPersonal SafetynonePersonal Safety
          A2P022: HealthCarbon Dioxide (CO2) levels, Predicted Mean Vote,Predicted Percentage of Dissatisfied, Temperature, Relative Humidity, Illuminance, Daylight factor, Sound pressure levelsHealthy community + Indoor Evironmental Quality (indoor air quality, thermal comfort, lighting and visual comfort)thermal comfort diagramHealthy community
          A2P022: Educationnone
          A2P022: MobilitySustainable mobilitynoneSustainable mobility
          A2P022: EnergyNon-renewable primary energy balance, Renewable energy ratio, Grid Purchase factor, Load cover factor/Self-generation, Supply cover factor/Self-consumption, Net energy/Net power, Peak delivered/exported power, Connection capacity credit, Total greenhouse gas emissionsEnergy and environmental performance (non-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/ self-consumption, net energy/net power. peak delivered(peak exported power, connection capacity credit, total greenhouse gas emissionsnormalized CO2/GHG & Energy intensityNOn-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/self-consumption, net energy/net power, peak delivered/peak expoted, total greenhouse gas emission
          A2P022: Water
          A2P022: Economic development: Investment costs, Share of investments covered by grants, Maintenance-related costs, Requirement-related costs, Operation-related costs, Other costs, Net Present Value, Internal Rate of Return, Economic Value Added, Payback Period, nZEB Cost ComparisonEconomic Performance: capital costs, operational costs, overall performancecost of excess emissionscapital costs, operational cots, overall economic performance (5 KPIs)
          A2P022: Housing and Community: Access to services, Affordability of energy, Affordability of housing, Democratic legitimacy, Living conditions, Social cohesion, Personal safety, Energy consciousnessdemopraphic composiiton, diverse community, social cohesion access to amenities, access to services, afordability of energy, affordability of shousing, living conditions, universal design, energy consciousnessdemographic composition, diverse community, social cohesion
          A2P022: Waste
          A2P022: OtherSmartness and FlexibilitySmartness and flecibility, Indoor Environmental Quality, Social performance - Equity (affordable housing, access to servicees and amenitioes, afforability of energy, living conditions, sustinable mobility, universal design)
          A2P023: Technological Solutions / Innovations - Energy Generation
          A2P023: Photovoltaicsnoyesyesyesyesyesyesyesyesyesyes
          A2P023: Solar thermal collectorsnoyesnoyesyesnonoyesnonono
          A2P023: Wind Turbinesnonononononononononono
          A2P023: Geothermal energy systemnonononoyesnoyesyesyesnoyes
          A2P023: Waste heat recoverynonononoyesnonoyesnonono
          A2P023: Waste to energynonononoyesnononononono
          A2P023: Polygenerationnonononononononononono
          A2P023: Co-generationnononoyesnonononononono
          A2P023: Heat Pumpnoyesyesnoyesnoyesyesyesyesyes
          A2P023: Hydrogennonononononononononono
          A2P023: Hydropower plantnonononononononononono
          A2P023: Biomassnononoyesnoyesnonononono
          A2P023: Biogasnononononoyesnonononono
          A2P023: OtherThe Co-generation is biomass based.
          A2P024: Technological Solutions / Innovations - Energy Flexibility
          A2P024: A2P024: Information and Communication Technologies (ICT)noyesnoyesyesyesyesyesnonono
          A2P024: Energy management systemnoyesyesyesyesyesyesnononoyes
          A2P024: Demand-side managementnonoyesyesyesnoyesnononoyes
          A2P024: Smart electricity gridnonononononononononono
          A2P024: Thermal Storagenononoyesyesnonoyesnonono
          A2P024: Electric Storagenoyesnoyesyesnononoyesnono
          A2P024: District Heating and Coolingnononoyesyesyesnoyesnonono
          A2P024: Smart metering and demand-responsive control systemsnoyesnoyesyesnoyesnononoyes
          A2P024: P2P – buildingsnonononononononononono
          A2P024: OtherBidirectional electric vehicle (EV) charging (V2G)
          A2P025: Technological Solutions / Innovations - Energy Efficiency
          A2P025: Deep Retrofittingnoyesnononoyesnoyesyesyesno
          A2P025: Energy efficiency measures in historic buildingsnonononoyesnononononono
          A2P025: High-performance new buildingsnonoyesyesyesnoyesnononoyes
          A2P025: Smart Public infrastructure (e.g. smart lighting)noyesnonoyesyesnonononono
          A2P025: Urban data platformsnonononoyesyesnonononono
          A2P025: Mobile applications for citizensnononononoyesnonononono
          A2P025: Building services (HVAC & Lighting)noyesyesnononoyesyesnoyesyes
          A2P025: Smart irrigationnonononononononononono
          A2P025: Digital tracking for waste disposalnoyesnonononononononono
          A2P025: Smart surveillancenononononoyesnonononono
          A2P025: Other
          A2P026: Technological Solutions / Innovations - Mobility
          A2P026: Efficiency of vehicles (public and/or private)noyesnononoyesnonononono
          A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nononononoyesnonononono
          A2P026: e-Mobilitynoyesnoyesyesyesnonononono
          A2P026: Soft mobility infrastructures and last mile solutionsnonononononononononono
          A2P026: Car-free areanonononononononononono
          A2P026: Other
          A2P027: Mobility strategies - Additional notes
          A2P027: Mobility strategies - Additional notes
          A2P028: Energy efficiency certificates
          A2P028: Energy efficiency certificatesYesYesYesYesYesYesNoNoYes
          A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingThe Municipal Buildings have an energy certificate, according to the Portuguese legislation.Energy Performance CertificatePassive house (2 buildings, 4 200 m2, from 2015)Energy Performance CertificateNS3700 Norwegian Passive HouseEPC = 0, energy neutral building
          A2P029: Any other building / district certificates
          A2P029: Any other building / district certificatesNoNoYesNoNoNo
          A2P029: If yes, please specify and/or enter notesZero Emission Building (ZEB) with the highest ambitions (ZEB-COM) (admin building, 1 141 m2, 2016)
          A3P001: Relevant city /national strategy
          A3P001: Relevant city /national strategy
          • Energy master planning (SECAP, etc.),
          • Promotion of energy communities (REC/CEC)
          • Urban Renewal Strategies,
          • Energy master planning (SECAP, etc.),
          • Promotion of energy communities (REC/CEC),
          • Climate change adaption plan/strategy (e.g. Climate City contract)
          • Promotion of energy communities (REC/CEC),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Energy master planning (SECAP, etc.),
          • New development strategies,
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Energy master planning (SECAP, etc.)
          • Promotion of energy communities (REC/CEC),
          • Climate change adaption plan/strategy (e.g. Climate City contract)
          • Energy master planning (SECAP, etc.),
          • New development strategies
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          A3P002: Quantitative targets included in the city / national strategy
          A3P002: Quantitative targets included in the city / national strategyThe study aligns closely with the decarbonisation and energy reduction pathways of residential multi family buildings with 1.5°C global warming target in Sweden. This study will also contribute to the achievement of the carbon neturality of whole Borlänge city by 2030.
          A3P003: Strategies towards decarbonization of the gas grid
          A3P003: Strategies towards decarbonization of the gas grid
          • Other
          • Electrification of Heating System based on Heat Pumps,
          • Electrification of Cooking Methods,
          • Biogas
          • Biogas,
          • Hydrogen
          • Electrification of Heating System based on Heat Pumps
          A3P003: OtherAt a national level there are some studies regarding the decarbonization of the gas grid, but no concrete strategies so far.
          A3P004: Identification of needs and priorities
          A3P004: Identification of needs and prioritiesIn our project, we carried out a comprehensive exploration of strategies to achieve positive energy districts in a Swedish residential portfolio. The focus on urban energy transitions necessitates a holistic approach that integrates building retrofit, solar technology exploration, and heating supply optimisation. Exploration of Local Solar Sources: The analysis reveals varying solar irradiance resources throughout the year, emphasizing the importance of strategic placement. Integration of combined photovoltaic and thermal panels into building envelopes demonstrates the potential to cover a significant portion of the energy demand even in Sweden. Heating Supply Optimisation with Solar Technologies: Despite the surplus energy production from on-site solar technology, challenges arise due to temporal energy asymmetry. The introduction of heat pumps emerges as a feasible solution to balance energy gaps, utilising both rejected and free heat. Optimisation scenarios, utilising a combination of geothermal heat pumps, water source heat pumps, and PVT, showcase remarkable reductions in emissions and primary energy consumption. Urban Form and Energy Infrastructure Design: We realised the importance of returning to urban form and energy infrastructure design to optimise future residential portfolio potential. Building layout design, influenced by zoning regulations and innovative typologies, plays a crucial role in achieving district level energy efficiency. Future challenges, including demographic shifts, e-mobility, and climate change, necessitate a more holistic approach to energy infrastructure design, addressing not only heating and electricity demands but also cooling requirements.According to the model developed for the district, the electrification of heating and cooling is necessary with heat pumps. Rooftop photovoltaic panels also have the potential for renewable energy generation. Through net-metering practices, the district is expected to reach energy positivity through this scenario.
          A3P005: Sustainable behaviour
          A3P005: Sustainable behaviourIn Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.While our investigation primarily centres on technical optimisation within Positive Energy District (PED) development, it is essential to acknowledge the broader scope encompassing social and governance dimensions. Specifically, understanding stakeholders' willingness to embrace technical recommendations upon project completion is important. Several potential influencing factors merit exploration, including economic considerations, technical optimisation-associated embodied carbon balance, the general public's technical perceptions, and operational feasibility. Evaluating these aspects holistically not only enhances the efficacy of PED initiatives but also fosters greater acceptance and participation within the communities they serve.
          A3P006: Economic strategies
          A3P006: Economic strategies
          • Innovative business models,
          • PPP models,
          • Existing incentives
          • Innovative business models,
          • Blockchain
          • Innovative business models,
          • PPP models,
          • Life Cycle Cost,
          • Existing incentives
          • Open data business models,
          • Life Cycle Cost,
          • Circular economy models,
          • Local trading
          A3P006: Other
          A3P007: Social models
          A3P007: Social models
          • Co-creation / Citizen engagement strategies,
          • Prevention of energy poverty,
          • Digital Inclusion,
          • Citizen/owner involvement in planning and maintenance,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Behavioural Change / End-users engagement,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour),
          • Other
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Citizen Social Research,
          • Prevention of energy poverty,
          • Citizen/owner involvement in planning and maintenance
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Behavioural Change / End-users engagement,
          • Citizen Social Research,
          • Policy Forums,
          • Social incentives,
          • Quality of Life,
          • Prevention of energy poverty,
          • Digital Inclusion,
          • Citizen/owner involvement in planning and maintenance,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Strategies towards (local) community-building,
          • Behavioural Change / End-users engagement,
          • Social incentives,
          • Affordability,
          • Digital Inclusion
          • Co-creation / Citizen engagement strategies,
          • Behavioural Change / End-users engagement,
          • Quality of Life,
          • Prevention of energy poverty
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Affordability
          • Co-creation / Citizen engagement strategies,
          • Social incentives,
          • Quality of Life
          A3P007: OtherCampus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. Sharing knowledge is essential: Evenstad has regular visits from Politicians, decision-makers, researchers, environmental organizations, and energy- and building companies.
          A3P008: Integrated urban strategies
          A3P008: Integrated urban strategies
          • City Vision 2050,
          • SECAP Updates,
          • Building / district Certification
          • Strategic urban planning,
          • District Energy plans,
          • City Vision 2050,
          • SECAP Updates
          • Strategic urban planning,
          • City Vision 2050,
          • SECAP Updates
          • Strategic urban planning,
          • Digital twinning and visual 3D models,
          • District Energy plans,
          • Building / district Certification
          • Strategic urban planning,
          • City Vision 2050,
          • SECAP Updates
          • Digital twinning and visual 3D models,
          • District Energy plans
          A3P008: Other
          A3P009: Environmental strategies
          A3P009: Environmental strategies
          • Energy Neutral,
          • Net zero carbon footprint,
          • Pollutants Reduction
          • Low Emission Zone
          • Energy Neutral
          • Net zero carbon footprint,
          • Carbon-free,
          • Pollutants Reduction,
          • Greening strategies,
          • Sustainable Urban drainage systems (SUDS),
          • Nature Based Solutions (NBS)
          • Low Emission Zone,
          • Net zero carbon footprint,
          • Life Cycle approach,
          • Sustainable Urban drainage systems (SUDS)
          • Pollutants Reduction,
          • Greening strategies
          • Energy Neutral,
          • Low Emission Zone
          A3P009: OtherEnergy Positive, Low Emission Zone
          A3P010: Legal / Regulatory aspects
          A3P010: Legal / Regulatory aspectsCampus Evenstad became a prosumer in 2016, as the first with DSO Eidsiva. Evenstad is also one of the first three PV systems in Norway to receive green certificates.At national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricity
          B1P001: PED/PED relevant concept definition
          B1P001: PED/PED relevant concept definitionThe biggest impact is the demonstration of several new energy solutions for local communities. Statsbygg/Campus Evenstad contributes to the development of innovations, pushing technological development through purchasing and demonstration of the solutions. This is a benefit for both end users, energy service providers and society at large. Evenstad also contribute to developing the local business community. For example, local biomass chip production for CHP, development of V2G-software etc. Several key solutions have been important when aiming to achieve the goals of reduced emissions, increased self-sufficiency in energy, and an energy-flexible campus. Example Vehicle-to-grid (V2G): We realized bidirectional EV charging at Campus Evenstad in 2019, demonstrating V2G for the first time in Norway. The experiences from Evenstad provide increased knowledge and practical experience from purchasing, installing and operating the V2G solution, and can contribute to creating new solutions within the energy system. With the equipment installed, the batteries in EVs can supply power back to buildings or the power grid. Example solar cells (PV): We installed PV in 2013 when there were only a few grid-connected PV systems in Norway. The PV system was an important piece in changing the view on solar energy in Norway, where businesses, the public sector and private individuals started seeing the potential for solar energy also this far north. In 2022, the PV system was expanded with PV cells on the facade of the energy center. Example Solar collector system: Covers 100m2 of the roof surface of dormitories and supplies supplies 117 dormitories with all the hot water they need (4000m2 floor area. The solar collector system is connected to the district heating system, where the main heat source is bioenergy. Solar energy and bioenergy complement each other at different times of the year. Example battery bank: Among the 5 largest electrical batteries in Norway connected to the grid. Example CHP: First of its kind in Norway, generating heat and electricity from biomass. Already in 2010, fossil fuels were phased out by converting from oil to wood-chip heating.The case study follows the concept of syn.ikia with sustainable plus energy neighbourhoods (SPEN) and aims to reach a plus energy balance based on EPB uses on an annual basis.The Rymdgatan's Residential Portfolio in Sweden presents a compelling case study for its classification as a PED-related research, given its alignment with sustainable behaviours and overarching PED development principles as follows: Inclusivity and Social Equity: The residential portfolio situated in Rymdgatan caters primarily to a low-income community. By focusing on this demographic, the project addresses critical aspects of social equity within sustainable urban development. Ensuring access to energy-efficient housing and amenities for economically disadvantaged populations not only fosters social cohesion but also mitigates energy poverty, a pressing concern in many urban contexts. Multifamily Residential Building: The inclusion of multifamily residential buildings within the portfolio underscores a commitment to density and efficient land use, both essential components of sustainable urban design. Such developments promote resource optimisation by consolidating housing units, thereby reducing per capita energy consumption and infrastructure demands. Moreover, multifamily dwellings often facilitate community engagement and shared resource management, fostering a culture of sustainability among residents. Low Carbon Retrofitting and Transition: The overarching initiative to transition the entire Jakobsgårdarna district. The included Rymdgatan portfolio, towards low carbon retrofitting, represents a significant example of decarbonization and climate resilience. By integrating energy-efficient technologies and renewable energy solutions into existing infrastructure, the project not only reduces carbon emissions but also serves as a blueprint for revitalising old urban environments sustainably. This holistic approach to retrofitting demonstrates a systemic commitment to environmental stewardship and long-term sustainability. Climate Adaptation and Renewable Energy Integration: Despite Sweden's climatic challenges, including lower solar resources during winter months, the Rymdgatan project leverages its geographical context to optimize renewable energy utilization. Sweden's greater solar resource availability during summer and geothermal potentials complement the design's emphasis on seasonal energy planning, where surplus energy generated during peak periods can be stored or redistributed efficiently. By embracing climate-responsive design strategies, the project demonstrates resilience in the face of climate variability while harnessing renewable energy potential effectively.Çamlık District, unlike many other districts in Ankara, has a specific urban morphology that draws near the other pilot zones considered by the partners of PED-ACT. The site has three-storey single housing units, along with a fair amount of greenery around. Furthermore, the roof areas enable large amounts of PV installment, which results in higher amounts of local renewable energy potential. Therefore, the district is a good fit for PED development.The demonstration projects is a new residential development, which consists of an apartment complex which includes 39 apartments spread over 3 floors. It is a sustainble plus energy neighbouhood, and has reached a plus energy balance on its first year in operation. It has MPC controls on the individual heat pumps to improve the energy flexibility of the apartments. It includes the "social beatiful" concepts with a strong emphasis on the social sustainability of the project.
          B1P002: Motivation behind PED/PED relevant project development
          B1P002: Motivation behind PED/PED relevant project developmentIn line with the EU's vision of "local energy communities", Campus Evenstad demonstrates energy actions that contribute to the clean energy transition. The campus has been developed over several years, demonstrating several innovative and sustainable technologies and energy solutions in a microgrid, e.g. vehicle to grid (V2G), biomass-based combined heat and power (CHP), solar energy, energy storage and zero emission buildings. It shows how to use new technology to enable zero emissions areas. Dedicated professionals, both Statsbygg's operating staff and researchers from FME ZEN have been central to the realization, together with dedicated management at the University campus, who have shown a great willingness to implement new solutions.The developers call their concept for Future Living, where the neighbourhood consist of highly energy-efficient buildings, is supplied with renewable energy onsite and includes green areas for well-being.Borlänge city has committed to become the carbon-neutral city by 2030.PED-ACT project.The need for social housing and the ambition to create a great living environment with a high-performance apartment complex, supplied with renewable energy. It results in lower energy bills for the tenants and high-quality homes.
          B1P003: Environment of the case study area
          B2P003: Environment of the case study areaUrban areaRuralUrban areaSuburban areaUrban areaUrban areaSuburban areaSuburban area
          B1P004: Type of district
          B2P004: Type of district
          • New construction
          • New construction,
          • Renovation
          • Renovation
          • New construction
          • Renovation
          • Renovation
          • Renovation
          • New construction
          B1P005: Case Study Context
          B1P005: Case Study Context
          • New Development
          • Retrofitting Area
          • Retrofitting Area
          • New Development
          • Re-use / Transformation Area,
          • Retrofitting Area
          • Retrofitting Area
          • Retrofitting Area
          • New Development
          B1P006: Year of construction
          B1P006: Year of construction19901986
          B1P007: District population before intervention - Residential
          B1P007: District population before intervention - Residential4500100
          B1P008: District population after intervention - Residential
          B1P008: District population after intervention - Residential100
          B1P009: District population before intervention - Non-residential
          B1P009: District population before intervention - Non-residential6
          B1P010: District population after intervention - Non-residential
          B1P010: District population after intervention - Non-residential6
          B1P011: Population density before intervention
          B1P011: Population density before intervention00000000000
          B1P012: Population density after intervention
          B1P012: Population density after intervention00000000.010658622423328000
          B1P013: Building and Land Use before intervention
          B1P013: Residentialnonoyesnonoyesnoyesyesyesno
          B1P013 - Residential: Specify the sqm [m²]436064 787,5750800
          B1P013: Officenonononononononononono
          B1P013 - Office: Specify the sqm [m²]
          B1P013: Industry and Utilitynonononononoyesnononono
          B1P013 - Industry and Utility: Specify the sqm [m²]whole site was used for idustry and excavation
          B1P013: Commercialnononononoyesnonoyesnono
          B1P013 - Commercial: Specify the sqm [m²]262,33
          B1P013: Institutionalnonononononononononono
          B1P013 - Institutional: Specify the sqm [m²]
          B1P013: Natural areasnononononoyesnonononono
          B1P013 - Natural areas: Specify the sqm [m²]
          B1P013: Recreationalnononononoyesnonononono
          B1P013 - Recreational: Specify the sqm [m²]
          B1P013: Dismissed areasnonononononononononono
          B1P013 - Dismissed areas: Specify the sqm [m²]
          B1P013: Othernononononononoyesnonono
          B1P013 - Other: Specify the sqm [m²]706
          B1P014: Building and Land Use after intervention
          B1P014: Residentialnonoyesnonoyesyesyesnoyesyes
          B1P014 - Residential: Specify the sqm [m²]4360508002394
          B1P014: Officenonononononononononono
          B1P014 - Office: Specify the sqm [m²]
          B1P014: Industry and Utilitynonononononononononono
          B1P014 - Industry and Utility: Specify the sqm [m²]
          B1P014: Commercialnononononoyesnonononono
          B1P014 - Commercial: Specify the sqm [m²]
          B1P014: Institutionalnonononononononoyesnono
          B1P014 - Institutional: Specify the sqm [m²]35322.21
          B1P014: Natural areasnononononoyesnonononono
          B1P014 - Natural areas: Specify the sqm [m²]
          B1P014: Recreationalnononononoyesnonononono
          B1P014 - Recreational: Specify the sqm [m²]
          B1P014: Dismissed areasnonononononononononono
          B1P014 - Dismissed areas: Specify the sqm [m²]
          B1P014: Othernononononononoyesnonono
          B1P014 - Other: Specify the sqm [m²]706
          B2P001: PED Lab concept definition
          B2P001: PED Lab concept definitionGroningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.
          B2P002: Installation life time
          B2P002: Installation life timePermanent installationThe MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.
          B2P003: Scale of action
          B2P003: ScaleVirtualDistrictDistrict
          B2P004: Operator of the installation
          B2P004: Operator of the installationCM Maia, IPMAIA, NEW, AdEP.The Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.
          B2P005: Replication framework: Applied strategy to reuse and recycling the materials
          B2P005: Replication framework: Applied strategy to reuse and recycling the materialsGroningen does not have a strategy to reuse and recyle materials
          B2P006: Circular Economy Approach
          B2P006: Do you apply any strategy to reuse and recycling the materials?NoNoNo
          B2P006: Other
          B2P007: Motivation for developing the PED Lab
          B2P007: Motivation for developing the PED Lab
          • Strategic
          • Civic
          • Strategic
          B2P007: Other
          B2P008: Lead partner that manages the PED Lab
          B2P008: Lead partner that manages the PED LabMunicipalityMunicipalityMunicipality
          B2P008: Other
          B2P009: Collaborative partners that participate in the PED Lab
          B2P009: Collaborative partners that participate in the PED Lab
          • Academia,
          • Private,
          • Industrial,
          • Citizens, public, NGO,
          • Other
          • Academia,
          • Private,
          • Industrial,
          • Other
          • Academia,
          • Private,
          • Industrial,
          • Citizens, public, NGO
          B2P009: OtherEnergy Agencyresearch companies, monitoring company, ict company
          B2P010: Synergies between the fields of activities
          B2P010: Synergies between the fields of activities
          B2P011: Available facilities to test urban configurations in PED Lab
          B2P011: Available facilities to test urban configurations in PED Lab
          • Buildings,
          • Demand-side management,
          • Prosumers,
          • Renewable generation,
          • Energy storage,
          • Efficiency measures,
          • Lighting,
          • E-mobility,
          • Information and Communication Technologies (ICT),
          • Ambient measures,
          • Social interactions
          • Buildings,
          • Demand-side management,
          • Energy storage,
          • Energy networks,
          • Waste management,
          • Lighting,
          • E-mobility,
          • Information and Communication Technologies (ICT),
          • Social interactions,
          • Business models
          • Buildings,
          • Prosumers,
          • Renewable generation,
          • Energy networks,
          • Lighting,
          • E-mobility,
          • Green areas,
          • User interaction/participation,
          • Information and Communication Technologies (ICT)
          B2P011: Other
          B2P012: Incubation capacities of PED Lab
          B2P012: Incubation capacities of PED Lab
          • Monitoring and evaluation infrastructure,
          • Tools, spaces, events for testing and validation
          • Tools for prototyping and modelling
          • Monitoring and evaluation infrastructure,
          • Pivoting and risk-mitigating measures
          B2P013: Availability of the facilities for external people
          B2P013: Availability of the facilities for external peopleDepends on the building: _Tecmaia is open to the public but the buildings are for the exclusive use of companies allocated at the industrial site; _The municipal buildings have public access; _The residential buildings have an exclusive use for the residents.
          B2P014: Monitoring measures
          B2P014: Monitoring measures
          • Execution plan,
          • Available data,
          • Type of measured data
          • Execution plan,
          • Available data,
          • Type of measured data,
          • Equipment,
          • Level of access
          • Available data,
          • Life Cycle Analysis
          B2P015: Key Performance indicators
          B2P015: Key Performance indicators
          • Energy,
          • Environmental,
          • Social,
          • Economical / Financial
          • Energy,
          • Social,
          • Economical / Financial
          • Energy,
          • Sustainability,
          • Social,
          • Economical / Financial
          B2P016: Execution of operations
          B2P016: Execution of operationsCurrent PED status (WP5 SPARCS): Conceptualization and methodology definition of the (virtual) PED for Maia Municipality with real monitoring and assessment in order to replicate and scale up to a city-level PED. The financial investments were already targeted.
          B2P017: Capacities
          B2P017: Capacities_Energy production and storage, _Monitoring; _Digitization.
          B2P018: Relations with stakeholders
          B2P018: Relations with stakeholdersThe relationship with stakeholders (municipal companies, industry, citizens, etc) has been fundamental for the definition of the PED. In this sense, some sessions were organized to gather different points of view in order to trace the best path for the PED. Also, the participation of Maia Municipality in EU projects, as EHHUR and OMEGA-X, makes possible the share of knowledge between different partners.
          B2P019: Available tools
          B2P019: Available tools
          • Energy modelling,
          • Social models,
          • Business and financial models,
          • Fundraising and accessing resources,
          • Matching actors
          • Energy modelling,
          • Social models,
          • Business and financial models
          • Social models
          B2P019: Available tools
          B2P020: External accessibility
          B2P020: External accessibility
          C1P001: Unlocking Factors
          C1P001: Recent technological improvements for on-site RES production5 - Very important4 - Important1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important5 - Very important4 - Important4 - Important5 - Very important3 - Moderately important
          C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important4 - Important1 - Unimportant5 - Very important3 - Moderately important4 - Important4 - Important5 - Very important5 - Very important2 - Slightly important1 - Unimportant
          C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important4 - Important1 - Unimportant5 - Very important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important
          C1P001: Storage systems and E-mobility market penetration4 - Important1 - Unimportant5 - Very important4 - Important2 - Slightly important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant4 - Important
          C1P001: Decreasing costs of innovative materials4 - Important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant4 - Important2 - Slightly important5 - Very important4 - Important
          C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important4 - Important1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant5 - Very important3 - Moderately important4 - Important3 - Moderately important
          C1P001: The ability to predict Multiple Benefits4 - Important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important4 - Important3 - Moderately important
          C1P001: The ability to predict the distribution of benefits and impacts4 - Important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant4 - Important2 - Slightly important4 - Important3 - Moderately important
          C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important4 - Important1 - Unimportant4 - Important5 - Very important4 - Important1 - Unimportant5 - Very important5 - Very important2 - Slightly important3 - Moderately important
          C1P001: Social acceptance (top-down)5 - Very important4 - Important1 - Unimportant4 - Important3 - Moderately important4 - Important1 - Unimportant5 - Very important4 - Important5 - Very important5 - Very important
          C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important4 - Important1 - Unimportant4 - Important4 - Important3 - Moderately important1 - Unimportant4 - Important5 - Very important4 - Important4 - Important
          C1P001: Presence of integrated urban strategies and plans3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant5 - Very important5 - Very important5 - Very important3 - Moderately important
          C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important1 - Unimportant5 - Very important5 - Very important4 - Important5 - Very important
          C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant4 - Important5 - Very important5 - Very important1 - Unimportant
          C1P001: Availability of RES on site (Local RES)4 - Important1 - Unimportant5 - Very important4 - Important4 - Important5 - Very important5 - Very important5 - Very important4 - Important5 - Very important
          C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important4 - Important1 - Unimportant2 - Slightly important4 - Important5 - Very important4 - Important
          C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
          C1P001: Any other UNLOCKING FACTORS (if any)
          C1P002: Driving Factors
          C1P002: Climate Change adaptation need4 - Important5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant5 - Very important4 - Important5 - Very important5 - Very important
          C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important4 - Important1 - Unimportant5 - Very important3 - Moderately important5 - Very important5 - Very important5 - Very important5 - Very important5 - Very important5 - Very important
          C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important4 - Important5 - Very important
          C1P002: Urban re-development of existing built environment3 - Moderately important4 - Important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important5 - Very important4 - Important
          C1P002: Economic growth need2 - Slightly important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant
          C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant4 - Important3 - Moderately important5 - Very important
          C1P002: Territorial and market attractiveness2 - Slightly important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant5 - Very important5 - Very important2 - Slightly important
          C1P002: Energy autonomy/independence5 - Very important4 - Important1 - Unimportant4 - Important2 - Slightly important4 - Important1 - Unimportant2 - Slightly important2 - Slightly important5 - Very important1 - Unimportant
          C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P002: Any other DRIVING FACTOR (if any)Earthquakes due to gas extraction
          C1P003: Administrative barriers
          C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant
          C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant
          C1P003: Lack of public participation3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important5 - Very important1 - Unimportant
          C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant4 - Important5 - Very important4 - Important1 - Unimportant
          C1P003:Long and complex procedures for authorization of project activities5 - Very important5 - Very important1 - Unimportant3 - Moderately important4 - Important5 - Very important1 - Unimportant5 - Very important5 - Very important5 - Very important1 - Unimportant
          C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important4 - Important1 - Unimportant2 - Slightly important4 - Important4 - Important1 - Unimportant4 - Important5 - Very important5 - Very important1 - Unimportant
          C1P003: Complicated and non-comprehensive public procurement4 - Important4 - Important1 - Unimportant2 - Slightly important3 - Moderately important4 - Important1 - Unimportant5 - Very important5 - Very important5 - Very important1 - Unimportant
          C1P003: Fragmented and or complex ownership structure3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important4 - Important5 - Very important1 - Unimportant4 - Important5 - Very important5 - Very important1 - Unimportant
          C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant5 - Very important3 - Moderately important5 - Very important1 - Unimportant
          C1P003: Lack of internal capacities to support energy transition3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important5 - Very important5 - Very important1 - Unimportant
          C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
          C1P003: Any other Administrative BARRIER (if any)Delay in the Environmental Dialogue processing in the municipality
          C1P004: Policy barriers
          C1P004: Lack of long-term and consistent energy plans and policies4 - Important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant
          C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important5 - Very important5 - Very important1 - Unimportant
          C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant4 - Important5 - Very important5 - Very important1 - Unimportant
          C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P004: Any other Political BARRIER (if any)
          C1P005: Legal and Regulatory barriers
          C1P005: Inadequate regulations for new technologies4 - Important4 - Important1 - Unimportant5 - Very important4 - Important4 - Important5 - Very important4 - Important5 - Very important5 - Very important1 - Unimportant
          C1P005: Regulatory instability3 - Moderately important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important5 - Very important1 - Unimportant
          C1P005: Non-effective regulations4 - Important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important4 - Important5 - Very important2 - Slightly important4 - Important5 - Very important1 - Unimportant
          C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant4 - Important5 - Very important5 - Very important1 - Unimportant
          C1P005: Building code and land-use planning hindering innovative technologies4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important2 - Slightly important4 - Important1 - Unimportant
          C1P005: Insufficient or insecure financial incentives4 - Important4 - Important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant
          C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important1 - Unimportant2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant
          C1P005: Shortage of proven and tested solutions and examples3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important1 - Unimportant
          C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P005: Any other Legal and Regulatory BARRIER (if any)
          C1P006: Environmental barriers
          C1P006: Environmental barriers2 - Slightly important- Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Air and Water Pollution: 2 - Water Scarcity: 1 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Natural Disasters: 1
          C1P007: Technical barriers
          C1P007: Lack of skilled and trained personnel4 - Important4 - Important1 - Unimportant3 - Moderately important4 - Important3 - Moderately important1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant
          C1P007: Deficient planning3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant4 - Important5 - Very important2 - Slightly important1 - Unimportant
          C1P007: Retrofitting work in dwellings in occupied state4 - Important4 - Important1 - Unimportant3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant4 - Important5 - Very important5 - Very important1 - Unimportant
          C1P007: Lack of well-defined process4 - Important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant
          C1P007: Inaccuracy in energy modelling and simulation4 - Important4 - Important1 - Unimportant3 - Moderately important4 - Important2 - Slightly important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant
          C1P007: Lack/cost of computational scalability4 - Important4 - Important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant
          C1P007: Grid congestion, grid instability4 - Important4 - Important1 - Unimportant5 - Very important4 - Important2 - Slightly important1 - Unimportant5 - Very important2 - Slightly important3 - Moderately important1 - Unimportant
          C1P007: Negative effects of project intervention on the natural environment3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant
          C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
          C1P007: Difficult definition of system boundaries3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
          C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P007: Any other Thecnical BARRIER (if any)Energy management systems of different new technologies does not "talk together" (e.g. solar inverter, V2G inverter). This creates challenges.
          C1P008: Social and Cultural barriers
          C1P008: Inertia4 - Important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important1 - Unimportant2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant
          C1P008: Lack of values and interest in energy optimization measurements5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important5 - Very important5 - Very important1 - Unimportant
          C1P008: Low acceptance of new projects and technologies5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important2 - Slightly important1 - Unimportant5 - Very important4 - Important4 - Important1 - Unimportant
          C1P008: Difficulty of finding and engaging relevant actors5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant4 - Important4 - Important5 - Very important1 - Unimportant
          C1P008: Lack of trust beyond social network4 - Important4 - Important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important1 - Unimportant5 - Very important4 - Important5 - Very important1 - Unimportant
          C1P008: Rebound effect4 - Important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
          C1P008: Hostile or passive attitude towards environmentalism5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant
          C1P008: Exclusion of socially disadvantaged groups2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant3 - Moderately important4 - Important3 - Moderately important1 - Unimportant
          C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important4 - Important1 - Unimportant4 - Important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important5 - Very important1 - Unimportant
          C1P008: Hostile or passive attitude towards energy collaboration3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important2 - Slightly important1 - Unimportant
          C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P008: Any other Social BARRIER (if any)
          C1P009: Information and Awareness barriers
          C1P009: Insufficient information on the part of potential users and consumers4 - Important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant
          C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts4 - Important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important5 - Very important1 - Unimportant
          C1P009: Lack of awareness among authorities4 - Important1 - Unimportant4 - Important2 - Slightly important2 - Slightly important1 - Unimportant5 - Very important5 - Very important4 - Important1 - Unimportant
          C1P009: Information asymmetry causing power asymmetry of established actors4 - Important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important5 - Very important1 - Unimportant
          C1P009: High costs of design, material, construction, and installation4 - Important1 - Unimportant5 - Very important4 - Important5 - Very important4 - Important5 - Very important5 - Very important5 - Very important1 - Unimportant
          C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P009: Any other Information and Awareness BARRIER (if any)Different interests - Grid/energy stakeholders and building stakeholders
          C1P010: Financial barriers
          C1P010: Hidden costs4 - Important1 - Unimportant5 - Very important2 - Slightly important5 - Very important1 - Unimportant5 - Very important3 - Moderately important5 - Very important1 - Unimportant
          C1P010: Insufficient external financial support and funding for project activities4 - Important1 - Unimportant5 - Very important3 - Moderately important5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant1 - Unimportant
          C1P010: Economic crisis4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important5 - Very important5 - Very important1 - Unimportant
          C1P010: Risk and uncertainty4 - Important1 - Unimportant5 - Very important3 - Moderately important4 - Important4 - Important5 - Very important5 - Very important4 - Important5 - Very important
          C1P010: Lack of consolidated and tested business models4 - Important1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important5 - Very important3 - Moderately important1 - Unimportant
          C1P010: Limited access to capital and cost disincentives4 - Important1 - Unimportant4 - Important2 - Slightly important4 - Important1 - Unimportant5 - Very important5 - Very important5 - Very important1 - Unimportant
          C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P010: Any other Financial BARRIER (if any)
          C1P011: Market barriers
          C1P011: Split incentives5 - Very important1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant4 - Important5 - Very important5 - Very important1 - Unimportant
          C1P011: Energy price distortion4 - Important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant4 - Important5 - Very important4 - Important1 - Unimportant
          C1P011: Energy market concentration, gatekeeper actors (DSOs)4 - Important1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant
          C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P011: Any other Market BARRIER (if any)
          C1P012: Stakeholders involved
          C1P012: Government/Public Authorities
          • Planning/leading
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          • Monitoring/operation/management
          • Planning/leading,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation
          C1P012: Research & Innovation
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Planning/leading
          • None
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Financial/Funding
          • Construction/implementation
          • Design/demand aggregation,
          • Construction/implementation
          • Design/demand aggregation,
          • Construction/implementation
          • None
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Analyst, ICT and Big Data
          • Monitoring/operation/management
          • Design/demand aggregation,
          • Monitoring/operation/management
          • Planning/leading,
          • Monitoring/operation/management
          • None
          • None
          C1P012: Business process management
          • Planning/leading
          • Planning/leading
          • Planning/leading
          • None
          • None
          C1P012: Urban Services providers
          • Design/demand aggregation,
          • Monitoring/operation/management
          • Construction/implementation
          • None
          C1P012: Real Estate developers
          • Planning/leading,
          • Monitoring/operation/management
          • Construction/implementation
          • None
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Design/demand aggregation
          • Planning/leading,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Design/Construction companies
          • Construction/implementation
          • Construction/implementation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          • Design/demand aggregation,
          • Construction/implementation
          • None
          • Design/demand aggregation,
          • Construction/implementation
          • Planning/leading,
          • Design/demand aggregation
          C1P012: End‐users/Occupants/Energy Citizens
          • Monitoring/operation/management
          • None
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Monitoring/operation/management
          • Construction/implementation
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Social/Civil Society/NGOs
          • None
          • Planning/leading,
          • Design/demand aggregation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Monitoring/operation/management
          • Design/demand aggregation
          C1P012: Industry/SME/eCommerce
          • Construction/implementation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • None
          • Design/demand aggregation,
          • Construction/implementation
          C1P012: Other
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          C1P012: Other (if any)
          Summary

          Authors (framework concept)

          Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

          Contributors (to the content)

          Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

          Implemented by

          Boutik.pt: Filipe Martins, Jamal Khan
          Marek Suchánek (Czech Technical University in Prague)