Filters:
NameProjectTypeCompare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Uncompare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Uncompare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Uncompare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Uncompare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Uncompare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Barcelona, Santa Coloma de Gramenet
Leon, Former Sugar Factory district
Espoo, Kera
Maia, Sobreiro Social Housing
Ankara, Çamlık District
Barcelona, SEILAB & Energy SmartLab
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityBarcelona, Santa Coloma de GramenetLeon, Former Sugar Factory districtEspoo, KeraMaia, Sobreiro Social HousingAnkara, Çamlık DistrictBarcelona, SEILAB & Energy SmartLab
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesyesyesnoyesno
PED relevant case studyyesnonoyesnoyesno
PED Lab.nonononoyesnoyes
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesnoyesyesyesno
Annual energy surplusnoyesyesnonoyesno
Energy communityyesnonononoyesyes
Circularitynononoyesnonono
Air quality and urban comfortyesyesnonononono
Electrificationyesnonononoyesyes
Net-zero energy costnononononoyesno
Net-zero emissionnononononoyesyes
Self-sufficiency (energy autonomous)nonononononoyes
Maximise self-sufficiencynonoyesnoyesyesno
Othernonononononoyes
Other (A1P004)Green IT
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhaseImplementation PhasePlanning PhasePlanning PhasePlanning PhasePlanning PhaseIn operation
A1P006: Start Date
A1P006: Start date12/1801/1510/2110/2201/2011
A1P007: End Date
A1P007: End date12/2312/3510/2409/2502/2013
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets
  • General statistical datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
    •  https://makingcity.eu/wp-content/uploads/2021/12/MakingCity_D4_3_Analysis_of_FWC_candidate_areas_to_become_a_PED_Final.pdf.
      A1P011: Geographic coordinates
      X Coordinate (longitude):23.8145882.16-5.58479524.75377778-8.37355732.7953692.1
      Y Coordinate (latitude):38.07734941.3942.59339160.2162222241.13580439.88181241.3
      A1P012: Country
      A1P012: CountryGreeceSpainSpainFinlandPortugalTurkeySpain
      A1P013: City
      A1P013: CityMunicipality of KifissiaBarcelonaLeonEspooMaiaAnkaraBarcelona and Tarragona
      A1P014: Climate Zone (Köppen Geiger classification)
      A1P014: Climate Zone (Köppen Geiger classification).CsaCsaCsbDfbCsbDsbCsa
      A1P015: District boundary
      A1P015: District boundaryVirtualGeographicGeographicGeographicVirtualGeographicVirtual
      OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhood
      A1P016: Ownership of the case study/PED Lab
      A1P016: Ownership of the case study/PED Lab:PrivateMixedMixedPublicPrivatePublic
      A1P017: Ownership of the land / physical infrastructure
      A1P017: Ownership of the land / physical infrastructure:Single OwnerMultiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersSingle Owner
      A1P018: Number of buildings in PED
      A1P018: Number of buildings in PED1621222570
      A1P019: Conditioned space
      A1P019: Conditioned space [m²]2154216.0690022600
      A1P020: Total ground area
      A1P020: Total ground area [m²]73.1456958000050800
      A1P021: Floor area ratio: Conditioned space / total ground area
      A1P021: Floor area ratio: Conditioned space / total ground area0000000
      A1P022: Financial schemes
      A1P022a: Financing - PRIVATE - Real estatenonononononono
      A1P022a: Add the value in EUR if available [EUR]
      A1P022b: Financing - PRIVATE - ESCO schemenonononononono
      A1P022b: Add the value in EUR if available [EUR]
      A1P022c: Financing - PRIVATE - Othernonononoyesnono
      A1P022c: Add the value in EUR if available [EUR]
      A1P022d: Financing - PUBLIC - EU structural fundingnonononononono
      A1P022d: Add the value in EUR if available [EUR]
      A1P022e: Financing - PUBLIC - National fundingnonononoyesnono
      A1P022e: Add the value in EUR if available [EUR]
      A1P022f: Financing - PUBLIC - Regional fundingnonononoyesnono
      A1P022f: Add the value in EUR if available [EUR]
      A1P022g: Financing - PUBLIC - Municipal fundingnonononononono
      A1P022g: Add the value in EUR if available [EUR]
      A1P022h: Financing - PUBLIC - Othernonononononono
      A1P022h: Add the value in EUR if available [EUR]
      A1P022i: Financing - RESEARCH FUNDING - EUnoyesnonoyesyesno
      A1P022i: Add the value in EUR if available [EUR]503903
      A1P022j: Financing - RESEARCH FUNDING - Nationalnononononoyesno
      A1P022j: Add the value in EUR if available [EUR]
      A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononono
      A1P022k: Add the value in EUR if available [EUR]
      A1P022l: Financing - RESEARCH FUNDING - Othernonononononono
      A1P022l: Add the value in EUR if available [EUR]
      A1P022: OtherMultiple different funding schemes depending on the case.
      A1P023: Economic Targets
      A1P023: Economic Targets
      • Positive externalities
      • Job creation,
      • Positive externalities,
      • Boosting local businesses,
      • Boosting local and sustainable production,
      • Boosting consumption of local and sustainable products
      • Positive externalities,
      • Boosting local and sustainable production
      • Boosting local and sustainable production
      • Job creation,
      • Boosting local and sustainable production
      A1P023: OtherCircular economy
      A1P024: More comments:
      A1P024: More comments:The urban morphology of Çamlık District differs in several ways, compared with the typical urban fabric in Türkiye, along with the capital city of Ankara. The houses on the site are composed of three-story attached single-housing units with multiple rows, creating a total of 257 housing units in total. Low-rise buildings coupled with suitably oriented rooftop surfaces brings about significant advantages in the site. Dense greenery in the site also results in reduced cooling energy demand in the buildings.Semi-Virtual Energy Integration Laboratory (SEILAB) The Energy Smart Lab is an infrastructure conceived as a flexible and versatile platform for innovative technological developments for both industry and competitive R+D projects. The areas of expertise of this laboratory pivot around the following technologies: – Power Electronics for the integration and control of the elements within a building or community: Renewable Energy Sources (RES), Energy Storage Systems and Electric Vehicles (EV) – ICT Platform for smart communications and energy management of systems, building, networks and communities. – Energy System Integration technologies for smart and flexible buildings and grids including RES and EV. The laboratory operation is based on the hardware emulation approach, which allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation. The laboratory is pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.
      A1P025: Estimated PED case study / PED LAB costs
      A1P025: Estimated PED case study / PED LAB costs [mil. EUR]
      Contact person for general enquiries
      A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaJaume SalomBegoña Gonzalo OrdenJoni MäkinenAdelina RodriguesProf. Dr. İpek Gürsel DİNODr. Jaume Salom, Dra. Cristina Corchero
      A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamIRECMunicipality of LeonCity of EspooMaia Municipality (CM Maia) – Energy and Mobility divisionMiddle East Technical UniversityIREC
      A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityOtherMunicipality / Public BodiesMunicipality / Public BodiesResearch Center / UniversityResearch Center / University
      A1P028: OtherMunicipality of Leon - ILRUV
      A1P029: Emailgiavasoglou@kifissia.grjsalom@irec.catbegona.gonzalo@aytoleon.esjoni.makinen@espoo.fidscm.adelina@cm-maia.ptipekg@metu.edu.trJsalom@irec.cat
      Contact person for other special topics
      A1P030: NameStavros Zapantis - vice mayorJoan Estrada AliberasMonica Prada CorralCarolina Gonçalves (AdEPorto)Assoc. Prof. Onur Taylan
      A1P031: Emailstavros.zapantis@gmail.comj_estrada@gencat.catMonica.Prada@ilruv.escarolinagoncalves@adeporto.euotaylan@metu.edu.tr
      Pursuant to the General Data Protection RegulationYesYesYesYesYesYes
      A2P001: Fields of application
      A2P001: Fields of application
      • Energy production
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • Digital technologies
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies,
      • Waste management,
      • Construction materials
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies
      • Energy efficiency,
      • Energy production,
      • Construction materials
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies
      A2P001: Other
      A2P002: Tools/strategies/methods applied for each of the above-selected fields
      A2P002: Tools/strategies/methods applied for each of the above-selected fields- Integrated energy design process of both active and passive elements - Multicriteria analysis of energy system, environmental variables, indoor comfort and economic parameters - Energy modelling - Predictive control to optimize performance within the neighbourhoodEnergy efficiency: - buildings energy retrofit Energy production: - installation of new photovoltaic (PV) systems for renewable on-site energy production; Energy flexibility: - testing share energy solutions (public-private stakeholders) Digital technologies - smart city platform - smart energy management E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services implementation.- Kera development commitment (https://www.espoo.fi/en/kera-development-commitment). - SPARCS Co-creation model for sustainable and smart urban areas (www.co-creatingsparcs.fi/en). - Kera area carbon neutrality roadmap (https://static.espoo.fi/cdn/ff/MHDdcMNJ9aYn7CjpoD4zNpo5M-M9HIDLXlJdUrUmf-8/1642756766/public/2022-01/Kera%20carbon%20neutrality%20map_EN.pdf)Energy production: - installation of photovoltaic systems for renewable on-site energy production; - installation of a BIPV demonstrator for the City Hall building. Energy flexibility: - implementation of an energy community through an active citizens involvement process. Digital technologies: - smart-meters installation in some dwellings in order to monitor consumption and suggest more sustainable energy behaviours. [PCP] Through https://balcaodigital.e-redes.pt/consumptions/history “Espaço Municipal” (https://www.espacomunicipal.pt/pt/) might access history of consumption up to midnight of the previous day. E-mobility: - Installation of new charging stations for electric vehicles; Urban comfort and air quality: - Monitoring units for air pollutants concentration (PM2.5, PM10, NO2) [PCP] Currently we are monitoring CO, O3, NO2, SO2, noise, PM2.5 and PM10 at a point 267 m east from the four buildings southeast of Sobreiro area:The energy consumption and efficiency of the energy model of Çamlık Site, created using EnergyPlus software, have been evaluated under the scenarios specified below. At each stage, a new system was incorporated to explore the potential of the area becoming a PED. In this context, four scenarios were created to compare different energy scenarios for the Ankara pilot area and to observe the impact of the included systems on energy efficiency: V_base; V_ER; V_ER,HP; V_ER,HP,PV. The basic scenario (V_base) was created using the current state without any improvement to the building envelope. This scenario was developed to determine the annual energy needs of the entire site without any intervention and serves as a reference point for the other developed models. The second scenario (V_ER) was created to improve the building envelopes of all residential units in the area, altering the U-values according to Türkiye's current building standards (TS-825). The third scenario (V_ER,HP) primarily includes a heat pump model that can use electrical energy to produce higher thermal energy and is added on top of the improvements in the second scenario. Finally, the V_ER,HP,PV scenario combines building envelope improvements, the heat pump, and the solar PV system.Energy SmartLab capacities - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. Energy SmartLab systems - SAFT Li-ion battery: maximum stored energy 20000 Wh, rated power 150 kW, rated discharge current 200 A, rated charge current 34 A, operating voltage 189 V – 227 V – 254 V, capacity 82 Ah. – Ultracapacitors: maximum stored energy 57 Wh, rated power 10 kW, rated current 20 A, peak current (<1s) 200 Apk, operating voltage 250 V – 500 V, capacity 1,65 F. – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah - 5 microgrid emulators (emulated power 5.5 kVA, max generation connected 10kVA, max consumption connected 10 kVA) - 1 grid emulator (Rated power: 200 kVA, Rated current per phase: 350 A, Rated current per neutral conductor: 35)
      A2P003: Application of ISO52000
      A2P003: Application of ISO52000NoNoNoYes
      A2P004: Appliances included in the calculation of the energy balance
      A2P004: Appliances included in the calculation of the energy balanceNoNoNoYesYesYes
      A2P005: Mobility included in the calculation of the energy balance
      A2P005: Mobility included in the calculation of the energy balanceNoNoNoNoNoYes
      A2P006: Description of how mobility is included (or not included) in the calculation
      A2P006: Description of how mobility is included (or not included) in the calculationMobility is not included in the calculations.– Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah
      A2P007: Annual energy demand in buildings / Thermal demand
      A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]3.4954.53.446
      A2P008: Annual energy demand in buildings / Electric Demand
      A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.5719.40.528
      A2P009: Annual energy demand for e-mobility
      A2P009: Annual energy demand for e-mobility [GWh/annum]
      A2P010: Annual energy demand for urban infrastructure
      A2P010: Annual energy demand for urban infrastructure [GWh/annum]
      A2P011: Annual renewable electricity production on-site during target year
      A2P011: PVyesyesyesyesyesyesyes
      A2P011: PV - specify production in GWh/annum [GWh/annum]0.051.2443.4240
      A2P011: Windnonononononono
      A2P011: Wind - specify production in GWh/annum [GWh/annum]
      A2P011: Hydrononoyesnononono
      A2P011: Hydro - specify production in GWh/annum [GWh/annum]1.28
      A2P011: Biomass_elnonononononono
      A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_peat_elnonononononono
      A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
      A2P011: PVT_elnonoyesnononono
      A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.28
      A2P011: Othernoyesnonononono
      A2P011: Other - specify production in GWh/annum [GWh/annum]
      A2P012: Annual renewable thermal production on-site during target year
      A2P012: Geothermalnonononononono
      A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Solar Thermalnonononoyesnono
      A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_heatnonononononono
      A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: Waste heat+HPnononoyesnonono
      A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_peat_heatnonononononono
      A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: PVT_thnonoyesnononono
      A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_firewood_thnonononononono
      A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Othernonoyesnononono
      A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
      A2P013: Renewable resources on-site - Additional notes
      A2P013: Renewable resources on-site - Additional notes-Rooftop PV 39.1 kWp -4 pipe air-to-water heat pump to cover heating and coolingLocal energy utility will implement district level thermal solution. First, energy will be produced from waste heat from a local data center. Further thermal solutions are under discussion and development.
      A2P014: Annual energy use
      A2P014: Annual energy use [GWh/annum]0.03378.83.976
      A2P015: Annual energy delivered
      A2P015: Annual energy delivered [GWh/annum]0.03015.4
      A2P016: Annual non-renewable electricity production on-site during target year
      A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]0000
      A2P017: Annual non-renewable thermal production on-site during target year
      A2P017: Gasnononononoyesyes
      A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Coalnonononononono
      A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Oilnonononononono
      A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Othernonononononono
      A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P018: Annual renewable electricity imports from outside the boundary during target year
      A2P018: PVnonononononono
      A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
      A2P018: Windnonononononono
      A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
      A2P018: Hydrononononononono
      A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_elnonononononono
      A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_peat_elnonononononono
      A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: PVT_elnonononononono
      A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Othernonononononono
      A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
      A2P019: Annual renewable thermal imports from outside the boundary during target year
      A2P019: Geothermalnonononononono
      A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Solar Thermalnonononononono
      A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_heatnonononononono
      A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Waste heat+HPnonononononono
      A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_peat_heatnonononononono
      A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: PVT_thnonononononono
      A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_firewood_thnonononononono
      A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Othernonononononono
      A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
      A2P020: Share of RES on-site / RES outside the boundary
      A2P020: Share of RES on-site / RES outside the boundary0000000
      A2P021: GHG-balance calculated for the PED
      A2P021: GHG-balance calculated for the PED [tCO2/annum]450000
      A2P022: KPIs related to the PED case study / PED Lab
      A2P022: Safety & Security
      A2P022: HealthCarbon Dioxide (CO2) levels, Predicted Mean Vote,Predicted Percentage of Dissatisfied, Temperature, Relative Humidity, Illuminance, Daylight factor, Sound pressure levels
      A2P022: Education
      A2P022: Mobility
      A2P022: EnergyNon-renewable primary energy balance, Renewable energy ratio, Grid Purchase factor, Load cover factor/Self-generation, Supply cover factor/Self-consumption, Net energy/Net power, Peak delivered/exported power, Connection capacity credit, Total greenhouse gas emissions
      A2P022: Water
      A2P022: Economic development: Investment costs, Share of investments covered by grants, Maintenance-related costs, Requirement-related costs, Operation-related costs, Other costs, Net Present Value, Internal Rate of Return, Economic Value Added, Payback Period, nZEB Cost Comparison
      A2P022: Housing and Community: Access to services, Affordability of energy, Affordability of housing, Democratic legitimacy, Living conditions, Social cohesion, Personal safety, Energy consciousness
      A2P022: Waste
      A2P022: Other
      A2P023: Technological Solutions / Innovations - Energy Generation
      A2P023: Photovoltaicsnoyesyesyesyesyesyes
      A2P023: Solar thermal collectorsnonoyesnoyesnono
      A2P023: Wind Turbinesnonononononono
      A2P023: Geothermal energy systemnonononononono
      A2P023: Waste heat recoverynononoyesnonono
      A2P023: Waste to energynonononononono
      A2P023: Polygenerationnonononononono
      A2P023: Co-generationnonononononono
      A2P023: Heat Pumpnoyesyesyesyesyesno
      A2P023: Hydrogennonononononono
      A2P023: Hydropower plantnonoyesnononono
      A2P023: Biomassnonononononono
      A2P023: Biogasnonononononono
      A2P023: Other
      A2P024: Technological Solutions / Innovations - Energy Flexibility
      A2P024: A2P024: Information and Communication Technologies (ICT)nonoyesyesyesnoyes
      A2P024: Energy management systemnoyesyesyesyesnoyes
      A2P024: Demand-side managementnoyesyesyesnonono
      A2P024: Smart electricity gridnononoyesnonoyes
      A2P024: Thermal Storagenonononononono
      A2P024: Electric Storagenonononoyesnoyes
      A2P024: District Heating and Coolingnononoyesnonono
      A2P024: Smart metering and demand-responsive control systemsnonononoyesnono
      A2P024: P2P – buildingsnonoyesnononono
      A2P024: Other
      A2P025: Technological Solutions / Innovations - Energy Efficiency
      A2P025: Deep Retrofittingnonoyesnoyesyesno
      A2P025: Energy efficiency measures in historic buildingsnonoyesnononono
      A2P025: High-performance new buildingsnoyesnoyesnonono
      A2P025: Smart Public infrastructure (e.g. smart lighting)nononoyesyesnono
      A2P025: Urban data platformsnonoyesyesnonono
      A2P025: Mobile applications for citizensnonononononono
      A2P025: Building services (HVAC & Lighting)noyesnoyesyesyesyes
      A2P025: Smart irrigationnonononononono
      A2P025: Digital tracking for waste disposalnonononoyesnono
      A2P025: Smart surveillancenonononononono
      A2P025: Other
      A2P026: Technological Solutions / Innovations - Mobility
      A2P026: Efficiency of vehicles (public and/or private)nonoyesyesyesnoyes
      A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nononoyesnonono
      A2P026: e-Mobilitynonoyesyesyesnono
      A2P026: Soft mobility infrastructures and last mile solutionsnonoyesyesnonono
      A2P026: Car-free areanonononononono
      A2P026: Other
      A2P027: Mobility strategies - Additional notes
      A2P027: Mobility strategies - Additional notes
      A2P028: Energy efficiency certificates
      A2P028: Energy efficiency certificatesYesYesNoYesNo
      A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingEnergy Performance CertificateEnergy Performance Certificate - in Spain it is mandatory in order to buy or rent a house or a dwelling)The Municipal Buildings have an energy certificate, according to the Portuguese legislation.
      A2P029: Any other building / district certificates
      A2P029: Any other building / district certificatesNoNoNoNoNo
      A2P029: If yes, please specify and/or enter notes
      A3P001: Relevant city /national strategy
      A3P001: Relevant city /national strategy
      • Energy master planning (SECAP, etc.),
      • Promotion of energy communities (REC/CEC)
      • Smart cities strategies,
      • Energy master planning (SECAP, etc.)
      • Energy master planning (SECAP, etc.),
      • Climate change adaption plan/strategy (e.g. Climate City contract)
      • Urban Renewal Strategies,
      • Energy master planning (SECAP, etc.),
      • Promotion of energy communities (REC/CEC),
      • Climate change adaption plan/strategy (e.g. Climate City contract)
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Smart cities strategies,
      • New development strategies
      A3P002: Quantitative targets included in the city / national strategy
      A3P002: Quantitative targets included in the city / national strategy
      A3P003: Strategies towards decarbonization of the gas grid
      A3P003: Strategies towards decarbonization of the gas grid
      • Other
      • Electrification of Heating System based on Heat Pumps
      A3P003: OtherAt a national level there are some studies regarding the decarbonization of the gas grid, but no concrete strategies so far.
      A3P004: Identification of needs and priorities
      A3P004: Identification of needs and prioritiesAccording to the model developed for the district, the electrification of heating and cooling is necessary with heat pumps. Rooftop photovoltaic panels also have the potential for renewable energy generation. Through net-metering practices, the district is expected to reach energy positivity through this scenario.-Allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation -Pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.
      A3P005: Sustainable behaviour
      A3P005: Sustainable behaviour-Improving the development of Net Zero Energy Buildings and Flexible Energy buildings.
      A3P006: Economic strategies
      A3P006: Economic strategies
      • PPP models,
      • Circular economy models
      • Innovative business models,
      • PPP models,
      • Existing incentives
      • Demand management Living Lab
      A3P006: Other
      A3P007: Social models
      A3P007: Social models
      • Strategies towards (local) community-building,
      • Behavioural Change / End-users engagement,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Quality of Life
      • Co-creation / Citizen engagement strategies,
      • Prevention of energy poverty,
      • Digital Inclusion,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Affordability
      • Digital Inclusion,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      A3P007: Other
      A3P008: Integrated urban strategies
      A3P008: Integrated urban strategies
      • Strategic urban planning,
      • City Vision 2050,
      • SECAP Updates
      • Strategic urban planning,
      • Digital twinning and visual 3D models,
      • District Energy plans
      • City Vision 2050,
      • SECAP Updates,
      • Building / district Certification
      • Digital twinning and visual 3D models,
      • District Energy plans
      A3P008: Other
      A3P009: Environmental strategies
      A3P009: Environmental strategies
      • Net zero carbon footprint,
      • Life Cycle approach,
      • Greening strategies,
      • Nature Based Solutions (NBS)
      • Energy Neutral,
      • Net zero carbon footprint,
      • Pollutants Reduction
      • Energy Neutral,
      • Low Emission Zone
      • Energy Neutral,
      • Low Emission Zone,
      • Pollutants Reduction,
      • Greening strategies
      A3P009: OtherEnergy Positive, Low Emission Zone
      A3P010: Legal / Regulatory aspects
      A3P010: Legal / Regulatory aspects- European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.
      B1P001: PED/PED relevant concept definition
      B1P001: PED/PED relevant concept definitionImplementation of district level heating system to make heating energy positive and expanding local renewable electricity production.Çamlık District, unlike many other districts in Ankara, has a specific urban morphology that draws near the other pilot zones considered by the partners of PED-ACT. The site has three-storey single housing units, along with a fair amount of greenery around. Furthermore, the roof areas enable large amounts of PV installment, which results in higher amounts of local renewable energy potential. Therefore, the district is a good fit for PED development.
      B1P002: Motivation behind PED/PED relevant project development
      B1P002: Motivation behind PED/PED relevant project developmentPED-ACT project.
      B1P003: Environment of the case study area
      B2P003: Environment of the case study areaUrban areaUrban areaUrban areaSuburban area
      B1P004: Type of district
      B2P004: Type of district
      • New construction
      • New construction,
      • Renovation
      • New construction
      • Renovation
      B1P005: Case Study Context
      B1P005: Case Study Context
      • New Development
      • Re-use / Transformation Area,
      • Retrofitting Area,
      • Preservation Area
      • Re-use / Transformation Area
      • Retrofitting Area
      B1P006: Year of construction
      B1P006: Year of construction1986
      B1P007: District population before intervention - Residential
      B1P007: District population before intervention - Residential
      B1P008: District population after intervention - Residential
      B1P008: District population after intervention - Residential14000
      B1P009: District population before intervention - Non-residential
      B1P009: District population before intervention - Non-residential
      B1P010: District population after intervention - Non-residential
      B1P010: District population after intervention - Non-residential10000
      B1P011: Population density before intervention
      B1P011: Population density before intervention0000000
      B1P012: Population density after intervention
      B1P012: Population density after intervention0000.041379310344828000
      B1P013: Building and Land Use before intervention
      B1P013: Residentialnoyesyesyesnoyesno
      B1P013 - Residential: Specify the sqm [m²]50800
      B1P013: Officenononoyesnonono
      B1P013 - Office: Specify the sqm [m²]
      B1P013: Industry and Utilitynononoyesnonono
      B1P013 - Industry and Utility: Specify the sqm [m²]
      B1P013: Commercialnonononononono
      B1P013 - Commercial: Specify the sqm [m²]
      B1P013: Institutionalnonononononono
      B1P013 - Institutional: Specify the sqm [m²]
      B1P013: Natural areasnonononononono
      B1P013 - Natural areas: Specify the sqm [m²]
      B1P013: Recreationalnonononononono
      B1P013 - Recreational: Specify the sqm [m²]
      B1P013: Dismissed areasnononoyesnonono
      B1P013 - Dismissed areas: Specify the sqm [m²]
      B1P013: Othernonoyesnononono
      B1P013 - Other: Specify the sqm [m²]
      B1P014: Building and Land Use after intervention
      B1P014: Residentialnoyesyesyesnoyesno
      B1P014 - Residential: Specify the sqm [m²]50800
      B1P014: Officenononoyesnonono
      B1P014 - Office: Specify the sqm [m²]
      B1P014: Industry and Utilitynonononononono
      B1P014 - Industry and Utility: Specify the sqm [m²]
      B1P014: Commercialnononoyesnonono
      B1P014 - Commercial: Specify the sqm [m²]
      B1P014: Institutionalnonononononono
      B1P014 - Institutional: Specify the sqm [m²]
      B1P014: Natural areasnonononononono
      B1P014 - Natural areas: Specify the sqm [m²]
      B1P014: Recreationalnononoyesnonono
      B1P014 - Recreational: Specify the sqm [m²]
      B1P014: Dismissed areasnonononononono
      B1P014 - Dismissed areas: Specify the sqm [m²]
      B1P014: Othernonoyesnononono
      B1P014 - Other: Specify the sqm [m²]
      B2P001: PED Lab concept definition
      B2P001: PED Lab concept definitionaddressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation
      B2P002: Installation life time
      B2P002: Installation life timePermanent installation
      B2P003: Scale of action
      B2P003: ScaleVirtualVirtual
      B2P004: Operator of the installation
      B2P004: Operator of the installationCM Maia, IPMAIA, NEW, AdEP.IREC
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P006: Circular Economy Approach
      B2P006: Do you apply any strategy to reuse and recycling the materials?NoNo
      B2P006: Other
      B2P007: Motivation for developing the PED Lab
      B2P007: Motivation for developing the PED Lab
      • Strategic
      • Strategic,
      • Private
      B2P007: Other
      B2P008: Lead partner that manages the PED Lab
      B2P008: Lead partner that manages the PED LabMunicipalityResearch center/University
      B2P008: Other
      B2P009: Collaborative partners that participate in the PED Lab
      B2P009: Collaborative partners that participate in the PED Lab
      • Academia,
      • Private,
      • Industrial,
      • Citizens, public, NGO,
      • Other
      B2P009: OtherEnergy Agency
      B2P010: Synergies between the fields of activities
      B2P010: Synergies between the fields of activities
      B2P011: Available facilities to test urban configurations in PED Lab
      B2P011: Available facilities to test urban configurations in PED Lab
      • Buildings,
      • Demand-side management,
      • Prosumers,
      • Renewable generation,
      • Energy storage,
      • Efficiency measures,
      • Lighting,
      • E-mobility,
      • Information and Communication Technologies (ICT),
      • Ambient measures,
      • Social interactions
      • Demand-side management,
      • Energy storage,
      • Energy networks,
      • Efficiency measures,
      • Information and Communication Technologies (ICT)
      B2P011: Other
      B2P012: Incubation capacities of PED Lab
      B2P012: Incubation capacities of PED Lab
      • Monitoring and evaluation infrastructure,
      • Tools, spaces, events for testing and validation
      • Monitoring and evaluation infrastructure,
      • Tools for prototyping and modelling,
      • Tools, spaces, events for testing and validation
      B2P013: Availability of the facilities for external people
      B2P013: Availability of the facilities for external peopleDepends on the building: _Tecmaia is open to the public but the buildings are for the exclusive use of companies allocated at the industrial site; _The municipal buildings have public access; _The residential buildings have an exclusive use for the residents.
      B2P014: Monitoring measures
      B2P014: Monitoring measures
      • Execution plan,
      • Available data,
      • Type of measured data
      • Equipment
      B2P015: Key Performance indicators
      B2P015: Key Performance indicators
      • Energy,
      • Environmental,
      • Social,
      • Economical / Financial
      • Energy,
      • Environmental
      B2P016: Execution of operations
      B2P016: Execution of operationsCurrent PED status (WP5 SPARCS): Conceptualization and methodology definition of the (virtual) PED for Maia Municipality with real monitoring and assessment in order to replicate and scale up to a city-level PED. The financial investments were already targeted.
      B2P017: Capacities
      B2P017: Capacities_Energy production and storage, _Monitoring; _Digitization.- Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network.
      B2P018: Relations with stakeholders
      B2P018: Relations with stakeholdersThe relationship with stakeholders (municipal companies, industry, citizens, etc) has been fundamental for the definition of the PED. In this sense, some sessions were organized to gather different points of view in order to trace the best path for the PED. Also, the participation of Maia Municipality in EU projects, as EHHUR and OMEGA-X, makes possible the share of knowledge between different partners.
      B2P019: Available tools
      B2P019: Available tools
      • Energy modelling,
      • Social models,
      • Business and financial models,
      • Fundraising and accessing resources,
      • Matching actors
      • Energy modelling
      B2P019: Available tools
      B2P020: External accessibility
      B2P020: External accessibility
      C1P001: Unlocking Factors
      C1P001: Recent technological improvements for on-site RES production5 - Very important1 - Unimportant1 - Unimportant5 - Very important4 - Important5 - Very important1 - Unimportant
      C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important1 - Unimportant1 - Unimportant4 - Important4 - Important2 - Slightly important1 - Unimportant
      C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant3 - Moderately important
      C1P001: Storage systems and E-mobility market penetration1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant5 - Very important
      C1P001: Decreasing costs of innovative materials4 - Important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important5 - Very important3 - Moderately important
      C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important4 - Important5 - Very important
      C1P001: The ability to predict Multiple Benefits1 - Unimportant1 - Unimportant3 - Moderately important4 - Important4 - Important4 - Important
      C1P001: The ability to predict the distribution of benefits and impacts1 - Unimportant1 - Unimportant3 - Moderately important4 - Important4 - Important4 - Important
      C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important1 - Unimportant1 - Unimportant5 - Very important4 - Important2 - Slightly important1 - Unimportant
      C1P001: Social acceptance (top-down)5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important5 - Very important1 - Unimportant
      C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important4 - Important1 - Unimportant
      C1P001: Presence of integrated urban strategies and plans3 - Moderately important1 - Unimportant1 - Unimportant4 - Important5 - Very important5 - Very important1 - Unimportant
      C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important4 - Important4 - Important4 - Important
      C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important5 - Very important5 - Very important
      C1P001: Availability of RES on site (Local RES)1 - Unimportant1 - Unimportant4 - Important4 - Important4 - Important4 - Important
      C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important1 - Unimportant1 - Unimportant5 - Very important4 - Important5 - Very important5 - Very important
      C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P001: Any other UNLOCKING FACTORS (if any)
      C1P002: Driving Factors
      C1P002: Climate Change adaptation need4 - Important1 - Unimportant1 - Unimportant5 - Very important5 - Very important5 - Very important4 - Important
      C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important1 - Unimportant1 - Unimportant5 - Very important4 - Important5 - Very important4 - Important
      C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important4 - Important1 - Unimportant
      C1P002: Urban re-development of existing built environment3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important4 - Important5 - Very important4 - Important
      C1P002: Economic growth need2 - Slightly important1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant4 - Important
      C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important1 - Unimportant1 - Unimportant4 - Important4 - Important3 - Moderately important4 - Important
      C1P002: Territorial and market attractiveness2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important5 - Very important1 - Unimportant
      C1P002: Energy autonomy/independence5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important5 - Very important5 - Very important
      C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P002: Any other DRIVING FACTOR (if any)
      C1P003: Administrative barriers
      C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important1 - Unimportant1 - Unimportant4 - Important5 - Very important4 - Important4 - Important
      C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant
      C1P003: Lack of public participation3 - Moderately important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important5 - Very important2 - Slightly important
      C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important4 - Important3 - Moderately important
      C1P003:Long and complex procedures for authorization of project activities5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important5 - Very important5 - Very important
      C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important5 - Very important5 - Very important
      C1P003: Complicated and non-comprehensive public procurement4 - Important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important5 - Very important3 - Moderately important
      C1P003: Fragmented and or complex ownership structure3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important5 - Very important5 - Very important
      C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important1 - Unimportant1 - Unimportant4 - Important5 - Very important5 - Very important4 - Important
      C1P003: Lack of internal capacities to support energy transition3 - Moderately important1 - Unimportant1 - Unimportant4 - Important4 - Important5 - Very important4 - Important
      C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
      C1P003: Any other Administrative BARRIER (if any)
      C1P004: Policy barriers
      C1P004: Lack of long-term and consistent energy plans and policies4 - Important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important3 - Moderately important1 - Unimportant
      C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important5 - Very important1 - Unimportant
      C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important5 - Very important2 - Slightly important
      C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P004: Any other Political BARRIER (if any)
      C1P005: Legal and Regulatory barriers
      C1P005: Inadequate regulations for new technologies4 - Important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important5 - Very important5 - Very important
      C1P005: Regulatory instability3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important5 - Very important2 - Slightly important
      C1P005: Non-effective regulations4 - Important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important5 - Very important2 - Slightly important
      C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important5 - Very important4 - Important
      C1P005: Building code and land-use planning hindering innovative technologies4 - Important1 - Unimportant1 - Unimportant4 - Important4 - Important4 - Important3 - Moderately important
      C1P005: Insufficient or insecure financial incentives4 - Important1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant5 - Very important
      C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important3 - Moderately important1 - Unimportant
      C1P005: Shortage of proven and tested solutions and examples1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important2 - Slightly important4 - Important
      C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
      C1P005: Any other Legal and Regulatory BARRIER (if any)
      C1P006: Environmental barriers
      C1P006: Environmental barriers- Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Air and Water Pollution: 2 - Water Scarcity: 1 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Natural Disasters: 1
      C1P007: Technical barriers
      C1P007: Lack of skilled and trained personnel4 - Important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant5 - Very important
      C1P007: Deficient planning3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important5 - Very important
      C1P007: Retrofitting work in dwellings in occupied state4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant
      C1P007: Lack of well-defined process4 - Important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant4 - Important
      C1P007: Inaccuracy in energy modelling and simulation4 - Important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant5 - Very important
      C1P007: Lack/cost of computational scalability4 - Important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important2 - Slightly important4 - Important
      C1P007: Grid congestion, grid instability4 - Important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important3 - Moderately important5 - Very important
      C1P007: Negative effects of project intervention on the natural environment3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
      C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
      C1P007: Difficult definition of system boundaries3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important4 - Important1 - Unimportant
      C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P007: Any other Thecnical BARRIER (if any)
      C1P008: Social and Cultural barriers
      C1P008: Inertia4 - Important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important5 - Very important4 - Important
      C1P008: Lack of values and interest in energy optimization measurements5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important5 - Very important5 - Very important
      C1P008: Low acceptance of new projects and technologies5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important4 - Important5 - Very important
      C1P008: Difficulty of finding and engaging relevant actors5 - Very important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important5 - Very important5 - Very important
      C1P008: Lack of trust beyond social network4 - Important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important5 - Very important3 - Moderately important
      C1P008: Rebound effect4 - Important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important3 - Moderately important4 - Important
      C1P008: Hostile or passive attitude towards environmentalism5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important5 - Very important
      C1P008: Exclusion of socially disadvantaged groups2 - Slightly important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important3 - Moderately important1 - Unimportant
      C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important5 - Very important1 - Unimportant
      C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important2 - Slightly important1 - Unimportant
      C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P008: Any other Social BARRIER (if any)
      C1P009: Information and Awareness barriers
      C1P009: Insufficient information on the part of potential users and consumers1 - Unimportant1 - Unimportant4 - Important4 - Important3 - Moderately important1 - Unimportant
      C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts1 - Unimportant1 - Unimportant4 - Important4 - Important5 - Very important5 - Very important
      C1P009: Lack of awareness among authorities1 - Unimportant1 - Unimportant3 - Moderately important4 - Important4 - Important2 - Slightly important
      C1P009: Information asymmetry causing power asymmetry of established actors1 - Unimportant1 - Unimportant3 - Moderately important4 - Important5 - Very important1 - Unimportant
      C1P009: High costs of design, material, construction, and installation1 - Unimportant1 - Unimportant4 - Important4 - Important5 - Very important5 - Very important
      C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P009: Any other Information and Awareness BARRIER (if any)
      C1P010: Financial barriers
      C1P010: Hidden costs1 - Unimportant1 - Unimportant3 - Moderately important4 - Important5 - Very important5 - Very important
      C1P010: Insufficient external financial support and funding for project activities1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant5 - Very important
      C1P010: Economic crisis1 - Unimportant1 - Unimportant4 - Important4 - Important5 - Very important4 - Important
      C1P010: Risk and uncertainty1 - Unimportant1 - Unimportant3 - Moderately important4 - Important4 - Important5 - Very important
      C1P010: Lack of consolidated and tested business models1 - Unimportant1 - Unimportant3 - Moderately important4 - Important3 - Moderately important5 - Very important
      C1P010: Limited access to capital and cost disincentives1 - Unimportant1 - Unimportant3 - Moderately important4 - Important5 - Very important
      C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P010: Any other Financial BARRIER (if any)
      C1P011: Market barriers
      C1P011: Split incentives1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important5 - Very important4 - Important
      C1P011: Energy price distortion1 - Unimportant1 - Unimportant3 - Moderately important4 - Important4 - Important5 - Very important
      C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant1 - Unimportant3 - Moderately important4 - Important3 - Moderately important5 - Very important
      C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P011: Any other Market BARRIER (if any)
      C1P012: Stakeholders involved
      C1P012: Government/Public Authorities
      • Planning/leading,
      • Design/demand aggregation
      C1P012: Research & Innovation
      • Planning/leading,
      • Design/demand aggregation
      C1P012: Financial/Funding
      • Design/demand aggregation,
      • Construction/implementation
      C1P012: Analyst, ICT and Big Data
      • Planning/leading,
      • Monitoring/operation/management
      C1P012: Business process management
      • Design/demand aggregation,
      • Construction/implementation
      C1P012: Urban Services providers
      • Planning/leading,
      • Construction/implementation
      C1P012: Real Estate developers
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Design/Construction companies
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      C1P012: End‐users/Occupants/Energy Citizens
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Social/Civil Society/NGOs
      • Planning/leading
      C1P012: Industry/SME/eCommerce
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      C1P012: Other
      C1P012: Other (if any)
      Summary

      Authors (framework concept)

      Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

      Contributors (to the content)

      Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

      Implemented by

      Boutik.pt: Filipe Martins, Jamal Khan
      Marek Suchánek (Czech Technical University in Prague)