Filters:
NameProjectTypeCompare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Compare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Compare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Compare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Uncompare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Uncompare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr, Geothermal District Heating Project PED Relevant Case Study Compare
Drammen, Jacobs Borchs Gate PED Relevant Case Study Uncompare
Freiburg im Breisgau, Dietenbach PED Relevant Case Study Compare
Lecce, SmartEnCity SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
Trento, STARDUST STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Malmö, Klimatkontrakt Hyllie PED Relevant Case Study Compare
Kaiserslautern, EnStadt:Pfaff PED Relevant Case Study / PED Lab Compare
Helsinki, mySMARTlife PED Relevant Case Study Compare
Firenze, Novoli-Cascine district on “le PIagge” buildings PED Relevant Case Study Uncompare
Bolzano, Sinfonia PED Relevant Case Study Compare
Zürich, Hunziker Areal PED Relevant Case Study Compare
Hammarby Sjöstad, Hammarby Sjöstad 2.0 PED Relevant Case Study Compare
Milano, Sharing Cities PED Relevant Case Study Uncompare
Mieres, District Heating Pozo Barredo PED Relevant Case Study Compare
Lund, Cityfied (demo Linero) PED Relevant Case Study Compare
Espoo, Smart Otaniemi PED Relevant Case Study / PED Lab Compare
Vienna, Zukunftsquartier PED Case Study Uncompare
Trento, Santa Chiara Open Lab PED Case Study Compare
Paterna, Barrio La Pinada PED Case Study / PED Lab Compare
Bergen, Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru, +CityxChange PED Case Study Compare
Trondheim, NTNU Campus within the Knowledge Axis ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Oslo, Furuset project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Măgurele, Laser Valley – Land of Lights PED Case Study Compare
Elverum, Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bodø, Airport, NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bærum, Fornebu ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Carquefou, Fleuraye west PED Case Study Compare
Åland, Smart Energy PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Uncompare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Lubia (Soria), CEDER-CIEMAT
Firenze, Novoli-Cascine district, REPLICATE
Milano, Sharing Cities
Oulu, Kaukovainio
Lublin
Utrecht, Kanaleneiland
Vienna, Kriegerheimstätten
Vienna, Zukunftsquartier
Drammen, Jacobs Borchs Gate
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityLubia (Soria), CEDER-CIEMATFirenze, Novoli-Cascine district, REPLICATEMilano, Sharing CitiesOulu, KaukovainioLublinUtrecht, KanaleneilandVienna, KriegerheimstättenVienna, ZukunftsquartierDrammen, Jacobs Borchs Gate
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynonononoyesyesnonoyesno
PED relevant case studyyesnoyesyesnonoyesyesnoyes
PED Lab.noyesnononononononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynonoyesyesyesyesyesyesyesyes
Annual energy surplusnononononoyesnonoyesno
Energy communityyesnonononoyesyesnonono
Circularitynonononoyesyesnononono
Air quality and urban comfortyesyesnononoyesnoyesnono
Electrificationyesnononoyesnoyesyesnono
Net-zero energy costnononononoyesnononono
Net-zero emissionnoyesnononoyesnononoyes
Self-sufficiency (energy autonomous)noyesnononoyesnononono
Maximise self-sufficiencynononononoyesnononono
Othernonoyesyesnonononoyesyes
Other (A1P004)Social aspects/affordability; The technological choice about RES exploitation, has been made also taking into account the local air quality issue in the urban centre (no biomass, no CHP)Energy efficient; Sustainable neighbourhood; Social aspects/affordabilityEnergy efficient; Economic feasibility ; High quality of living and comfort; Early and constant user integration for reaching the positive energy goal.Energy efficient; Carbon-free; A drive for both non fossil fuel and non-greenhouse gas working fluids plus maximum efficiency led to deploying ammonia fjord source heat pumps
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhaseImplementation PhaseCompletedCompletedIn operationPlanning PhasePlanning PhasePlanning PhasePlanning PhaseCompleted
A1P006: Start Date
A1P006: Start date11/1901/1701/1611/2301/2307/1801/09
A1P007: End Date
A1P007: End date12/2312/2112/2011/2612/3012/12
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • General statistical datasets
  • General statistical datasets,
  • GIS open datasets,
  • Vehicle registration datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
    • http://www.ceder.es/redes-inteligentes,
    • O. Izquierdo-Monge, Paula Peña-Carro et al. Conversion of a network section with loads, storage systems and renewable generation sources into a smart microgrid. Appl. Sci. 2021, 11(11), 5012. https://doi.org/10.3390/app11115012,
    • O. Izquierdo-Monge, Paula Peña-Carro et al. A Methodology for the Conversion of a Network Section with Generation Sources, Storage and Loads into an Electrical Microgrid Based on Raspberry Pi and Home Assistant. ICSC-Cities 2020, CCIS 1359 proceedings. Springer. https:// doi.org/10.1007/978-3-030-69136-3_1
        A1P011: Geographic coordinates
        X Coordinate (longitude):23.814588-2.50811.2305399.20252725.51759508409350722.56845.087516.47541616.33066510.230603
        Y Coordinate (latitude):38.07734941.60343.79271145.45220364.9928809817313251.246552.065348.23401148.21652159.741334
        A1P012: Country
        A1P012: CountryGreeceSpainItalyItalyFinlandPolandNetherlandsAustriaAustriaNorway
        A1P013: City
        A1P013: CityMunicipality of KifissiaLubia - SoriaFirenzeMilanoOuluLublinUtrecht (Kanaleneiland)ViennaViennaDrammen
        A1P014: Climate Zone (Köppen Geiger classification)
        A1P014: Climate Zone (Köppen Geiger classification).CsaCfbCfaCfaDfcCfbCfbCfbCfbDfb
        A1P015: District boundary
        A1P015: District boundaryVirtualGeographicGeographicGeographicGeographic
        OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhoodRegional (close to virtual)
        A1P016: Ownership of the case study/PED Lab
        A1P016: Ownership of the case study/PED Lab:PublicMixedPrivateMixedPrivatePrivatePrivateMixedPrivate
        A1P017: Ownership of the land / physical infrastructure
        A1P017: Ownership of the land / physical infrastructure:Single OwnerMultiple OwnersMultiple OwnersSingle OwnerMultiple OwnersMultiple OwnersSingle OwnerMultiple OwnersSingle Owner
        A1P018: Number of buildings in PED
        A1P018: Number of buildings in PED665
        A1P019: Conditioned space
        A1P019: Conditioned space [m²]1970021664.73
        A1P020: Total ground area
        A1P020: Total ground area [m²]640000028.0006000072833.4729100001240001000
        A1P021: Floor area ratio: Conditioned space / total ground area
        A1P021: Floor area ratio: Conditioned space / total ground area0000000000
        A1P022: Financial schemes
        A1P022a: Financing - PRIVATE - Real estatenonononoyesnonononono
        A1P022a: Add the value in EUR if available [EUR]
        A1P022b: Financing - PRIVATE - ESCO schemenononononononononono
        A1P022b: Add the value in EUR if available [EUR]
        A1P022c: Financing - PRIVATE - Othernononononononoyesyesyes
        A1P022c: Add the value in EUR if available [EUR]
        A1P022d: Financing - PUBLIC - EU structural fundingnonoyesyesnononononono
        A1P022d: Add the value in EUR if available [EUR]
        A1P022e: Financing - PUBLIC - National fundingnonoyesnononoyesnoyesno
        A1P022e: Add the value in EUR if available [EUR]
        A1P022f: Financing - PUBLIC - Regional fundingnononononononononono
        A1P022f: Add the value in EUR if available [EUR]
        A1P022g: Financing - PUBLIC - Municipal fundingnonoyesyesyesnonononono
        A1P022g: Add the value in EUR if available [EUR]
        A1P022h: Financing - PUBLIC - Othernononononononononono
        A1P022h: Add the value in EUR if available [EUR]
        A1P022i: Financing - RESEARCH FUNDING - EUnonononoyesnonononono
        A1P022i: Add the value in EUR if available [EUR]
        A1P022j: Financing - RESEARCH FUNDING - Nationalnoyesnononononononono
        A1P022j: Add the value in EUR if available [EUR]
        A1P022k: Financing - RESEARCH FUNDING - Local/regionalnoyesnononononononono
        A1P022k: Add the value in EUR if available [EUR]
        A1P022l: Financing - RESEARCH FUNDING - Othernononononononononono
        A1P022l: Add the value in EUR if available [EUR]
        A1P022: Other
        A1P023: Economic Targets
        A1P023: Economic Targets
        • Boosting local and sustainable production,
        • Boosting consumption of local and sustainable products
        • Positive externalities,
        • Boosting local and sustainable production
        • Job creation,
        • Positive externalities,
        • Boosting local businesses,
        • Boosting local and sustainable production,
        • Boosting consumption of local and sustainable products
        A1P023: OtherDeveloping and demonstrating new solutions
        A1P024: More comments:
        A1P024: More comments:The Centre for the Development of Renewable Energy (CEDER)is specialized in applied research, development and promotion of renewable energy. Among the facilities of this Centre, the urban laboratory CEDER-CIEMAT assess the performance of different configurations of energy networks at the district level. This PED-Lab infrastructure is an energy district that connects six office buildings with energy generation installations by means of two energy rings: electrical grid (in operation phase) and thermal network (in the implementation phase). The buildings of this PED Lab can act as energy demanders or suppliers depending on the climatic and operational conditions. The majority of these buildings are constructed with conventional technologies but some of them are implemented with efficient and sustainable measures. The thermal network is composed by two biomass boilers, 300 kW power each, and water tanks with 90 kWh of thermal storage. This network will shortly be expanded with a low temperature (90°C) and high temperature (150°-250°C) rings. The low-temperature ring is made up by two Stirling engine cogeneration boilers (one biomass gasification boiler and one gas boiler). The high-temperature ring has a thermal generator made up of Fresnel solar concentrators and an ORC cogeneration system fed directly from the solar concentrator. The high-temperature ring is interconnected with the low-temperature ring through an oil/water heat exchanger. This network has thermal storage systems in the modalities of: aquifers, boreholes, phase change materials, cold storage with geothermal exchange ground recovery and thermal storage at very low temperature with zeolites. The electrical grid incorporates different renewable generation technologies (50 kW wind turbine and eight different photovoltaic systems, a reversible hydraulic system), and engine generator of 100 kVA, electricity storages (batteries) and flexible loads.Lublin PED Area is geographically bounded and the ambition is to reach Self-Sufficiency. There is a shopping centre with a large rooftop area for solar generation and there are also an empty lot (just on the east side of the building) and a carpark area (on the north side) next to the commercial centre. These areas can also be evaluated for on-site (on the ground – or canopies for cars) energy generation. There are also new built (mainly in 2012) residential blocks with high efficiency and this district is so-called an “eco-district”. Thanks to the District Heating Grid (DHN), all buildings are connected to each other the network has potential for sharing mechanisms in the PED Area. Another opportunity for renewable energy is that these buildings are connected to more or less the end point of DHN and for this reason, a waste heat potential from the return pipe may also be considered. There are also small size residentials, that are not connected to the DHN, around the PED area and this enlightened the technical team for exporting energy from PED to these areas with a new infrastructure.
        A1P025: Estimated PED case study / PED LAB costs
        A1P025: Estimated PED case study / PED LAB costs [mil. EUR]5
        Contact person for general enquiries
        A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaDr. Raquel RamosChristoph GollnerChristoph GollnerSamuli RinneDorota Wolińska-PietrzakDr. Gonçalo Homem De Almeida Rodriguez CorreiaGerhard Hofer (e7 GmbH)Christoph GollnerChristoph Gollner
        A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamCentre for the Development of Renewable Energy (CEDER) - Centre for Energy, Environment and Technology Research (CIEMAT)FFGFFGCity of OuluLublin MunicipalityDelft University of Technologye7 GmbHFFGFFG
        A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityOtherOtherMunicipality / Public BodiesMunicipality / Public BodiesResearch Center / UniversitySME / IndustryOtherOther
        A1P028: Other
        A1P029: Emailgiavasoglou@kifissia.grraquel.ramos@ciemat.eschristoph.gollner@ffg.atchristoph.gollner@ffg.atsamuli.rinne@ouka.fidwolinska@lublin.eug.correia@tudelft.nlgerhard.hofer@e-sieben.atchristoph.gollner@ffg.atchristoph.gollner@ffg.at
        Contact person for other special topics
        A1P030: NameStavros Zapantis - vice mayorDr. Oscar SecoSamuli RinneQiaochu Fan
        A1P031: Emailstavros.zapantis@gmail.comoscar.seco@ciemat.essamuli.rinne@ouka.fiq.fan-1@tudelft.nl
        Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYesYes
        A2P001: Fields of application
        A2P001: Fields of application
        • Energy production
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • Digital technologies,
        • Indoor air quality
        • Energy production,
        • E-mobility,
        • Digital technologies
        • Energy efficiency,
        • E-mobility,
        • Digital technologies
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies,
        • Water use,
        • Indoor air quality
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies,
        • Indoor air quality
        • Energy efficiency,
        • Energy flexibility,
        • E-mobility,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Other
        • Energy efficiency,
        • Energy flexibility,
        • Energy production
        • Energy efficiency
        A2P001: OtherReducing CO2eq Emissions
        A2P002: Tools/strategies/methods applied for each of the above-selected fields
        A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: - Buildings energy retrofit. Energy production: - Biomass Boiler capacity: 0.6 MW. Annual production: 1.2 GWh - Solar thermal collectors: 70 kW, planned extended to: 0.47MW - Geotermal & Absorption Pumps: 100 kW - Share of renewables after extension: 100% (30% solar thermal and 70% biomass) - AOC 50kW wind turbine. Awaiting installation of a two-way AC-AC converter for subsequent connection to the grid - Bornay Inclin 3 kW wind turbine, connected to 24 Vdc batteries, to be connected to the grid by means of Xantrex inverter/charger - 9kW photovoltaic park (66PV panels, brand BP Solar,type BP5140,of 140W) connected to the grid by means of two INGECON SUN 5 inverters - 5kW photovoltaic pergola (24PV panels, brand Solon, type P200, of 210W) connected to the grid by means of one INGECON SUN 5 inverter - 8.28kW photovoltaic roof (36PV panels, Brand LDK, type LDK-230P-20), connected to the grid by means of one INGECONSUN 10 inverter - 12kW photovoltaic roof (80PV panels, brand Gamesa, type GS-1501), connected to the grid. - Reversible hydraulic system connected to a 60 kW electric generator and a pumping system. -Stirling engine with a heat lamp based on natural gas, a helium cool lamp, 10kWe maximum power delivered and global performance of approximately 33%. Energy flexibility: - Thermal storage systems: water tanks 90kW, aquifers, boreholes, phase change materials, cold storage with geothermal exchange ground recovery and thermal storage at very low temperature with zeolites. - Electrical storage systems: batteries (lead-acid and lithium-ion). - Flexible loads. Control systems and Digital technologies: - Full monitoring campaign. - Smart-meters installation to monitor consumption and suggest another energy behaviours. - Dynamic simulation tools to optimize the energy performance. Urban comfort and air quality: - Meteorological stations to monitor the climate evolution. - Microclimatic simulation tools to quantify the thermal behaviour.Different kinds of waste heat streams are utilized by heat pumps. These are district heating return water (actually this is an indirect way to cool down the flue gas in the scrubber), ventilation exhaust air and sewage water. As a normal case, in ventilation also air-to-air heat exchanges are used. PV power is harvested also, in vertical and more horizontal panels. Buildings are well insulated to decrease the needed amount of heating energy in the first place.SEE: D4.1 - Methodology and Guidelines for PED design https://makingcity.eu/results/#1551708358627-aefa76ef-66b2
        A2P003: Application of ISO52000
        A2P003: Application of ISO52000NoNoNo
        A2P004: Appliances included in the calculation of the energy balance
        A2P004: Appliances included in the calculation of the energy balanceYesNoYes
        A2P005: Mobility included in the calculation of the energy balance
        A2P005: Mobility included in the calculation of the energy balanceNoNoNo
        A2P006: Description of how mobility is included (or not included) in the calculation
        A2P006: Description of how mobility is included (or not included) in the calculationNot included. However, there is a charging place for a shared EV in one building.
        A2P007: Annual energy demand in buildings / Thermal demand
        A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]2.14.97
        A2P008: Annual energy demand in buildings / Electric Demand
        A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.20.75
        A2P009: Annual energy demand for e-mobility
        A2P009: Annual energy demand for e-mobility [GWh/annum]
        A2P010: Annual energy demand for urban infrastructure
        A2P010: Annual energy demand for urban infrastructure [GWh/annum]
        A2P011: Annual renewable electricity production on-site during target year
        A2P011: PVyesyesnonoyesnonononono
        A2P011: PV - specify production in GWh/annum [GWh/annum]0.1
        A2P011: Windnoyesnononononononono
        A2P011: Wind - specify production in GWh/annum [GWh/annum]
        A2P011: Hydronoyesnononononononono
        A2P011: Hydro - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_elnoyesnononononononono
        A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_peat_elnononononononononono
        A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
        A2P011: PVT_elnononononononononono
        A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
        A2P011: Othernononononononononono
        A2P011: Other - specify production in GWh/annum [GWh/annum]
        A2P012: Annual renewable thermal production on-site during target year
        A2P012: Geothermalnoyesnononononononono
        A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Solar Thermalnoyesnononononononono
        A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_heatnoyesnononononononono
        A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: Waste heat+HPnoyesnonoyesnonononono
        A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]2.2
        A2P012: Biomass_peat_heatnononononononononono
        A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: PVT_thnononononononononono
        A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_firewood_thnoyesnononononononono
        A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Othernononononononononono
        A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
        A2P013: Renewable resources on-site - Additional notes
        A2P013: Renewable resources on-site - Additional notesHeat is produced from DH return, refrigeration and exhaust air. The mentioned 2200 MWh/a includes HP el. consumption (about 1/6 of that)
        A2P014: Annual energy use
        A2P014: Annual energy use [GWh/annum]2.3
        A2P015: Annual energy delivered
        A2P015: Annual energy delivered [GWh/annum]
        A2P016: Annual non-renewable electricity production on-site during target year
        A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]0
        A2P017: Annual non-renewable thermal production on-site during target year
        A2P017: Gasnononononononononono
        A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Coalnononononononononono
        A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Oilnononononononononono
        A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Othernononononononononono
        A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P018: Annual renewable electricity imports from outside the boundary during target year
        A2P018: PVnonononoyesnonononono
        A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
        A2P018: Windnonononoyesnonononono
        A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
        A2P018: Hydrononononoyesnonononono
        A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_elnonononoyesnonononono
        A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_peat_elnonononoyesnonononono
        A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: PVT_elnononononononononono
        A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Othernononononononononono
        A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
        A2P019: Annual renewable thermal imports from outside the boundary during target year
        A2P019: Geothermalnononononononononono
        A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Solar Thermalnononononononononono
        A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_heatnonononoyesnonononono
        A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]0.7
        A2P019: Waste heat+HPnononononononononono
        A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_peat_heatnononononononononono
        A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: PVT_thnononononononononono
        A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_firewood_thnononononononononono
        A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Othernononononononononono
        A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
        A2P020: Share of RES on-site / RES outside the boundary
        A2P020: Share of RES on-site / RES outside the boundary00003.285714285714300000
        A2P021: GHG-balance calculated for the PED
        A2P021: GHG-balance calculated for the PED [tCO2/annum]0
        A2P022: KPIs related to the PED case study / PED Lab
        A2P022: Safety & Security
        A2P022: HealthEncouraging a healthy lifestyle
        A2P022: Education
        A2P022: MobilityModal Split, Fuel mix in mobility, Energy use for transportation, Access to public transport, Public infrastructure promoting low-carbon mobility, Number of public EV charging stations, Energy delivered for EV chargingImproved accessibility to V2G-related transport options, focusing on inclusivity and equitable adoption in urban districts
        A2P022: EnergyFinal energy consumption, Primary energy consumption, Energy imported to PED, Energy exported from PED, RES production, PED energy balance, Energy savings in the PED, GHG emissions, Reduction of emissions, Final energy consumption per capita, Primary energy consumption per capita, Primary energy sources (shares), Buildings connected to DH-network or renewable energy grid, GHG emissions per capita, System flexibility for energy players, RES storage usage, Peak load reductionTarget zero greenhouse gas emissions through the adoption of EVs with V2G capabilities, aiming to reduce reliance on fossil fuels and enhance local grid stabilityYes
        A2P022: Water
        A2P022: Economic developmentTotal investments, Payback time, Economic value of savingsDevelopment of viable business models for V2G that allow decentralized energy markets to integrate with the grid, enhancing local economic resilience
        A2P022: Housing and CommunityDevelopment of housing prices, Housing cost overburden rate, Citizen engagement/empowerment to climate conscious actions, Inhabitants in dense areas, Energy poverty
        A2P022: WasteRecycling rate
        A2P022: OtherSmart Cities strategies, Quality of open data
        A2P023: Technological Solutions / Innovations - Energy Generation
        A2P023: Photovoltaicsnoyesyesyesyesyesyesyesyesno
        A2P023: Solar thermal collectorsnoyesyesyesnononoyesnono
        A2P023: Wind Turbinesnoyesnonononoyesnonono
        A2P023: Geothermal energy systemnoyesnoyesnononoyesyesno
        A2P023: Waste heat recoverynoyesnonoyesnonononono
        A2P023: Waste to energynononononononononono
        A2P023: Polygenerationnoyesnononononononono
        A2P023: Co-generationnoyesnonoyesnonononono
        A2P023: Heat Pumpnoyesyesyesyesyesnoyesyesyes
        A2P023: Hydrogennoyesnononoyesnononono
        A2P023: Hydropower plantnoyesnononononononono
        A2P023: Biomassnoyesnonoyesnonononono
        A2P023: Biogasnononononononononono
        A2P023: Other
        A2P024: Technological Solutions / Innovations - Energy Flexibility
        A2P024: A2P024: Information and Communication Technologies (ICT)noyesyesnoyesyesnononono
        A2P024: Energy management systemnoyesnoyesyesyesyesnonono
        A2P024: Demand-side managementnoyesnononoyesnononono
        A2P024: Smart electricity gridnoyesyesnonoyesyesnonono
        A2P024: Thermal Storagenoyesnonoyesyesnoyesnono
        A2P024: Electric Storagenoyesnononoyesyesnonono
        A2P024: District Heating and Coolingnoyesnoyesyesyesnoyesyesyes
        A2P024: Smart metering and demand-responsive control systemsnoyesyesnonoyesnononono
        A2P024: P2P – buildingsnononononononononono
        A2P024: Other
        A2P025: Technological Solutions / Innovations - Energy Efficiency
        A2P025: Deep Retrofittingnoyesyesyesyesyesyesnonono
        A2P025: Energy efficiency measures in historic buildingsnononononoyesnononono
        A2P025: High-performance new buildingsnonononoyesyesnononono
        A2P025: Smart Public infrastructure (e.g. smart lighting)nonoyesyesnoyesyesnonono
        A2P025: Urban data platformsnonononoyesyesyesnonono
        A2P025: Mobile applications for citizensnonoyesyesnoyesnononono
        A2P025: Building services (HVAC & Lighting)noyesnonoyesyesnononono
        A2P025: Smart irrigationnononononononononono
        A2P025: Digital tracking for waste disposalnononononononononono
        A2P025: Smart surveillancenononononononononono
        A2P025: Other
        A2P026: Technological Solutions / Innovations - Mobility
        A2P026: Efficiency of vehicles (public and/or private)nononoyesyesyesyesnonono
        A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nonononoyesyesyesnonono
        A2P026: e-Mobilitynonoyesyesyesyesyesnonono
        A2P026: Soft mobility infrastructures and last mile solutionsnononoyesyesnonononono
        A2P026: Car-free areanoyesnononononononono
        A2P026: Other
        A2P027: Mobility strategies - Additional notes
        A2P027: Mobility strategies - Additional notes
        A2P028: Energy efficiency certificates
        A2P028: Energy efficiency certificatesYesYesNo
        A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingIn Spain it is mandatory the Energy Performance Certificate in order to buy or rent a house or a dwellingThe obligatory buildijng energy classification
        A2P029: Any other building / district certificates
        A2P029: Any other building / district certificatesNoNoNo
        A2P029: If yes, please specify and/or enter notes
        A3P001: Relevant city /national strategy
        A3P001: Relevant city /national strategy
        • Energy master planning (SECAP, etc.),
        • Promotion of energy communities (REC/CEC)
        • Smart cities strategies,
        • New development strategies,
        • Promotion of energy communities (REC/CEC),
        • Climate change adaption plan/strategy (e.g. Climate City contract)
        • Smart cities strategies
        • Smart cities strategies,
        • Urban Renewal Strategies
        • Smart cities strategies,
        • Urban Renewal Strategies,
        • Energy master planning (SECAP, etc.),
        • New development strategies,
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Smart cities strategies,
        • Urban Renewal Strategies,
        • Energy master planning (SECAP, etc.),
        • New development strategies,
        • Promotion of energy communities (REC/CEC),
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Smart cities strategies
        A3P002: Quantitative targets included in the city / national strategy
        A3P002: Quantitative targets included in the city / national strategy- Testing the combination of renewable technologies at district level. - Optimization of the generation side based on the weather forecasting and demand side. - Optimization of the control system, connected to the central node, to design and perform virtual analyses based on the combination of all the systems and infrastructures. - Optimization of ICT systems. - Design and management of a virtual analysis - Optimization of efficient measures: building performance, user´s behaviour… - Combination of flexible storage systems to operate the global installation.Carbon neutrality by 2035
        A3P003: Strategies towards decarbonization of the gas grid
        A3P003: Strategies towards decarbonization of the gas grid
        • Electrification of Heating System based on Heat Pumps,
        • Biogas,
        • Hydrogen
        • Electrification of Heating System based on Heat Pumps,
        • Other
        • Electrification of Heating System based on Heat Pumps
        A3P003: OtherHeating Grid
        A3P004: Identification of needs and priorities
        A3P004: Identification of needs and priorities- Create a thermal energy storage tank to be used for air conditioning the buildings. - Some buildings need to be renovated both to increase the energy performance, the seismic behaviour and spaces liveability and comfort. - Optimizing the coupling between technologies. - Guarantee the flexibility to operate the renewable installations to operate in different phases and with different configurations. - CEDER is a public research center and needs to have connected any energy system to the same grid. - CEDER has an industrial develop area where some experimental thermal storage system could be tested.Developing and demonstrating solutions for carbon neutrality
        A3P005: Sustainable behaviour
        A3P005: Sustainable behaviour- Minimize the building energy consumption while maintaining indoor comfort levels. - Onsite renewable production with flexible storage elements to fix demand side and generation side. - Flexible control solutions through digitalization systems.E. g. visualizing energy and water consumption
        A3P006: Economic strategies
        A3P006: Economic strategies
        • Demand management Living Lab
        • Open data business models,
        • Innovative business models,
        • PPP models,
        • Life Cycle Cost,
        • Circular economy models
        • Innovative business models,
        • Local trading,
        • Existing incentives
        • Innovative business models
        A3P006: Other
        A3P007: Social models
        A3P007: Social models
        • Digital Inclusion,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Co-creation / Citizen engagement strategies
        • Co-creation / Citizen engagement strategies,
        • Citizen/owner involvement in planning and maintenance
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Citizen Social Research,
        • Policy Forums,
        • Quality of Life,
        • Strategies towards social mix,
        • Affordability,
        • Prevention of energy poverty,
        • Citizen/owner involvement in planning and maintenance,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Social incentives,
        • Prevention of energy poverty,
        • Digital Inclusion
        • Co-creation / Citizen engagement strategies,
        • Affordability,
        • Prevention of energy poverty
        A3P007: Other
        A3P008: Integrated urban strategies
        A3P008: Integrated urban strategies
        • District Energy plans,
        • Building / district Certification
        • Strategic urban planning,
        • District Energy plans,
        • City Vision 2050,
        • SECAP Updates
        • City Vision 2050,
        • SECAP Updates
        • Strategic urban planning,
        • District Energy plans
        • Strategic urban planning,
        • District Energy plans
        A3P008: Other“zero volumes” structural plan (2015), Covenant of Mayors Sustainable Energy Action Plan (2011)
        A3P009: Environmental strategies
        A3P009: Environmental strategies
        • Energy Neutral,
        • Low Emission Zone,
        • Pollutants Reduction,
        • Greening strategies
        • Energy Neutral,
        • Net zero carbon footprint
        • Energy Neutral,
        • Low Emission Zone,
        • Net zero carbon footprint,
        • Carbon-free,
        • Life Cycle approach,
        • Greening strategies,
        • Nature Based Solutions (NBS)
        • Energy Neutral,
        • Low Emission Zone,
        • Nature Based Solutions (NBS)
        • Low Emission Zone,
        • Carbon-free
        • Energy Neutral,
        • Carbon-free
        A3P009: Other
        A3P010: Legal / Regulatory aspects
        A3P010: Legal / Regulatory aspects- European Commission has legislated on Energy Community (Renewable energy directive - 2018/2001/EU and Common rules for the internal electricity market directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.
        B1P001: PED/PED relevant concept definition
        B1P001: PED/PED relevant concept definitionThe original idea is that the area produces at least as much it consumes.
        B1P002: Motivation behind PED/PED relevant project development
        B1P002: Motivation behind PED/PED relevant project developmentDeveloping systems towards carbon neutrality. Also urban renewal.
        B1P003: Environment of the case study area
        B2P003: Environment of the case study areaRuralUrban areaUrban areaSuburban areaUrban areaSuburban area
        B1P004: Type of district
        B2P004: Type of district
        • Renovation
        • Renovation
        • New construction,
        • Renovation
        • New construction,
        • Renovation
        • Renovation
        B1P005: Case Study Context
        B1P005: Case Study Context
        • Retrofitting Area
        • Retrofitting Area
        • New Development,
        • Retrofitting Area
        • New Development,
        • Retrofitting Area
        • Retrofitting Area
        B1P006: Year of construction
        B1P006: Year of construction
        B1P007: District population before intervention - Residential
        B1P007: District population before intervention - Residential3500
        B1P008: District population after intervention - Residential
        B1P008: District population after intervention - Residential3500
        B1P009: District population before intervention - Non-residential
        B1P009: District population before intervention - Non-residential
        B1P010: District population after intervention - Non-residential
        B1P010: District population after intervention - Non-residential
        B1P011: Population density before intervention
        B1P011: Population density before intervention0000000000
        B1P012: Population density after intervention
        B1P012: Population density after intervention00000.05833333333333300000
        B1P013: Building and Land Use before intervention
        B1P013: Residentialnonoyesyesyesnononoyesno
        B1P013 - Residential: Specify the sqm [m²]20200
        B1P013: Officenonononononononoyesno
        B1P013 - Office: Specify the sqm [m²]
        B1P013: Industry and Utilitynonononononononoyesno
        B1P013 - Industry and Utility: Specify the sqm [m²]
        B1P013: Commercialnonononoyesnonononono
        B1P013 - Commercial: Specify the sqm [m²]
        B1P013: Institutionalnononononononononono
        B1P013 - Institutional: Specify the sqm [m²]
        B1P013: Natural areasnonononoyesnonononono
        B1P013 - Natural areas: Specify the sqm [m²]
        B1P013: Recreationalnonononoyesnonononono
        B1P013 - Recreational: Specify the sqm [m²]
        B1P013: Dismissed areasnononononononononono
        B1P013 - Dismissed areas: Specify the sqm [m²]
        B1P013: Othernononononononononono
        B1P013 - Other: Specify the sqm [m²]
        B1P014: Building and Land Use after intervention
        B1P014: Residentialnonoyesyesyesnononoyesno
        B1P014 - Residential: Specify the sqm [m²]20200
        B1P014: Officenonononononononoyesno
        B1P014 - Office: Specify the sqm [m²]
        B1P014: Industry and Utilitynonononononononoyesno
        B1P014 - Industry and Utility: Specify the sqm [m²]
        B1P014: Commercialnonononoyesnonononono
        B1P014 - Commercial: Specify the sqm [m²]
        B1P014: Institutionalnononononononononono
        B1P014 - Institutional: Specify the sqm [m²]
        B1P014: Natural areasnonononoyesnonononono
        B1P014 - Natural areas: Specify the sqm [m²]
        B1P014: Recreationalnonononoyesnonononono
        B1P014 - Recreational: Specify the sqm [m²]
        B1P014: Dismissed areasnononononononononono
        B1P014 - Dismissed areas: Specify the sqm [m²]
        B1P014: Othernononononononononono
        B1P014 - Other: Specify the sqm [m²]
        B2P001: PED Lab concept definition
        B2P001: PED Lab concept definition
        B2P002: Installation life time
        B2P002: Installation life timeCEDER will follow an integrative approach including technology for a permanent installation.
        B2P003: Scale of action
        B2P003: ScaleDistrictDistrictDistrictDistrictDistrictDistrict
        B2P004: Operator of the installation
        B2P004: Operator of the installationCIEMAT. Data detail in contact: mariano.martin@ciemat.es and oscar.izquiedo@ciemat.es
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P006: Circular Economy Approach
        B2P006: Do you apply any strategy to reuse and recycling the materials?NoYes
        B2P006: Other
        B2P007: Motivation for developing the PED Lab
        B2P007: Motivation for developing the PED Lab
        • Strategic
        • Strategic
        B2P007: Other
        B2P008: Lead partner that manages the PED Lab
        B2P008: Lead partner that manages the PED LabResearch center/UniversityMunicipality
        B2P008: Other
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Collaborative partners that participate in the PED Lab
        • Academia,
        • Industrial
        • Academia,
        • Private,
        • Industrial,
        • Citizens, public, NGO
        B2P009: Other
        B2P010: Synergies between the fields of activities
        B2P010: Synergies between the fields of activitiesThe operation of the laboratory with all the components of the energy networks requires a collaborative work between various departments and entities. On the one hand, it is necessary to optimize the operation of renewable systems based on the weather conditions, forecast of the demand side and the flexibility of the generation systems. On the other hand, the optimization of the energy demands through a more sustainable behaviour of both the building and the users want to be acquired. For this, it is necessary to take into account technical aspects but also market, comfort and encourage the user participation, creating a decision-making matrix that allows optimizing the operation of the global system.
        B2P011: Available facilities to test urban configurations in PED Lab
        B2P011: Available facilities to test urban configurations in PED Lab
        • Buildings,
        • Demand-side management,
        • Prosumers,
        • Renewable generation,
        • Energy storage,
        • Energy networks,
        • Efficiency measures,
        • Information and Communication Technologies (ICT),
        • Ambient measures,
        • Social interactions
        • Buildings,
        • Demand-side management,
        • Prosumers,
        • Renewable generation,
        • Efficiency measures,
        • Waste management,
        • Water treatment,
        • Lighting,
        • E-mobility,
        • Green areas,
        • Circular economy models
        B2P011: Other
        B2P012: Incubation capacities of PED Lab
        B2P012: Incubation capacities of PED Lab
        • Monitoring and evaluation infrastructure,
        • Tools for prototyping and modelling
        • Monitoring and evaluation infrastructure
        B2P013: Availability of the facilities for external people
        B2P013: Availability of the facilities for external people
        B2P014: Monitoring measures
        B2P014: Monitoring measures
        • Equipment
        • Available data
        B2P015: Key Performance indicators
        B2P015: Key Performance indicators
        • Energy,
        • Environmental,
        • Economical / Financial
        • Energy
        B2P016: Execution of operations
        B2P016: Execution of operations
        B2P017: Capacities
        B2P017: Capacities- Innovative grid configuration to connect bio boilers and solar thermal on buildings. - Environmental & air quality evaluation. - Testing and evaluation of high efficient heating & cooling systems: Gas, biomass, geothermal and absorption H&C pumps … - Definition and implementation of the different regulation modes for the global system. Using the data from the research focused-partners, several regulation modes for the DH network could be defined and implemented in order to obtain an optimal operation of the network. - Innovation in MPC control to enable harvesting 100% renewables in the most efficient way. - Physical integration of the technologies with the existing facilities at the living lab. - Connection between the solar thermal collectors to achieve the lowest heat losses, providing the possibility to use the grid as high or low temperature DH, according to the demand schedule of the buildings. - Test the bio-boiler of the last generation and ultra-low emissions biomass condensing boiler in order to increase efficiency and reduce GHG and air pollutant emissions of the DH plant. - Control of the supply temperature of the DH grid to enable 100% renewables harvesting in the most efficient way. - Research of the incidence of a normal building or a bioclimatic building in the DH grid demand. - Methodologies for concept validation: Definition of the minimum requirements to verify the suitability of the solutions proposed. - Tests campaign: Experimental operation and characterization in a relevant environment, to exploit the technologies at their best and test different demand profiles, different configuration and loads, with real time monitoring and continuous commissioning to control the performance of the technology. - Validation and upgrading recommendation for the DH&C at district level. - Evaluation of innovation actions for potential energy interventions with demand response in buildings. - The complete available infrastructure (MV and LV electric systems, transformation hubs, end consumption, generation sources, communication elements, etc.) belongs to CEDER-CIEMAT, making this the perfect scenario to test and try the performance of “Smart Grid” and “Microgrid” projects. - The type of electric grid, its voltage levels (MV or LV), its variety of real loads (different buildings with different profiles: industrial buildings, offices and so on) and its sources of renewable generation and storage, mean it is ideal for intermediate tests between a small-scale laboratory and final deployment of the real product.
        B2P018: Relations with stakeholders
        B2P018: Relations with stakeholdersCEDER - CIEMAT is a public research body assigned to the Ministry of Science and Innovation under the General Secretariat for Research, focusing on energy and environment. To develop this lab CIEMAT has relations with private renewable companies, research centers and academia institutions.
        B2P019: Available tools
        B2P019: Available tools
        • Energy modelling
        B2P019: Available tools
        B2P020: External accessibility
        B2P020: External accessibilityCIEMAT is a public body, so it´s open to any institution according the actual regulation and agreements.
        C1P001: Unlocking Factors
        C1P001: Recent technological improvements for on-site RES production5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant
        C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P001: Storage systems and E-mobility market penetration2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P001: Decreasing costs of innovative materials4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P001: The ability to predict Multiple Benefits3 - Moderately important1 - Unimportant1 - Unimportant4 - Important5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P001: The ability to predict the distribution of benefits and impacts4 - Important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant
        C1P001: Social acceptance (top-down)5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important5 - Very important4 - Important5 - Very important1 - Unimportant1 - Unimportant
        C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important5 - Very important4 - Important1 - Unimportant1 - Unimportant
        C1P001: Presence of integrated urban strategies and plans3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important5 - Very important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important5 - Very important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important5 - Very important4 - Important1 - Unimportant1 - Unimportant
        C1P001: Availability of RES on site (Local RES)5 - Very important1 - Unimportant1 - Unimportant4 - Important5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant
        C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important5 - Very important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P001: Any other UNLOCKING FACTORS (if any)
        C1P002: Driving Factors
        C1P002: Climate Change adaptation need4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant
        C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important5 - Very important1 - Unimportant1 - Unimportant5 - Very important5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant
        C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P002: Urban re-development of existing built environment3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant5 - Very important5 - Very important4 - Important5 - Very important1 - Unimportant1 - Unimportant
        C1P002: Economic growth need2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P002: Territorial and market attractiveness2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P002: Energy autonomy/independence5 - Very important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important5 - Very important4 - Important1 - Unimportant1 - Unimportant
        C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P002: Any other DRIVING FACTOR (if any)
        C1P003: Administrative barriers
        C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important4 - Important4 - Important1 - Unimportant1 - Unimportant
        C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important4 - Important4 - Important1 - Unimportant1 - Unimportant
        C1P003: Lack of public participation3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P003:Long and complex procedures for authorization of project activities5 - Very important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important4 - Important1 - Unimportant1 - Unimportant5 - Very important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P003: Complicated and non-comprehensive public procurement4 - Important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
        C1P003: Fragmented and or complex ownership structure3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant
        C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant
        C1P003: Lack of internal capacities to support energy transition3 - Moderately important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant
        C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P003: Any other Administrative BARRIER (if any)
        C1P004: Policy barriers
        C1P004: Lack of long-term and consistent energy plans and policies4 - Important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P004: Any other Political BARRIER (if any)
        C1P005: Legal and Regulatory barriers
        C1P005: Inadequate regulations for new technologies4 - Important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important5 - Very important4 - Important1 - Unimportant1 - Unimportant
        C1P005: Regulatory instability3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P005: Non-effective regulations4 - Important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important4 - Important4 - Important1 - Unimportant1 - Unimportant
        C1P005: Building code and land-use planning hindering innovative technologies4 - Important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P005: Insufficient or insecure financial incentives4 - Important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant
        C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important4 - Important1 - Unimportant1 - Unimportant4 - Important5 - Very important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P005: Shortage of proven and tested solutions and examples2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER (if any)
        C1P006: Environmental barriers
        C1P006: Environmental barriers3 - Moderately important
        C1P007: Technical barriers
        C1P007: Lack of skilled and trained personnel4 - Important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Deficient planning3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Retrofitting work in dwellings in occupied state4 - Important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant
        C1P007: Lack of well-defined process4 - Important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Inaccuracy in energy modelling and simulation4 - Important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Lack/cost of computational scalability4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Grid congestion, grid instability4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Negative effects of project intervention on the natural environment3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant
        C1P007: Difficult definition of system boundaries3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Any other Thecnical BARRIER (if any)
        C1P008: Social and Cultural barriers
        C1P008: Inertia4 - Important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P008: Lack of values and interest in energy optimization measurements5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important4 - Important1 - Unimportant1 - Unimportant
        C1P008: Low acceptance of new projects and technologies5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important5 - Very important4 - Important1 - Unimportant1 - Unimportant
        C1P008: Difficulty of finding and engaging relevant actors5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P008: Lack of trust beyond social network4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P008: Rebound effect4 - Important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Hostile or passive attitude towards environmentalism5 - Very important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P008: Exclusion of socially disadvantaged groups2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Hostile or passive attitude towards energy collaboration5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Any other Social BARRIER (if any)
        C1P009: Information and Awareness barriers
        C1P009: Insufficient information on the part of potential users and consumers2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant
        C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P009: Lack of awareness among authorities4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P009: Information asymmetry causing power asymmetry of established actors2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P009: High costs of design, material, construction, and installation4 - Important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant
        C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P009: Any other Information and Awareness BARRIER (if any)
        C1P010: Financial barriers
        C1P010: Hidden costs2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant
        C1P010: Insufficient external financial support and funding for project activities5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important4 - Important5 - Very important1 - Unimportant1 - Unimportant
        C1P010: Economic crisis3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
        C1P010: Risk and uncertainty2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important4 - Important5 - Very important1 - Unimportant1 - Unimportant
        C1P010: Lack of consolidated and tested business models2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant
        C1P010: Limited access to capital and cost disincentives5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant
        C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P010: Any other Financial BARRIER (if any)
        C1P011: Market barriers
        C1P011: Split incentives5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P011: Energy price distortion5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P011: Energy market concentration, gatekeeper actors (DSOs)2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant
        C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P011: Any other Market BARRIER (if any)
        C1P012: Stakeholders involved
        C1P012: Government/Public Authorities
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Monitoring/operation/management
        • Planning/leading
        C1P012: Research & Innovation
        • Design/demand aggregation
        • Planning/leading,
        • Design/demand aggregation,
        • Monitoring/operation/management
        • Design/demand aggregation
        C1P012: Financial/Funding
        • None
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • None
        C1P012: Analyst, ICT and Big Data
        • Monitoring/operation/management
        • Monitoring/operation/management
        • None
        C1P012: Business process management
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Monitoring/operation/management
        • None
        C1P012: Urban Services providers
        • Planning/leading
        • Planning/leading
        • None
        C1P012: Real Estate developers
        • None
        • Design/demand aggregation,
        • Construction/implementation
        • None
        C1P012: Design/Construction companies
        • Construction/implementation
        • Design/demand aggregation
        • None
        C1P012: End‐users/Occupants/Energy Citizens
        • Monitoring/operation/management
        • Monitoring/operation/management
        • None
        C1P012: Social/Civil Society/NGOs
        • None
        • Monitoring/operation/management
        • None
        C1P012: Industry/SME/eCommerce
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • None
        C1P012: Other
        • None
        C1P012: Other (if any)
        Summary

        Authors (framework concept)

        Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

        Contributors (to the content)

        Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

        Implemented by

        Boutik.pt: Filipe Martins, Jamal Khan
        Marek Suchánek (Czech Technical University in Prague)