Filters:
NameProjectTypeCompare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Uncompare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Uncompare
Lund, Brunnshög district PED Case Study Uncompare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Uncompare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Uncompare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Uncompare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Barcelona, SEILAB & Energy SmartLab
Groningen, PED North
Halmstad, Fyllinge
Tampere, Ilokkaanpuisto district
Borlänge, Rymdgatan’s Residential Portfolio
Stor-Elvdal, Campus Evenstad
Lund, Brunnshög district
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityBarcelona, SEILAB & Energy SmartLabGroningen, PED NorthHalmstad, FyllingeTampere, Ilokkaanpuisto districtBorlänge, Rymdgatan’s Residential PortfolioStor-Elvdal, Campus EvenstadLund, Brunnshög district
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynononononononoyes
PED relevant case studyyesnonoyesyesyesyesno
PED Lab.noyesyesnonononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynonoyesnoyesyesyesyes
Annual energy surplusnonoyesnonoyesyesyes
Energy communityyesyesyesyesyesyesnoyes
Circularitynonoyesnonononoyes
Air quality and urban comfortyesnonononononoyes
Electrificationyesyesnonoyesyesnoyes
Net-zero energy costnononononononono
Net-zero emissionnoyesyesnoyesnonoyes
Self-sufficiency (energy autonomous)noyesnonoyesnonono
Maximise self-sufficiencynononononoyesnono
Othernoyesnonononoyesyes
Other (A1P004)Green ITEnergy-flexibilityHolistic approach on city planning; Minimise car traffic - walkability; Local service; Climate neutral buildings 2030;
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhaseIn operationImplementation PhasePlanning PhaseCompletedPlanning PhaseIn operationIn operation
A1P006: Start Date
A1P006: Start date01/201112/1801/2104/1401/132015
A1P007: End Date
A1P007: End date02/201312/2301/3010/2312/242040
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • General statistical datasets
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
  • General statistical datasets
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • Meteorological open data
  • Open data city platform – different dashboards
  • Monitoring data available within the districts,
  • Meteorological open data
A1P009: OtherGIS open dataset is under construction
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
    • TNO, Hanze, RUG,
    • Ped noord book
      • None yet, but coming
        A1P011: Geographic coordinates
        X Coordinate (longitude):23.8145882.16.53512112.9205423.79808315.39449511.07877077353174613.232469400769599
        Y Coordinate (latitude):38.07734941.353.23484656.6519461.46408860.48660961.4260442039911255.71989792207193
        A1P012: Country
        A1P012: CountryGreeceSpainNetherlandsSwedenFinlandSwedenNorwaySweden
        A1P013: City
        A1P013: CityMunicipality of KifissiaBarcelona and TarragonaGroningenHalmstadTampereBorlängeEvenstad, Stor-Elvdal municipalityLund
        A1P014: Climate Zone (Köppen Geiger classification)
        A1P014: Climate Zone (Köppen Geiger classification).CsaCsaCfaDwbDfbDsbDwcDfb
        A1P015: District boundary
        A1P015: District boundaryVirtualVirtualFunctionalGeographicVirtualGeographicGeographicGeographic
        OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhood
        A1P016: Ownership of the case study/PED Lab
        A1P016: Ownership of the case study/PED Lab:PublicMixedMixedMixedMixedPublicPublic
        A1P017: Ownership of the land / physical infrastructure
        A1P017: Ownership of the land / physical infrastructure:Single OwnerMultiple OwnersMultiple OwnersMultiple OwnersSingle OwnerSingle OwnerMultiple Owners
        A1P018: Number of buildings in PED
        A1P018: Number of buildings in PED0725061022200
        A1P019: Conditioned space
        A1P019: Conditioned space [m²]1.019.0003700100001500000
        A1P020: Total ground area
        A1P020: Total ground area [m²]17.13225.00099451500000
        A1P021: Floor area ratio: Conditioned space / total ground area
        A1P021: Floor area ratio: Conditioned space / total ground area00000001
        A1P022: Financial schemes
        A1P022a: Financing - PRIVATE - Real estatenonoyesyesyesnonoyes
        A1P022a: Add the value in EUR if available [EUR]99999999
        A1P022b: Financing - PRIVATE - ESCO schemenononononononono
        A1P022b: Add the value in EUR if available [EUR]
        A1P022c: Financing - PRIVATE - Othernonoyesnoyesnonono
        A1P022c: Add the value in EUR if available [EUR]
        A1P022d: Financing - PUBLIC - EU structural fundingnononononononoyes
        A1P022d: Add the value in EUR if available [EUR]1000000
        A1P022e: Financing - PUBLIC - National fundingnonoyesnoyesnoyesyes
        A1P022e: Add the value in EUR if available [EUR]30000000
        A1P022f: Financing - PUBLIC - Regional fundingnononononononoyes
        A1P022f: Add the value in EUR if available [EUR]30000000
        A1P022g: Financing - PUBLIC - Municipal fundingnonoyesnonononoyes
        A1P022g: Add the value in EUR if available [EUR]180000000
        A1P022h: Financing - PUBLIC - Othernononononononono
        A1P022h: Add the value in EUR if available [EUR]
        A1P022i: Financing - RESEARCH FUNDING - EUnonoyesyesyesnonoyes
        A1P022i: Add the value in EUR if available [EUR]2000000
        A1P022j: Financing - RESEARCH FUNDING - Nationalnonononononoyesno
        A1P022j: Add the value in EUR if available [EUR]
        A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononononono
        A1P022k: Add the value in EUR if available [EUR]
        A1P022l: Financing - RESEARCH FUNDING - Othernononononononono
        A1P022l: Add the value in EUR if available [EUR]
        A1P022: Other
        A1P023: Economic Targets
        A1P023: Economic Targets
        • Job creation,
        • Boosting local and sustainable production
        • Boosting local businesses,
        • Boosting local and sustainable production
        • Boosting local and sustainable production
        • Boosting local and sustainable production
        • Positive externalities,
        • Boosting local businesses,
        • Boosting consumption of local and sustainable products
        • Boosting local businesses,
        • Boosting local and sustainable production
        • Other
        A1P023: OtherWorld class sustainable living and research environments
        A1P024: More comments:
        A1P024: More comments:Semi-Virtual Energy Integration Laboratory (SEILAB) The Energy Smart Lab is an infrastructure conceived as a flexible and versatile platform for innovative technological developments for both industry and competitive R+D projects. The areas of expertise of this laboratory pivot around the following technologies: – Power Electronics for the integration and control of the elements within a building or community: Renewable Energy Sources (RES), Energy Storage Systems and Electric Vehicles (EV) – ICT Platform for smart communications and energy management of systems, building, networks and communities. – Energy System Integration technologies for smart and flexible buildings and grids including RES and EV. The laboratory operation is based on the hardware emulation approach, which allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation. The laboratory is pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.
        A1P025: Estimated PED case study / PED LAB costs
        A1P025: Estimated PED case study / PED LAB costs [mil. EUR]
        Contact person for general enquiries
        A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaDr. Jaume Salom, Dra. Cristina CorcheroJasper Tonen, Elisabeth KoopsMarkus OlofsgårdSenior Scientist Terttu VainioJingchun ShenÅse Lekang SørensenMarkus Paulsson
        A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamIRECMunicipality of GroningenAFRYVTT Technical Research Centre of FinlandHögskolan DalarnaSINTEF / The Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart CitiesCity of Lund
        A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityMunicipality / Public BodiesOtherResearch Center / UniversityResearch Center / UniversityResearch Center / UniversityMunicipality / Public Bodies
        A1P028: Other
        A1P029: Emailgiavasoglou@kifissia.grJsalom@irec.catJasper.tonen@groningen.nlmarkus.olofsgard@afry.comterttu.vainio@vtt.fijih@du.sease.sorensen@sintef.nomarkus.paulsson@lund.se
        Contact person for other special topics
        A1P030: NameStavros Zapantis - vice mayorXingxing ZhangEva Dalman
        A1P031: Emailstavros.zapantis@gmail.comxza@du.seeva.dalman@lund.se
        Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYes
        A2P001: Fields of application
        A2P001: Fields of application
        • Energy production
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Waste management
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies
        • Energy efficiency,
        • Energy production,
        • Digital technologies
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Construction materials
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies,
        • Construction materials
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies,
        • Water use,
        • Waste management,
        • Construction materials,
        • Other
        A2P001: OtherWalkability and biking
        A2P002: Tools/strategies/methods applied for each of the above-selected fields
        A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy SmartLab capacities - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. Energy SmartLab systems - SAFT Li-ion battery: maximum stored energy 20000 Wh, rated power 150 kW, rated discharge current 200 A, rated charge current 34 A, operating voltage 189 V – 227 V – 254 V, capacity 82 Ah. – Ultracapacitors: maximum stored energy 57 Wh, rated power 10 kW, rated current 20 A, peak current (<1s) 200 Apk, operating voltage 250 V – 500 V, capacity 1,65 F. – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah - 5 microgrid emulators (emulated power 5.5 kVA, max generation connected 10kVA, max consumption connected 10 kVA) - 1 grid emulator (Rated power: 200 kVA, Rated current per phase: 350 A, Rated current per neutral conductor: 35)Energy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streamslink based regulation of electricity gridEnergy efficiency: - A-class buildings - Heating by GSHP Energy production: - Installation of photovoltaic (PV) Digital technologies: - Smart control and monitoring of HVAC and indoor circumstances E-mobility - Installation of charging stations for electric vehicles;Load calculation and system optimisation: City Energy Analyst Identification of stranded assets for asset owners and investors to understand the carbon risks: CRREMCampus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. The vision for Campus Evenstad is an energy-flexible Campus Evenstad in an emission-free Europe. The area consists of approx. 20 buildings managed and owned by Statsbygg; the Norwegian government’s building commissioner, property manager and developer. The oldest building is from the 1700-century and the newest is the administration centre (2017) which is a Zero Emission Building (ZEB) with the highest ambitions (ZEB-COM). Their concept has been to realize Campus Evenstad as an energy pilot, where innovative energy solutions are demonstrated, showing how local areas can become more self-sufficient in energy. The energy system at Evenstad consists of several innovative energy solutions that are new in a Norwegian and European context. They are combined in local infrastructure for electricity and heat, which has led to new knowledge and learning about how the solutions work together, and how the interaction is between the local and the national energy system. The solutions consist of solar cells (PV), solar collectors, combined heat and power plant (CHP) based on wood chips, biofuel boiler, electric boiler, grid connection, district heating, heat storage, stationary battery and bidirectional electric vehicle (EV) charging (V2G). Statsbygg has gained a lot of operational experience from Campus Evenstad - both from individual technologies and from the interaction between these, which benefits Statsbygg's 2,200 buildings and 3 million m2 around Norway. Sharing of experiences is central. Campus Evenstad is a pilot in the Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart Cities were several of the solutions has been developed and studied.LundaMaTs methodology for traffic and city planning. LundaEko - Lund's programme for ecological sustainability. Municipally owned land is sold to property developers on environmental conditions.
        A2P003: Application of ISO52000
        A2P003: Application of ISO52000NoNoNoNoNoNo
        A2P004: Appliances included in the calculation of the energy balance
        A2P004: Appliances included in the calculation of the energy balanceYesNoNoYesYesYesYes
        A2P005: Mobility included in the calculation of the energy balance
        A2P005: Mobility included in the calculation of the energy balanceYesNoYesNoNoYesYes
        A2P006: Description of how mobility is included (or not included) in the calculation
        A2P006: Description of how mobility is included (or not included) in the calculation– Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 AhMobility, till now, is not included in the energy model.At Campus Evenstad there is infrastructure for EV charging and bidirectional charging (V2G). EV charging is included in the energy balance.Today electrically charged vehicles are included in the energy balance. In the future also other fuels should be included.
        A2P007: Annual energy demand in buildings / Thermal demand
        A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]2.300.67770.7725
        A2P008: Annual energy demand in buildings / Electric Demand
        A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.330.70.036560.7630
        A2P009: Annual energy demand for e-mobility
        A2P009: Annual energy demand for e-mobility [GWh/annum]0
        A2P010: Annual energy demand for urban infrastructure
        A2P010: Annual energy demand for urban infrastructure [GWh/annum]0
        A2P011: Annual renewable electricity production on-site during target year
        A2P011: PVyesyesnoyesyesnoyesyes
        A2P011: PV - specify production in GWh/annum [GWh/annum]0.70.065
        A2P011: Windnononononononoyes
        A2P011: Wind - specify production in GWh/annum [GWh/annum]
        A2P011: Hydronononononononono
        A2P011: Hydro - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_elnonononononoyesno
        A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]0.050
        A2P011: Biomass_peat_elnononononononono
        A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
        A2P011: PVT_elnononononoyesnono
        A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.01818
        A2P011: Othernononononononono
        A2P011: Other - specify production in GWh/annum [GWh/annum]
        A2P012: Annual renewable thermal production on-site during target year
        A2P012: Geothermalnonoyesyesyesnonono
        A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Solar Thermalnonoyesnononoyesno
        A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.045
        A2P012: Biomass_heatnonoyesnononoyesno
        A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.10.35
        A2P012: Waste heat+HPnonoyesnonononoyes
        A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]200
        A2P012: Biomass_peat_heatnononononononono
        A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: PVT_thnonoyesnonoyesnono
        A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]0.0825
        A2P012: Biomass_firewood_thnononononononono
        A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Othernononononononono
        A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
        A2P013: Renewable resources on-site - Additional notes
        A2P013: Renewable resources on-site - Additional notesGeothermal heatpump systems, Waste heat from data centersPV plant of energy community locates outside of the city, not on the slotListed values are measurements from 2018. Renewable energy share is increasing.
        A2P014: Annual energy use
        A2P014: Annual energy use [GWh/annum]0.70.3181.500
        A2P015: Annual energy delivered
        A2P015: Annual energy delivered [GWh/annum]0.20551
        A2P016: Annual non-renewable electricity production on-site during target year
        A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]000
        A2P017: Annual non-renewable thermal production on-site during target year
        A2P017: Gasnoyesnononononono
        A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Coalnononononononono
        A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Oilnononononononono
        A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Othernononononoyesnono
        A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]0
        A2P018: Annual renewable electricity imports from outside the boundary during target year
        A2P018: PVnononononononoyes
        A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
        A2P018: Windnononononononoyes
        A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
        A2P018: Hydronononononononoyes
        A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_elnononononononoyes
        A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_peat_elnononononononono
        A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: PVT_elnononononononono
        A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Othernononononoyesnono
        A2P018 - Other: specify production in GWh/annum if available [GWh/annum]0.187
        A2P019: Annual renewable thermal imports from outside the boundary during target year
        A2P019: Geothermalnononononononono
        A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Solar Thermalnononononononono
        A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_heatnononononononono
        A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Waste heat+HPnononononononono
        A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_peat_heatnononononononono
        A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: PVT_thnononononononono
        A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_firewood_thnononononononono
        A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Othernononononoyesnono
        A2P019 Other: Please specify imports in GWh/annum [GWh/annum]0
        A2P020: Share of RES on-site / RES outside the boundary
        A2P020: Share of RES on-site / RES outside the boundary000000.5383957219251300
        A2P021: GHG-balance calculated for the PED
        A2P021: GHG-balance calculated for the PED [tCO2/annum]06.93
        A2P022: KPIs related to the PED case study / PED Lab
        A2P022: Safety & Securitynone
        A2P022: Healththermal comfort diagram
        A2P022: Educationnone
        A2P022: MobilitynoneMaximum 1/3 transport with car
        A2P022: Energynormalized CO2/GHG & Energy intensityLocal energy production 150% of energy need
        A2P022: Water
        A2P022: Economic developmentcost of excess emissions
        A2P022: Housing and Community50% rental apartments and 50% owner apartments
        A2P022: Waste
        A2P022: Other
        A2P023: Technological Solutions / Innovations - Energy Generation
        A2P023: Photovoltaicsnoyesyesyesyesyesyesyes
        A2P023: Solar thermal collectorsnonoyesnonoyesyesyes
        A2P023: Wind Turbinesnononononononoyes
        A2P023: Geothermal energy systemnonoyesnoyesyesnoyes
        A2P023: Waste heat recoverynonoyesnoyesyesnoyes
        A2P023: Waste to energynonoyesnonononono
        A2P023: Polygenerationnononononononoyes
        A2P023: Co-generationnonononononoyesno
        A2P023: Heat Pumpnonoyesnoyesyesnoyes
        A2P023: Hydrogennononononononoyes
        A2P023: Hydropower plantnononononononono
        A2P023: Biomassnonononononoyesno
        A2P023: Biogasnononononononono
        A2P023: OtherThe Co-generation is biomass based.
        A2P024: Technological Solutions / Innovations - Energy Flexibility
        A2P024: A2P024: Information and Communication Technologies (ICT)noyesyesyesyesyesyesyes
        A2P024: Energy management systemnoyesyesnoyesnoyesyes
        A2P024: Demand-side managementnonoyesyesyesnoyesyes
        A2P024: Smart electricity gridnoyesnoyesnononoyes
        A2P024: Thermal Storagenonoyesnonoyesyesyes
        A2P024: Electric Storagenoyesyesnononoyesyes
        A2P024: District Heating and Coolingnonoyesnonoyesyesyes
        A2P024: Smart metering and demand-responsive control systemsnonoyesyesyesnoyesyes
        A2P024: P2P – buildingsnononononononono
        A2P024: OtherElectric grid as virtual batteryBidirectional electric vehicle (EV) charging (V2G)
        A2P025: Technological Solutions / Innovations - Energy Efficiency
        A2P025: Deep Retrofittingnononononoyesnono
        A2P025: Energy efficiency measures in historic buildingsnonoyesnonononono
        A2P025: High-performance new buildingsnonoyesnoyesnoyesyes
        A2P025: Smart Public infrastructure (e.g. smart lighting)nonoyesnonononoyes
        A2P025: Urban data platformsnonoyesnonononoyes
        A2P025: Mobile applications for citizensnonononoyesnonono
        A2P025: Building services (HVAC & Lighting)noyesnonoyesyesnoyes
        A2P025: Smart irrigationnononononononono
        A2P025: Digital tracking for waste disposalnononononononoyes
        A2P025: Smart surveillancenononononononono
        A2P025: Other
        A2P026: Technological Solutions / Innovations - Mobility
        A2P026: Efficiency of vehicles (public and/or private)noyesnononononono
        A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nononononononoyes
        A2P026: e-Mobilitynonoyesnononoyesyes
        A2P026: Soft mobility infrastructures and last mile solutionsnononononononoyes
        A2P026: Car-free areanononononononoyes
        A2P026: Other
        A2P027: Mobility strategies - Additional notes
        A2P027: Mobility strategies - Additional notesWalkability
        A2P028: Energy efficiency certificates
        A2P028: Energy efficiency certificatesYesNoYesNoYesYes
        A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingEnergy Performance CertificatePassive house (2 buildings, 4 200 m2, from 2015)Miljöbyggnad silver/guld
        A2P029: Any other building / district certificates
        A2P029: Any other building / district certificatesNoNoNoYesNo
        A2P029: If yes, please specify and/or enter notesZero Emission Building (ZEB) with the highest ambitions (ZEB-COM) (admin building, 1 141 m2, 2016)
        A3P001: Relevant city /national strategy
        A3P001: Relevant city /national strategy
        • Energy master planning (SECAP, etc.),
        • Promotion of energy communities (REC/CEC)
        • Smart cities strategies,
        • New development strategies
        • Energy master planning (SECAP, etc.),
        • New development strategies,
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Promotion of energy communities (REC/CEC)
        • Smart cities strategies,
        • Energy master planning (SECAP, etc.),
        • Promotion of energy communities (REC/CEC),
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Promotion of energy communities (REC/CEC),
        • Climate change adaption plan/strategy (e.g. Climate City contract)
        • Promotion of energy communities (REC/CEC),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Climate change adaption plan/strategy (e.g. Climate City contract)
        A3P002: Quantitative targets included in the city / national strategy
        A3P002: Quantitative targets included in the city / national strategyThe study aligns closely with the decarbonisation and energy reduction pathways of residential multi family buildings with 1.5°C global warming target in Sweden. This study will also contribute to the achievement of the carbon neturality of whole Borlänge city by 2030.City strategy: Net climate neutrality 2030
        A3P003: Strategies towards decarbonization of the gas grid
        A3P003: Strategies towards decarbonization of the gas grid
        • Electrification of Heating System based on Heat Pumps,
        • Electrification of Cooking Methods,
        • Biogas
        A3P003: OtherNo gas grid in Brunnshög
        A3P004: Identification of needs and priorities
        A3P004: Identification of needs and priorities-Allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation -Pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.In our project, we carried out a comprehensive exploration of strategies to achieve positive energy districts in a Swedish residential portfolio. The focus on urban energy transitions necessitates a holistic approach that integrates building retrofit, solar technology exploration, and heating supply optimisation. Exploration of Local Solar Sources: The analysis reveals varying solar irradiance resources throughout the year, emphasizing the importance of strategic placement. Integration of combined photovoltaic and thermal panels into building envelopes demonstrates the potential to cover a significant portion of the energy demand even in Sweden. Heating Supply Optimisation with Solar Technologies: Despite the surplus energy production from on-site solar technology, challenges arise due to temporal energy asymmetry. The introduction of heat pumps emerges as a feasible solution to balance energy gaps, utilising both rejected and free heat. Optimisation scenarios, utilising a combination of geothermal heat pumps, water source heat pumps, and PVT, showcase remarkable reductions in emissions and primary energy consumption. Urban Form and Energy Infrastructure Design: We realised the importance of returning to urban form and energy infrastructure design to optimise future residential portfolio potential. Building layout design, influenced by zoning regulations and innovative typologies, plays a crucial role in achieving district level energy efficiency. Future challenges, including demographic shifts, e-mobility, and climate change, necessitate a more holistic approach to energy infrastructure design, addressing not only heating and electricity demands but also cooling requirements.Local waste heat is utlized to a very large extent. More local electricity production is needed. Need to minimise the use of private cars.
        A3P005: Sustainable behaviour
        A3P005: Sustainable behaviour-Improving the development of Net Zero Energy Buildings and Flexible Energy buildings.In Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.While our investigation primarily centres on technical optimisation within Positive Energy District (PED) development, it is essential to acknowledge the broader scope encompassing social and governance dimensions. Specifically, understanding stakeholders' willingness to embrace technical recommendations upon project completion is important. Several potential influencing factors merit exploration, including economic considerations, technical optimisation-associated embodied carbon balance, the general public's technical perceptions, and operational feasibility. Evaluating these aspects holistically not only enhances the efficacy of PED initiatives but also fosters greater acceptance and participation within the communities they serve.Need to minimise the use of private cars. Need to provide efficient methods for sorce separated waste collection.
        A3P006: Economic strategies
        A3P006: Economic strategies
        • Demand management Living Lab
        • Innovative business models,
        • Blockchain
        • Local trading
        • Open data business models,
        • Circular economy models
        • Open data business models,
        • Life Cycle Cost,
        • Circular economy models,
        • Local trading
        • PPP models,
        • Other
        A3P006: OtherAttractivenes
        A3P007: Social models
        A3P007: Social models
        • Digital Inclusion,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Citizen Social Research,
        • Prevention of energy poverty,
        • Citizen/owner involvement in planning and maintenance
        • Behavioural Change / End-users engagement,
        • Citizen/owner involvement in planning and maintenance
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Digital Inclusion,
        • Citizen/owner involvement in planning and maintenance
        • Strategies towards (local) community-building,
        • Behavioural Change / End-users engagement,
        • Social incentives,
        • Affordability,
        • Digital Inclusion
        • Behavioural Change / End-users engagement,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour),
        • Other
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Quality of Life,
        • Strategies towards social mix
        A3P007: OtherCampus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. Sharing knowledge is essential: Evenstad has regular visits from Politicians, decision-makers, researchers, environmental organizations, and energy- and building companies.
        A3P008: Integrated urban strategies
        A3P008: Integrated urban strategies
        • Strategic urban planning,
        • District Energy plans,
        • City Vision 2050,
        • SECAP Updates
        • Strategic urban planning
        • Strategic urban planning,
        • Digital twinning and visual 3D models,
        • SECAP Updates
        • Strategic urban planning,
        • Digital twinning and visual 3D models,
        • District Energy plans,
        • Building / district Certification
        • Strategic urban planning,
        • Digital twinning and visual 3D models,
        • City Vision 2050,
        • SECAP Updates
        A3P008: Other
        A3P009: Environmental strategies
        A3P009: Environmental strategies
        • Energy Neutral,
        • Low Emission Zone,
        • Pollutants Reduction,
        • Greening strategies
        • Energy Neutral
        • Energy Neutral,
        • Carbon-free
        • Energy Neutral,
        • Net zero carbon footprint,
        • Carbon-free,
        • Greening strategies,
        • Sustainable Urban drainage systems (SUDS),
        • Nature Based Solutions (NBS)
        • Low Emission Zone,
        • Net zero carbon footprint,
        • Life Cycle approach,
        • Sustainable Urban drainage systems (SUDS)
        • Low Emission Zone
        • Net zero carbon footprint,
        • Greening strategies,
        • Sustainable Urban drainage systems (SUDS),
        • Nature Based Solutions (NBS)
        A3P009: Other
        A3P010: Legal / Regulatory aspects
        A3P010: Legal / Regulatory aspects- European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.At national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricityCampus Evenstad became a prosumer in 2016, as the first with DSO Eidsiva. Evenstad is also one of the first three PV systems in Norway to receive green certificates.The municipality cannot demand a specific energy solution to private property owners. It has to be voluntary and market based solutions.
        B1P001: PED/PED relevant concept definition
        B1P001: PED/PED relevant concept definitionThe Rymdgatan's Residential Portfolio in Sweden presents a compelling case study for its classification as a PED-related research, given its alignment with sustainable behaviours and overarching PED development principles as follows: Inclusivity and Social Equity: The residential portfolio situated in Rymdgatan caters primarily to a low-income community. By focusing on this demographic, the project addresses critical aspects of social equity within sustainable urban development. Ensuring access to energy-efficient housing and amenities for economically disadvantaged populations not only fosters social cohesion but also mitigates energy poverty, a pressing concern in many urban contexts. Multifamily Residential Building: The inclusion of multifamily residential buildings within the portfolio underscores a commitment to density and efficient land use, both essential components of sustainable urban design. Such developments promote resource optimisation by consolidating housing units, thereby reducing per capita energy consumption and infrastructure demands. Moreover, multifamily dwellings often facilitate community engagement and shared resource management, fostering a culture of sustainability among residents. Low Carbon Retrofitting and Transition: The overarching initiative to transition the entire Jakobsgårdarna district. The included Rymdgatan portfolio, towards low carbon retrofitting, represents a significant example of decarbonization and climate resilience. By integrating energy-efficient technologies and renewable energy solutions into existing infrastructure, the project not only reduces carbon emissions but also serves as a blueprint for revitalising old urban environments sustainably. This holistic approach to retrofitting demonstrates a systemic commitment to environmental stewardship and long-term sustainability. Climate Adaptation and Renewable Energy Integration: Despite Sweden's climatic challenges, including lower solar resources during winter months, the Rymdgatan project leverages its geographical context to optimize renewable energy utilization. Sweden's greater solar resource availability during summer and geothermal potentials complement the design's emphasis on seasonal energy planning, where surplus energy generated during peak periods can be stored or redistributed efficiently. By embracing climate-responsive design strategies, the project demonstrates resilience in the face of climate variability while harnessing renewable energy potential effectively.The biggest impact is the demonstration of several new energy solutions for local communities. Statsbygg/Campus Evenstad contributes to the development of innovations, pushing technological development through purchasing and demonstration of the solutions. This is a benefit for both end users, energy service providers and society at large. Evenstad also contribute to developing the local business community. For example, local biomass chip production for CHP, development of V2G-software etc. Several key solutions have been important when aiming to achieve the goals of reduced emissions, increased self-sufficiency in energy, and an energy-flexible campus. Example Vehicle-to-grid (V2G): We realized bidirectional EV charging at Campus Evenstad in 2019, demonstrating V2G for the first time in Norway. The experiences from Evenstad provide increased knowledge and practical experience from purchasing, installing and operating the V2G solution, and can contribute to creating new solutions within the energy system. With the equipment installed, the batteries in EVs can supply power back to buildings or the power grid. Example solar cells (PV): We installed PV in 2013 when there were only a few grid-connected PV systems in Norway. The PV system was an important piece in changing the view on solar energy in Norway, where businesses, the public sector and private individuals started seeing the potential for solar energy also this far north. In 2022, the PV system was expanded with PV cells on the facade of the energy center. Example Solar collector system: Covers 100m2 of the roof surface of dormitories and supplies supplies 117 dormitories with all the hot water they need (4000m2 floor area. The solar collector system is connected to the district heating system, where the main heat source is bioenergy. Solar energy and bioenergy complement each other at different times of the year. Example battery bank: Among the 5 largest electrical batteries in Norway connected to the grid. Example CHP: First of its kind in Norway, generating heat and electricity from biomass. Already in 2010, fossil fuels were phased out by converting from oil to wood-chip heating.Vision: The city as a power plant. The ultimate goal is that more energy is produced within the distric boundaries than is being used (heating, electricity & mobility). Energy efficient buildings, efficient mobility, reuse of residual heat and solar electricity are the main methods.
        B1P002: Motivation behind PED/PED relevant project development
        B1P002: Motivation behind PED/PED relevant project developmentBorlänge city has committed to become the carbon-neutral city by 2030.In line with the EU's vision of "local energy communities", Campus Evenstad demonstrates energy actions that contribute to the clean energy transition. The campus has been developed over several years, demonstrating several innovative and sustainable technologies and energy solutions in a microgrid, e.g. vehicle to grid (V2G), biomass-based combined heat and power (CHP), solar energy, energy storage and zero emission buildings. It shows how to use new technology to enable zero emissions areas. Dedicated professionals, both Statsbygg's operating staff and researchers from FME ZEN have been central to the realization, together with dedicated management at the University campus, who have shown a great willingness to implement new solutions.The aim is to build a sustainable city with minimal climate impact and maximum quality of life. PED is an important step to acheive the aims of a very ambitious city development.
        B1P003: Environment of the case study area
        B2P003: Environment of the case study areaSuburban areaSuburban areaUrban areaRuralUrban area
        B1P004: Type of district
        B2P004: Type of district
        • New construction
        • New construction
        • Renovation
        • New construction,
        • Renovation
        • New construction
        B1P005: Case Study Context
        B1P005: Case Study Context
        • New Development
        • New Development
        • Re-use / Transformation Area,
        • Retrofitting Area
        • Retrofitting Area
        • New Development
        B1P006: Year of construction
        B1P006: Year of construction1990
        B1P007: District population before intervention - Residential
        B1P007: District population before intervention - Residential01000
        B1P008: District population after intervention - Residential
        B1P008: District population after intervention - Residential30010018000
        B1P009: District population before intervention - Non-residential
        B1P009: District population before intervention - Non-residential62000
        B1P010: District population after intervention - Non-residential
        B1P010: District population after intervention - Non-residential622000
        B1P011: Population density before intervention
        B1P011: Population density before intervention00000000
        B1P012: Population density after intervention
        B1P012: Population density after intervention0000120.01065862242332800.026666666666667
        B1P013: Building and Land Use before intervention
        B1P013: Residentialnononononoyesnono
        B1P013 - Residential: Specify the sqm [m²]4360
        B1P013: Officenononononononoyes
        B1P013 - Office: Specify the sqm [m²]60000
        B1P013: Industry and Utilitynononononononono
        B1P013 - Industry and Utility: Specify the sqm [m²]
        B1P013: Commercialnononononononono
        B1P013 - Commercial: Specify the sqm [m²]
        B1P013: Institutionalnononononononono
        B1P013 - Institutional: Specify the sqm [m²]
        B1P013: Natural areasnononoyesyesnonoyes
        B1P013 - Natural areas: Specify the sqm [m²]2000000
        B1P013: Recreationalnononononononono
        B1P013 - Recreational: Specify the sqm [m²]
        B1P013: Dismissed areasnononononononono
        B1P013 - Dismissed areas: Specify the sqm [m²]
        B1P013: Othernononononoyesnoyes
        B1P013 - Other: Specify the sqm [m²]706Outdoor parking: 100000
        B1P014: Building and Land Use after intervention
        B1P014: Residentialnonononoyesyesnoyes
        B1P014 - Residential: Specify the sqm [m²]4360600000
        B1P014: Officenononononononoyes
        B1P014 - Office: Specify the sqm [m²]650000
        B1P014: Industry and Utilitynononononononono
        B1P014 - Industry and Utility: Specify the sqm [m²]
        B1P014: Commercialnononononononono
        B1P014 - Commercial: Specify the sqm [m²]
        B1P014: Institutionalnononononononoyes
        B1P014 - Institutional: Specify the sqm [m²]50000
        B1P014: Natural areasnononononononono
        B1P014 - Natural areas: Specify the sqm [m²]
        B1P014: Recreationalnononononononoyes
        B1P014 - Recreational: Specify the sqm [m²]400000
        B1P014: Dismissed areasnononononononono
        B1P014 - Dismissed areas: Specify the sqm [m²]
        B1P014: Othernononononoyesnono
        B1P014 - Other: Specify the sqm [m²]706
        B2P001: PED Lab concept definition
        B2P001: PED Lab concept definitionaddressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility AggregationGroningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.
        B2P002: Installation life time
        B2P002: Installation life timeThe MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.
        B2P003: Scale of action
        B2P003: ScaleVirtualDistrict
        B2P004: Operator of the installation
        B2P004: Operator of the installationIRECThe Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P005: Replication framework: Applied strategy to reuse and recycling the materialsGroningen does not have a strategy to reuse and recyle materials
        B2P006: Circular Economy Approach
        B2P006: Do you apply any strategy to reuse and recycling the materials?NoNo
        B2P006: Other
        B2P007: Motivation for developing the PED Lab
        B2P007: Motivation for developing the PED Lab
        • Strategic,
        • Private
        • Civic
        B2P007: Other
        B2P008: Lead partner that manages the PED Lab
        B2P008: Lead partner that manages the PED LabResearch center/UniversityMunicipality
        B2P008: Other
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Collaborative partners that participate in the PED Lab
        • Academia,
        • Private,
        • Industrial,
        • Other
        B2P009: Otherresearch companies, monitoring company, ict company
        B2P010: Synergies between the fields of activities
        B2P010: Synergies between the fields of activities
        B2P011: Available facilities to test urban configurations in PED Lab
        B2P011: Available facilities to test urban configurations in PED Lab
        • Demand-side management,
        • Energy storage,
        • Energy networks,
        • Efficiency measures,
        • Information and Communication Technologies (ICT)
        • Buildings,
        • Demand-side management,
        • Energy storage,
        • Energy networks,
        • Waste management,
        • Lighting,
        • E-mobility,
        • Information and Communication Technologies (ICT),
        • Social interactions,
        • Business models
        B2P011: Other
        B2P012: Incubation capacities of PED Lab
        B2P012: Incubation capacities of PED Lab
        • Monitoring and evaluation infrastructure,
        • Tools for prototyping and modelling,
        • Tools, spaces, events for testing and validation
        • Tools for prototyping and modelling
        B2P013: Availability of the facilities for external people
        B2P013: Availability of the facilities for external people
        B2P014: Monitoring measures
        B2P014: Monitoring measures
        • Equipment
        • Execution plan,
        • Available data,
        • Type of measured data,
        • Equipment,
        • Level of access
        B2P015: Key Performance indicators
        B2P015: Key Performance indicators
        • Energy,
        • Environmental
        • Energy,
        • Social,
        • Economical / Financial
        B2P016: Execution of operations
        B2P016: Execution of operations
        B2P017: Capacities
        B2P017: Capacities- Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network.
        B2P018: Relations with stakeholders
        B2P018: Relations with stakeholders
        B2P019: Available tools
        B2P019: Available tools
        • Energy modelling
        • Energy modelling,
        • Social models,
        • Business and financial models
        B2P019: Available tools
        B2P020: External accessibility
        B2P020: External accessibility
        C1P001: Unlocking Factors
        C1P001: Recent technological improvements for on-site RES production5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important4 - Important4 - Important5 - Very important5 - Very important
        C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important5 - Very important5 - Very important
        C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important3 - Moderately important4 - Important5 - Very important5 - Very important3 - Moderately important5 - Very important5 - Very important
        C1P001: Storage systems and E-mobility market penetration5 - Very important4 - Important5 - Very important1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important
        C1P001: Decreasing costs of innovative materials4 - Important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important4 - Important
        C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important5 - Very important5 - Very important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important
        C1P001: The ability to predict Multiple Benefits4 - Important3 - Moderately important2 - Slightly important5 - Very important4 - Important1 - Unimportant2 - Slightly important
        C1P001: The ability to predict the distribution of benefits and impacts4 - Important3 - Moderately important4 - Important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
        C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important1 - Unimportant5 - Very important4 - Important2 - Slightly important5 - Very important4 - Important4 - Important
        C1P001: Social acceptance (top-down)5 - Very important1 - Unimportant3 - Moderately important4 - Important3 - Moderately important5 - Very important4 - Important3 - Moderately important
        C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important1 - Unimportant4 - Important4 - Important5 - Very important4 - Important4 - Important5 - Very important
        C1P001: Presence of integrated urban strategies and plans3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important5 - Very important5 - Very important1 - Unimportant3 - Moderately important
        C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important4 - Important2 - Slightly important4 - Important3 - Moderately important5 - Very important1 - Unimportant5 - Very important
        C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important5 - Very important3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant3 - Moderately important
        C1P001: Availability of RES on site (Local RES)4 - Important4 - Important5 - Very important5 - Very important5 - Very important5 - Very important5 - Very important
        C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important5 - Very important3 - Moderately important3 - Moderately important5 - Very important2 - Slightly important3 - Moderately important2 - Slightly important
        C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P001: Any other UNLOCKING FACTORS (if any)
        C1P002: Driving Factors
        C1P002: Climate Change adaptation need4 - Important4 - Important2 - Slightly important3 - Moderately important5 - Very important5 - Very important3 - Moderately important5 - Very important
        C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important4 - Important3 - Moderately important3 - Moderately important5 - Very important5 - Very important5 - Very important5 - Very important
        C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important
        C1P002: Urban re-development of existing built environment3 - Moderately important4 - Important4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant5 - Very important
        C1P002: Economic growth need2 - Slightly important4 - Important2 - Slightly important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant4 - Important
        C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
        C1P002: Territorial and market attractiveness2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
        C1P002: Energy autonomy/independence5 - Very important5 - Very important2 - Slightly important2 - Slightly important4 - Important2 - Slightly important4 - Important1 - Unimportant
        C1P002: Any other DRIVING FACTOR1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P002: Any other DRIVING FACTOR (if any)Earthquakes due to gas extraction
        C1P003: Administrative barriers
        C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important4 - Important3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant5 - Very important
        C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important
        C1P003: Lack of public participation3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important
        C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
        C1P003:Long and complex procedures for authorization of project activities5 - Very important5 - Very important4 - Important1 - Unimportant5 - Very important5 - Very important3 - Moderately important4 - Important
        C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important5 - Very important4 - Important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important1 - Unimportant
        C1P003: Complicated and non-comprehensive public procurement4 - Important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important3 - Moderately important
        C1P003: Fragmented and or complex ownership structure3 - Moderately important5 - Very important4 - Important1 - Unimportant3 - Moderately important4 - Important3 - Moderately important2 - Slightly important
        C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important4 - Important5 - Very important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant5 - Very important
        C1P003: Lack of internal capacities to support energy transition3 - Moderately important4 - Important1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant
        C1P003: Any other Administrative BARRIER5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P003: Any other Administrative BARRIER (if any)
        C1P004: Policy barriers
        C1P004: Lack of long-term and consistent energy plans and policies4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important3 - Moderately important5 - Very important
        C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important3 - Moderately important5 - Very important
        C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important2 - Slightly important
        C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P004: Any other Political BARRIER (if any)
        C1P005: Legal and Regulatory barriers
        C1P005: Inadequate regulations for new technologies4 - Important5 - Very important4 - Important1 - Unimportant1 - Unimportant4 - Important5 - Very important5 - Very important
        C1P005: Regulatory instability3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important5 - Very important
        C1P005: Non-effective regulations4 - Important2 - Slightly important3 - Moderately important1 - Unimportant4 - Important2 - Slightly important3 - Moderately important2 - Slightly important
        C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important3 - Moderately important
        C1P005: Building code and land-use planning hindering innovative technologies4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important
        C1P005: Insufficient or insecure financial incentives4 - Important5 - Very important3 - Moderately important3 - Moderately important2 - Slightly important3 - Moderately important4 - Important5 - Very important
        C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant
        C1P005: Shortage of proven and tested solutions and examples4 - Important2 - Slightly important1 - Unimportant2 - Slightly important4 - Important3 - Moderately important4 - Important
        C1P005: Any other Legal and Regulatory BARRIER4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER (if any)laws favouring big energy companies
        C1P006: Environmental barriers
        C1P006: Environmental barriers2 - Slightly important?
        C1P007: Technical barriers
        C1P007: Lack of skilled and trained personnel4 - Important5 - Very important4 - Important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important5 - Very important
        C1P007: Deficient planning3 - Moderately important5 - Very important2 - Slightly important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
        C1P007: Retrofitting work in dwellings in occupied state4 - Important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
        C1P007: Lack of well-defined process4 - Important4 - Important3 - Moderately important1 - Unimportant4 - Important2 - Slightly important3 - Moderately important4 - Important
        C1P007: Inaccuracy in energy modelling and simulation4 - Important5 - Very important4 - Important5 - Very important1 - Unimportant2 - Slightly important3 - Moderately important2 - Slightly important
        C1P007: Lack/cost of computational scalability4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant
        C1P007: Grid congestion, grid instability4 - Important5 - Very important4 - Important1 - Unimportant1 - Unimportant5 - Very important5 - Very important4 - Important
        C1P007: Negative effects of project intervention on the natural environment3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important
        C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Difficult definition of system boundaries3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important
        C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
        C1P007: Any other Thecnical BARRIER (if any)Energy management systems of different new technologies does not "talk together" (e.g. solar inverter, V2G inverter). This creates challenges.
        C1P008: Social and Cultural barriers
        C1P008: Inertia4 - Important4 - Important2 - Slightly important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important
        C1P008: Lack of values and interest in energy optimization measurements5 - Very important5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important4 - Important
        C1P008: Low acceptance of new projects and technologies5 - Very important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important2 - Slightly important
        C1P008: Difficulty of finding and engaging relevant actors5 - Very important5 - Very important2 - Slightly important4 - Important5 - Very important4 - Important1 - Unimportant5 - Very important
        C1P008: Lack of trust beyond social network4 - Important3 - Moderately important4 - Important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important
        C1P008: Rebound effect4 - Important4 - Important2 - Slightly important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
        C1P008: Hostile or passive attitude towards environmentalism5 - Very important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important
        C1P008: Exclusion of socially disadvantaged groups2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important
        C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important1 - Unimportant4 - Important1 - Unimportant5 - Very important3 - Moderately important4 - Important3 - Moderately important
        C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant2 - Slightly important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant3 - Moderately important
        C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Any other Social BARRIER (if any)
        C1P009: Information and Awareness barriers
        C1P009: Insufficient information on the part of potential users and consumers1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important
        C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important4 - Important
        C1P009: Lack of awareness among authorities2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant5 - Very important4 - Important3 - Moderately important
        C1P009: Information asymmetry causing power asymmetry of established actors1 - Unimportant3 - Moderately important2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important
        C1P009: High costs of design, material, construction, and installation5 - Very important4 - Important1 - Unimportant5 - Very important5 - Very important5 - Very important5 - Very important
        C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
        C1P009: Any other Information and Awareness BARRIER (if any)Different interests - Grid/energy stakeholders and building stakeholders
        C1P010: Financial barriers
        C1P010: Hidden costs5 - Very important2 - Slightly important1 - Unimportant4 - Important5 - Very important5 - Very important3 - Moderately important
        C1P010: Insufficient external financial support and funding for project activities5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important5 - Very important2 - Slightly important
        C1P010: Economic crisis4 - Important1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant5 - Very important
        C1P010: Risk and uncertainty5 - Very important3 - Moderately important2 - Slightly important5 - Very important5 - Very important5 - Very important5 - Very important
        C1P010: Lack of consolidated and tested business models5 - Very important3 - Moderately important4 - Important3 - Moderately important5 - Very important5 - Very important4 - Important
        C1P010: Limited access to capital and cost disincentives2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important4 - Important5 - Very important
        C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P010: Any other Financial BARRIER (if any)
        C1P011: Market barriers
        C1P011: Split incentives4 - Important5 - Very important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
        C1P011: Energy price distortion5 - Very important4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
        C1P011: Energy market concentration, gatekeeper actors (DSOs)5 - Very important4 - Important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important
        C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P011: Any other Market BARRIER (if any)
        C1P012: Stakeholders involved
        C1P012: Government/Public Authorities
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        • Design/demand aggregation
        • Planning/leading
        • Monitoring/operation/management
        • Planning/leading
        • Planning/leading,
        • Monitoring/operation/management
        C1P012: Research & Innovation
        • Planning/leading,
        • Design/demand aggregation,
        • Monitoring/operation/management
        • Planning/leading,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading
        • Monitoring/operation/management
        • Design/demand aggregation
        C1P012: Financial/Funding
        • Design/demand aggregation,
        • Construction/implementation
        • Construction/implementation
        • None
        • Construction/implementation
        • Construction/implementation
        C1P012: Analyst, ICT and Big Data
        • Design/demand aggregation,
        • Monitoring/operation/management
        • Monitoring/operation/management
        • Design/demand aggregation,
        • Monitoring/operation/management
        • None
        • Monitoring/operation/management
        • Monitoring/operation/management
        C1P012: Business process management
        • Planning/leading
        • Design/demand aggregation
        • Planning/leading,
        • Construction/implementation
        • None
        • Planning/leading
        • Design/demand aggregation,
        • Construction/implementation
        C1P012: Urban Services providers
        • Design/demand aggregation,
        • Monitoring/operation/management
        • Design/demand aggregation
        • Planning/leading,
        • Design/demand aggregation,
        • Monitoring/operation/management
        • None
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Real Estate developers
        • Construction/implementation
        • Construction/implementation
        • Planning/leading,
        • Construction/implementation
        • Design/demand aggregation
        • Planning/leading,
        • Monitoring/operation/management
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Design/Construction companies
        • Construction/implementation
        • Design/demand aggregation
        • Planning/leading,
        • Construction/implementation
        • None
        • Construction/implementation
        • Design/demand aggregation,
        • Construction/implementation
        C1P012: End‐users/Occupants/Energy Citizens
        • None
        • Monitoring/operation/management
        • None
        • Monitoring/operation/management
        • Monitoring/operation/management
        • Monitoring/operation/management
        C1P012: Social/Civil Society/NGOs
        • Planning/leading,
        • Design/demand aggregation
        • Design/demand aggregation
        • None
        • Monitoring/operation/management
        • None
        • None
        C1P012: Industry/SME/eCommerce
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Construction/implementation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • None
        • Construction/implementation
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Other
        C1P012: Other (if any)
        Summary

        Authors (framework concept)

        Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

        Contributors (to the content)

        Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

        Implemented by

        Boutik.pt: Filipe Martins, Jamal Khan
        Marek Suchánek (Czech Technical University in Prague)