Name | Project | Type | Compare |
---|---|---|---|
Tartu, Estonia | V2G-QUESTS | PED Relevant Case Study | Compare |
Utrecht, the Netherlands (District of Kanaleneiland) | V2G-QUESTS | PED Relevant Case Study | Compare |
Aveiro, Portugal | V2G-QUESTS | PED Relevant Case Study | Compare |
Győr Geothermal District Heating Project | PED Relevant Case Study | Compare | |
Jacobs Borchs Gate, Drammen | PED Relevant Case Study | Compare | |
Dietenbach, Freiburg im Breisgau | PED Relevant Case Study | Compare | |
SmartEnCity, Lecce | SmartEnCity – Towards Smart Zero CO2 Cities across Europe | PED Relevant Case Study | Compare |
STARDUST, Trento | STARDUST – Holistic and Integrated Urban Model for Smart Cities | PED Relevant Case Study / PED Lab | Compare |
Klimatkontrakt Hyllie, Malmö | PED Relevant Case Study | Compare | |
EnStadt:Pfaff, Kaiserslautern | PED Relevant Case Study / PED Lab | Compare | |
mySMARTlife, Helsinki | PED Relevant Case Study | Compare | |
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze | PED Relevant Case Study | Compare | |
Sinfonia, Bolzano | PED Relevant Case Study | Compare | |
Hunziker Areal, Zürich | PED Relevant Case Study | Compare | |
Hammarby Sjöstad 2.0, | PED Relevant Case Study | Compare | |
Sharing Cities, Milano | PED Relevant Case Study | Compare | |
District Heating Pozo Barredo, Mieres | PED Relevant Case Study | Compare | |
Cityfied (demo Linero), Lund | PED Relevant Case Study | Compare | |
Smart Otaniemi, Espoo | PED Relevant Case Study / PED Lab | Compare | |
Zukunftsquartier, Vienna | PED Case Study | Compare | |
Santa Chiara Open Lab, Trento | PED Case Study | Compare | |
Barrio La Pinada, Paterna | PED Case Study / PED Lab | Compare | |
Zero Village Bergen (ZVB) | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
Võru +CityxChange | PED Case Study | Compare | |
NTNU Campus within the Knowledge Axis, Trondheim | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
Furuset project, Oslo | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
Laser Valley – Land of Lights | PED Case Study | Compare | |
Ydalir project | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
NyBy – Ny Flyplass (New City – New Airport) | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
Fornebu, Bærum | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
Fleuraye west, Carquefou | PED Case Study | Compare | |
Smart Energy Åland | PED Case Study | Compare | |
Romania, Alba Iulia PED | ASCEND – Accelerate poSitive Clean ENergy Districts | PED Case Study | Compare |
Romania, Alba Iulia PED | InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts | PED Case Study | Compare |
Munich, Harthof district | PED Case Study | Compare | |
Lublin | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran | CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings | PED Relevant Case Study | Compare |
Bærum, Eiksveien 116 | CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings | PED Relevant Case Study | Compare |
Findhorn, the Park | InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts | PED Case Study | Compare |
Amsterdam, Buiksloterham PED | ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities | PED Case Study | Compare |
Schönbühel-Aggsbach, Schönbühel an der Donau | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Relevant Case Study | Compare |
Umeå, Ålidhem district | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study | Compare |
Aalborg East | PED Relevant Case Study / PED Lab | Compare | |
Ankara, Çamlık District | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study / PED Relevant Case Study | Compare |
Trenčín | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Luxembourg, Betzdorf | LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes | PED Relevant Case Study | Compare |
Vantaa, Aviapolis | NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts | PED Case Study / PED Relevant Case Study / PED Lab | Compare |
Vidin, Himik and Bononia | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Oslo, Verksbyen | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Compare |
Uden, Loopkantstraat | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Relevant Case Study | Compare |
Zaragoza, Actur | NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts | PED Relevant Case Study | Compare |
Aarhus, Brabrand | BIPED – Building Intelligent Positive Energy Districts | PED Case Study / PED Relevant Case Study / PED Lab | Compare |
Riga, Ķīpsala, RTU smart student city | ExPEDite – Enabling Positive Energy Districts through Digital Twins | PED Case Study | Compare |
Izmir, District of Karşıyaka | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study | Compare |
Istanbul, Ozyegin University Campus | LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes | PED Relevant Case Study | Compare |
Espoo, Kera | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study / PED Relevant Case Study | Compare |
Borlänge, Rymdgatan’s Residential Portfolio | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Relevant Case Study | Compare |
Freiburg, Waldsee | PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district | PED Case Study | Compare |
Innsbruck, Campagne-Areal | PED Relevant Case Study | Compare | |
Graz, Reininghausgründe | PED Case Study | Compare | |
Stor-Elvdal, Campus Evenstad | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Relevant Case Study | Compare |
Oulu, Kaukovainio | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Uncompare |
Halmstad, Fyllinge | PED Relevant Case Study | Compare | |
Lund, Brunnshög district | PED Case Study | Uncompare | |
Vienna, Am Kempelenpark | PED Case Study | Compare | |
Évora, Portugal | POCITYF – A POsitive Energy CITY Transformation Framework | PED Relevant Case Study / PED Lab | Compare |
Kladno, Sletiště (Sport Area), PED Winter Stadium | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Relevant Case Study | Compare |
Groningen, PED South | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Lab | Compare |
Groningen, PED North | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Lab | Compare |
Maia, Sobreiro Social Housing | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Lab | Compare |
Lubia (Soria), CEDER-CIEMAT | PED Lab | Uncompare | |
Tampere, Ilokkaanpuisto district | STARDUST – Holistic and Integrated Urban Model for Smart Cities | PED Relevant Case Study | Compare |
Leon, Former Sugar Factory district | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Istanbul, Kadikoy district, Caferaga | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Espoo, Leppävaara district, Sello center | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Compare |
Espoo, Espoonlahti district, Lippulaiva block | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Compare |
Salzburg, Gneis district | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Compare |
Barcelona, Santa Coloma de Gramenet | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Compare |
Tartu, City centre area | SmartEnCity – Towards Smart Zero CO2 Cities across Europe | PED Relevant Case Study / PED Lab | Compare |
Bologna, Pilastro-Roveri district | GRETA – GReen Energy Transition Actions | PED Relevant Case Study | Compare |
Barcelona, SEILAB & Energy SmartLab | PED Lab | Uncompare | |
Leipzig, Baumwollspinnerei district | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Uncompare |
Kifissia, Energy community | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Relevant Case Study |
Title | Kifissia, Energy community | Barcelona, SEILAB & Energy SmartLab | Leipzig, Baumwollspinnerei district | Lubia (Soria), CEDER-CIEMAT | Oulu, Kaukovainio | Lund, Brunnshög district |
---|---|---|---|---|---|---|
A1P001: Name of the PED case study / PED Lab | ||||||
A1P001: Name of the PED case study / PED Lab | Kifissia, Energy community | Barcelona, SEILAB & Energy SmartLab | Leipzig, Baumwollspinnerei district | Lubia (Soria), CEDER-CIEMAT | Oulu, Kaukovainio | Lund, Brunnshög district |
A1P002: Map / aerial view / photos / graphic details / leaflet | ||||||
A1P002: Map / aerial view / photos / graphic details / leaflet |
|
| ||||
A1P003: Categorisation of the PED site | ||||||
PED case study | no | no | yes | no | yes | yes |
PED relevant case study | yes | no | no | no | no | no |
PED Lab. | no | yes | no | yes | no | no |
A1P004: Targets of the PED case study / PED Lab | ||||||
Climate neutrality | no | no | yes | no | yes | yes |
Annual energy surplus | no | no | no | no | no | yes |
Energy community | yes | yes | no | no | no | yes |
Circularity | no | no | no | no | yes | yes |
Air quality and urban comfort | yes | no | yes | yes | no | yes |
Electrification | yes | yes | yes | no | yes | yes |
Net-zero energy cost | no | no | no | no | no | no |
Net-zero emission | no | yes | no | yes | no | yes |
Self-sufficiency (energy autonomous) | no | yes | no | yes | no | no |
Maximise self-sufficiency | no | no | no | no | no | no |
Other | no | yes | yes | no | no | yes |
Other (A1P004) | Green IT | Net-zero emission; Annual energy surplus | Holistic approach on city planning; Minimise car traffic - walkability; Local service; Climate neutral buildings 2030; | |||
A1P005: Phase of the PED case study / PED Lab | ||||||
A1P005: Project Phase of your case study/PED Lab | Planning Phase | In operation | Implementation Phase | Implementation Phase | In operation | In operation |
A1P006: Start Date | ||||||
A1P006: Start date | 01/2011 | 11/19 | 2015 | |||
A1P007: End Date | ||||||
A1P007: End date | 02/2013 | 12/23 | 2040 | |||
A1P008: Reference Project | ||||||
A1P008: Reference Project | ||||||
A1P009: Data availability | ||||||
A1P009: Data availability |
|
| ||||
A1P009: Other | GIS open dataset is under construction | |||||
A1P010: Sources | ||||||
Any publication, link to website, deliverable referring to the PED/PED Lab |
| |||||
A1P011: Geographic coordinates | ||||||
X Coordinate (longitude): | 23.814588 | 2.1 | 12.318458 | -2.508 | 25.517595084093507 | 13.232469400769599 |
Y Coordinate (latitude): | 38.077349 | 41.3 | 51.326492 | 41.603 | 64.99288098173132 | 55.71989792207193 |
A1P012: Country | ||||||
A1P012: Country | Greece | Spain | Germany | Spain | Finland | Sweden |
A1P013: City | ||||||
A1P013: City | Municipality of Kifissia | Barcelona and Tarragona | Leipzig | Lubia - Soria | Oulu | Lund |
A1P014: Climate Zone (Köppen Geiger classification) | ||||||
A1P014: Climate Zone (Köppen Geiger classification). | Csa | Csa | Dfb | Cfb | Dfc | Dfb |
A1P015: District boundary | ||||||
A1P015: District boundary | Virtual | Virtual | Functional | Geographic | Geographic | |
Other | The energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhood | Geographic | Regional (close to virtual) | |||
A1P016: Ownership of the case study/PED Lab | ||||||
A1P016: Ownership of the case study/PED Lab: | Public | Public | Mixed | Public | ||
A1P017: Ownership of the land / physical infrastructure | ||||||
A1P017: Ownership of the land / physical infrastructure: | Single Owner | Single Owner | Single Owner | Multiple Owners | ||
A1P018: Number of buildings in PED | ||||||
A1P018: Number of buildings in PED | 0 | 2 | 6 | 6 | 200 | |
A1P019: Conditioned space | ||||||
A1P019: Conditioned space [m²] | 17000 | 19700 | 1500000 | |||
A1P020: Total ground area | ||||||
A1P020: Total ground area [m²] | 30000 | 6400000 | 60000 | 1500000 | ||
A1P021: Floor area ratio: Conditioned space / total ground area | ||||||
A1P021: Floor area ratio: Conditioned space / total ground area | 0 | 0 | 1 | 0 | 0 | 1 |
A1P022: Financial schemes | ||||||
A1P022a: Financing - PRIVATE - Real estate | no | no | no | no | yes | yes |
A1P022a: Add the value in EUR if available [EUR] | 99999999 | |||||
A1P022b: Financing - PRIVATE - ESCO scheme | no | no | no | no | no | no |
A1P022b: Add the value in EUR if available [EUR] | ||||||
A1P022c: Financing - PRIVATE - Other | no | no | no | no | no | no |
A1P022c: Add the value in EUR if available [EUR] | ||||||
A1P022d: Financing - PUBLIC - EU structural funding | no | no | no | no | no | yes |
A1P022d: Add the value in EUR if available [EUR] | 1000000 | |||||
A1P022e: Financing - PUBLIC - National funding | no | no | no | no | no | yes |
A1P022e: Add the value in EUR if available [EUR] | 30000000 | |||||
A1P022f: Financing - PUBLIC - Regional funding | no | no | no | no | no | yes |
A1P022f: Add the value in EUR if available [EUR] | 30000000 | |||||
A1P022g: Financing - PUBLIC - Municipal funding | no | no | no | no | yes | yes |
A1P022g: Add the value in EUR if available [EUR] | 180000000 | |||||
A1P022h: Financing - PUBLIC - Other | no | no | no | no | no | no |
A1P022h: Add the value in EUR if available [EUR] | ||||||
A1P022i: Financing - RESEARCH FUNDING - EU | no | no | no | no | yes | yes |
A1P022i: Add the value in EUR if available [EUR] | 2000000 | |||||
A1P022j: Financing - RESEARCH FUNDING - National | no | no | no | yes | no | no |
A1P022j: Add the value in EUR if available [EUR] | ||||||
A1P022k: Financing - RESEARCH FUNDING - Local/regional | no | no | no | yes | no | no |
A1P022k: Add the value in EUR if available [EUR] | ||||||
A1P022l: Financing - RESEARCH FUNDING - Other | no | no | no | no | no | no |
A1P022l: Add the value in EUR if available [EUR] | ||||||
A1P022: Other | ||||||
A1P023: Economic Targets | ||||||
A1P023: Economic Targets |
|
|
|
| ||
A1P023: Other | Sustainable and replicable business models regarding renewable energy systems | Developing and demonstrating new solutions | World class sustainable living and research environments | |||
A1P024: More comments: | ||||||
A1P024: More comments: | Semi-Virtual Energy Integration Laboratory (SEILAB) The Energy Smart Lab is an infrastructure conceived as a flexible and versatile platform for innovative technological developments for both industry and competitive R+D projects. The areas of expertise of this laboratory pivot around the following technologies: – Power Electronics for the integration and control of the elements within a building or community: Renewable Energy Sources (RES), Energy Storage Systems and Electric Vehicles (EV) – ICT Platform for smart communications and energy management of systems, building, networks and communities. – Energy System Integration technologies for smart and flexible buildings and grids including RES and EV. The laboratory operation is based on the hardware emulation approach, which allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation. The laboratory is pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation. | The Centre for the Development of Renewable Energy (CEDER)is specialized in applied research, development and promotion of renewable energy. Among the facilities of this Centre, the urban laboratory CEDER-CIEMAT assess the performance of different configurations of energy networks at the district level. This PED-Lab infrastructure is an energy district that connects six office buildings with energy generation installations by means of two energy rings: electrical grid (in operation phase) and thermal network (in the implementation phase). The buildings of this PED Lab can act as energy demanders or suppliers depending on the climatic and operational conditions. The majority of these buildings are constructed with conventional technologies but some of them are implemented with efficient and sustainable measures. The thermal network is composed by two biomass boilers, 300 kW power each, and water tanks with 90 kWh of thermal storage. This network will shortly be expanded with a low temperature (90°C) and high temperature (150°-250°C) rings. The low-temperature ring is made up by two Stirling engine cogeneration boilers (one biomass gasification boiler and one gas boiler). The high-temperature ring has a thermal generator made up of Fresnel solar concentrators and an ORC cogeneration system fed directly from the solar concentrator. The high-temperature ring is interconnected with the low-temperature ring through an oil/water heat exchanger. This network has thermal storage systems in the modalities of: aquifers, boreholes, phase change materials, cold storage with geothermal exchange ground recovery and thermal storage at very low temperature with zeolites. The electrical grid incorporates different renewable generation technologies (50 kW wind turbine and eight different photovoltaic systems, a reversible hydraulic system), and engine generator of 100 kVA, electricity storages (batteries) and flexible loads. | ||||
A1P025: Estimated PED case study / PED LAB costs | ||||||
A1P025: Estimated PED case study / PED LAB costs [mil. EUR] | 5 | |||||
Contact person for general enquiries | ||||||
A1P026: Name | Artemis Giavasoglou, Kleopatra Kalampoka | Dr. Jaume Salom, Dra. Cristina Corchero | Simon Baum | Dr. Raquel Ramos | Samuli Rinne | Markus Paulsson |
A1P027: Organization | Municipality of Kifissia – SPARCS local team | IREC | CENERO Energy GmbH | Centre for the Development of Renewable Energy (CEDER) - Centre for Energy, Environment and Technology Research (CIEMAT) | City of Oulu | City of Lund |
A1P028: Affiliation | Municipality / Public Bodies | Research Center / University | Other | Research Center / University | Municipality / Public Bodies | Municipality / Public Bodies |
A1P028: Other | CENERO Energy GmbH | |||||
A1P029: Email | giavasoglou@kifissia.gr | Jsalom@irec.cat | sib@cenero.de | raquel.ramos@ciemat.es | samuli.rinne@ouka.fi | markus.paulsson@lund.se |
Contact person for other special topics | ||||||
A1P030: Name | Stavros Zapantis - vice mayor | Simon Baum | Dr. Oscar Seco | Samuli Rinne | Eva Dalman | |
A1P031: Email | stavros.zapantis@gmail.com | sib@cenero.de | oscar.seco@ciemat.es | samuli.rinne@ouka.fi | eva.dalman@lund.se | |
Pursuant to the General Data Protection Regulation | Yes | Yes | Yes | Yes | ||
A2P001: Fields of application | ||||||
A2P001: Fields of application |
|
|
|
|
|
|
A2P001: Other | Walkability and biking | |||||
A2P002: Tools/strategies/methods applied for each of the above-selected fields | ||||||
A2P002: Tools/strategies/methods applied for each of the above-selected fields | Energy SmartLab capacities - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. Energy SmartLab systems - SAFT Li-ion battery: maximum stored energy 20000 Wh, rated power 150 kW, rated discharge current 200 A, rated charge current 34 A, operating voltage 189 V – 227 V – 254 V, capacity 82 Ah. – Ultracapacitors: maximum stored energy 57 Wh, rated power 10 kW, rated current 20 A, peak current (<1s) 200 Apk, operating voltage 250 V – 500 V, capacity 1,65 F. – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah - 5 microgrid emulators (emulated power 5.5 kVA, max generation connected 10kVA, max consumption connected 10 kVA) - 1 grid emulator (Rated power: 200 kVA, Rated current per phase: 350 A, Rated current per neutral conductor: 35) | Energy efficiency: - Buildings energy retrofit. Energy production: - Biomass Boiler capacity: 0.6 MW. Annual production: 1.2 GWh - Solar thermal collectors: 70 kW, planned extended to: 0.47MW - Geotermal & Absorption Pumps: 100 kW - Share of renewables after extension: 100% (30% solar thermal and 70% biomass) - AOC 50kW wind turbine. Awaiting installation of a two-way AC-AC converter for subsequent connection to the grid - Bornay Inclin 3 kW wind turbine, connected to 24 Vdc batteries, to be connected to the grid by means of Xantrex inverter/charger - 9kW photovoltaic park (66PV panels, brand BP Solar,type BP5140,of 140W) connected to the grid by means of two INGECON SUN 5 inverters - 5kW photovoltaic pergola (24PV panels, brand Solon, type P200, of 210W) connected to the grid by means of one INGECON SUN 5 inverter - 8.28kW photovoltaic roof (36PV panels, Brand LDK, type LDK-230P-20), connected to the grid by means of one INGECONSUN 10 inverter - 12kW photovoltaic roof (80PV panels, brand Gamesa, type GS-1501), connected to the grid. - Reversible hydraulic system connected to a 60 kW electric generator and a pumping system. -Stirling engine with a heat lamp based on natural gas, a helium cool lamp, 10kWe maximum power delivered and global performance of approximately 33%. Energy flexibility: - Thermal storage systems: water tanks 90kW, aquifers, boreholes, phase change materials, cold storage with geothermal exchange ground recovery and thermal storage at very low temperature with zeolites. - Electrical storage systems: batteries (lead-acid and lithium-ion). - Flexible loads. Control systems and Digital technologies: - Full monitoring campaign. - Smart-meters installation to monitor consumption and suggest another energy behaviours. - Dynamic simulation tools to optimize the energy performance. Urban comfort and air quality: - Meteorological stations to monitor the climate evolution. - Microclimatic simulation tools to quantify the thermal behaviour. | Different kinds of waste heat streams are utilized by heat pumps. These are district heating return water (actually this is an indirect way to cool down the flue gas in the scrubber), ventilation exhaust air and sewage water. As a normal case, in ventilation also air-to-air heat exchanges are used. PV power is harvested also, in vertical and more horizontal panels. Buildings are well insulated to decrease the needed amount of heating energy in the first place. | LundaMaTs methodology for traffic and city planning. LundaEko - Lund's programme for ecological sustainability. Municipally owned land is sold to property developers on environmental conditions. | ||
A2P003: Application of ISO52000 | ||||||
A2P003: Application of ISO52000 | No | No | No | |||
A2P004: Appliances included in the calculation of the energy balance | ||||||
A2P004: Appliances included in the calculation of the energy balance | Yes | Yes | No | Yes | ||
A2P005: Mobility included in the calculation of the energy balance | ||||||
A2P005: Mobility included in the calculation of the energy balance | Yes | No | No | Yes | ||
A2P006: Description of how mobility is included (or not included) in the calculation | ||||||
A2P006: Description of how mobility is included (or not included) in the calculation | – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah | Not included. However, there is a charging place for a shared EV in one building. | Today electrically charged vehicles are included in the energy balance. In the future also other fuels should be included. | |||
A2P007: Annual energy demand in buildings / Thermal demand | ||||||
A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum] | 1.65 | 2.1 | 25 | |||
A2P008: Annual energy demand in buildings / Electric Demand | ||||||
A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum] | 0.2 | 30 | ||||
A2P009: Annual energy demand for e-mobility | ||||||
A2P009: Annual energy demand for e-mobility [GWh/annum] | 0 | |||||
A2P010: Annual energy demand for urban infrastructure | ||||||
A2P010: Annual energy demand for urban infrastructure [GWh/annum] | ||||||
A2P011: Annual renewable electricity production on-site during target year | ||||||
A2P011: PV | yes | yes | yes | yes | yes | yes |
A2P011: PV - specify production in GWh/annum [GWh/annum] | 0.1 | |||||
A2P011: Wind | no | no | no | yes | no | yes |
A2P011: Wind - specify production in GWh/annum [GWh/annum] | ||||||
A2P011: Hydro | no | no | no | yes | no | no |
A2P011: Hydro - specify production in GWh/annum [GWh/annum] | ||||||
A2P011: Biomass_el | no | no | no | yes | no | no |
A2P011: Biomass_el - specify production in GWh/annum [GWh/annum] | ||||||
A2P011: Biomass_peat_el | no | no | no | no | no | no |
A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum] | ||||||
A2P011: PVT_el | no | no | no | no | no | no |
A2P011: PVT_el - specify production in GWh/annum [GWh/annum] | ||||||
A2P011: Other | no | no | no | no | no | no |
A2P011: Other - specify production in GWh/annum [GWh/annum] | ||||||
A2P012: Annual renewable thermal production on-site during target year | ||||||
A2P012: Geothermal | no | no | no | yes | no | no |
A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum] | ||||||
A2P012: Solar Thermal | no | no | no | yes | no | no |
A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum] | ||||||
A2P012: Biomass_heat | no | no | no | yes | no | no |
A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum] | ||||||
A2P012: Waste heat+HP | no | no | no | yes | yes | yes |
A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum] | 2.2 | 200 | ||||
A2P012: Biomass_peat_heat | no | no | no | no | no | no |
A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum] | ||||||
A2P012: PVT_th | no | no | no | no | no | no |
A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum] | ||||||
A2P012: Biomass_firewood_th | no | no | no | yes | no | no |
A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum] | ||||||
A2P012: Other | no | no | no | no | no | no |
A2P012 - Other: Please specify production in GWh/annum [GWh/annum] | ||||||
A2P013: Renewable resources on-site - Additional notes | ||||||
A2P013: Renewable resources on-site - Additional notes | Heat is produced from DH return, refrigeration and exhaust air. The mentioned 2200 MWh/a includes HP el. consumption (about 1/6 of that) | |||||
A2P014: Annual energy use | ||||||
A2P014: Annual energy use [GWh/annum] | 2.421 | 2.3 | ||||
A2P015: Annual energy delivered | ||||||
A2P015: Annual energy delivered [GWh/annum] | ||||||
A2P016: Annual non-renewable electricity production on-site during target year | ||||||
A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum] | 0 | 0 | ||||
A2P017: Annual non-renewable thermal production on-site during target year | ||||||
A2P017: Gas | no | yes | no | no | no | no |
A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum] | ||||||
A2P017: Coal | no | no | no | no | no | no |
A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum] | ||||||
A2P017: Oil | no | no | no | no | no | no |
A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum] | ||||||
A2P017: Other | no | no | no | no | no | no |
A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum] | ||||||
A2P018: Annual renewable electricity imports from outside the boundary during target year | ||||||
A2P018: PV | no | no | no | no | yes | yes |
A2P018 - PV: specify production in GWh/annum if available [GWh/annum] | ||||||
A2P018: Wind | no | no | no | no | yes | yes |
A2P018 - Wind: specify production in GWh/annum if available [GWh/annum] | ||||||
A2P018: Hydro | no | no | no | no | yes | yes |
A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum] | ||||||
A2P018: Biomass_el | no | no | no | no | yes | yes |
A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum] | ||||||
A2P018: Biomass_peat_el | no | no | no | no | yes | no |
A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum] | ||||||
A2P018: PVT_el | no | no | no | no | no | no |
A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum] | ||||||
A2P018: Other | no | no | no | no | no | no |
A2P018 - Other: specify production in GWh/annum if available [GWh/annum] | ||||||
A2P019: Annual renewable thermal imports from outside the boundary during target year | ||||||
A2P019: Geothermal | no | no | no | no | no | no |
A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum] | ||||||
A2P019: Solar Thermal | no | no | no | no | no | no |
A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum] | ||||||
A2P019: Biomass_heat | no | no | no | no | yes | no |
A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum] | 0.7 | |||||
A2P019: Waste heat+HP | no | no | no | no | no | no |
A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum] | ||||||
A2P019: Biomass_peat_heat | no | no | no | no | no | no |
A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum] | ||||||
A2P019: PVT_th | no | no | no | no | no | no |
A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum] | ||||||
A2P019: Biomass_firewood_th | no | no | no | no | no | no |
A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum] | ||||||
A2P019: Other | no | no | no | no | no | no |
A2P019 Other: Please specify imports in GWh/annum [GWh/annum] | ||||||
A2P020: Share of RES on-site / RES outside the boundary | ||||||
A2P020: Share of RES on-site / RES outside the boundary | 0 | 0 | 0 | 0 | 3.2857142857143 | 0 |
A2P021: GHG-balance calculated for the PED | ||||||
A2P021: GHG-balance calculated for the PED [tCO2/annum] | 0 | |||||
A2P022: KPIs related to the PED case study / PED Lab | ||||||
A2P022: Safety & Security | ||||||
A2P022: Health | Encouraging a healthy lifestyle | |||||
A2P022: Education | ||||||
A2P022: Mobility | Modal Split, Fuel mix in mobility, Energy use for transportation, Access to public transport, Public infrastructure promoting low-carbon mobility, Number of public EV charging stations, Energy delivered for EV charging | Maximum 1/3 transport with car | ||||
A2P022: Energy | apply | Final energy consumption, Primary energy consumption, Energy imported to PED, Energy exported from PED, RES production, PED energy balance, Energy savings in the PED, GHG emissions, Reduction of emissions, Final energy consumption per capita, Primary energy consumption per capita, Primary energy sources (shares), Buildings connected to DH-network or renewable energy grid, GHG emissions per capita, System flexibility for energy players, RES storage usage, Peak load reduction | Local energy production 150% of energy need | |||
A2P022: Water | ||||||
A2P022: Economic development | Total investments, Payback time, Economic value of savings | |||||
A2P022: Housing and Community | Development of housing prices, Housing cost overburden rate, Citizen engagement/empowerment to climate conscious actions, Inhabitants in dense areas, Energy poverty | 50% rental apartments and 50% owner apartments | ||||
A2P022: Waste | Recycling rate | |||||
A2P022: Other | Smart Cities strategies, Quality of open data | |||||
A2P023: Technological Solutions / Innovations - Energy Generation | ||||||
A2P023: Photovoltaics | no | yes | no | yes | yes | yes |
A2P023: Solar thermal collectors | no | no | no | yes | no | yes |
A2P023: Wind Turbines | no | no | no | yes | no | yes |
A2P023: Geothermal energy system | no | no | no | yes | no | yes |
A2P023: Waste heat recovery | no | no | no | yes | yes | yes |
A2P023: Waste to energy | no | no | no | no | no | no |
A2P023: Polygeneration | no | no | no | yes | no | yes |
A2P023: Co-generation | no | no | no | yes | yes | no |
A2P023: Heat Pump | no | no | no | yes | yes | yes |
A2P023: Hydrogen | no | no | no | yes | no | yes |
A2P023: Hydropower plant | no | no | no | yes | no | no |
A2P023: Biomass | no | no | no | yes | yes | no |
A2P023: Biogas | no | no | no | no | no | no |
A2P023: Other | ||||||
A2P024: Technological Solutions / Innovations - Energy Flexibility | ||||||
A2P024: A2P024: Information and Communication Technologies (ICT) | no | yes | no | yes | yes | yes |
A2P024: Energy management system | no | yes | no | yes | yes | yes |
A2P024: Demand-side management | no | no | no | yes | no | yes |
A2P024: Smart electricity grid | no | yes | no | yes | no | yes |
A2P024: Thermal Storage | no | no | no | yes | yes | yes |
A2P024: Electric Storage | no | yes | no | yes | no | yes |
A2P024: District Heating and Cooling | no | no | no | yes | yes | yes |
A2P024: Smart metering and demand-responsive control systems | no | no | no | yes | no | yes |
A2P024: P2P – buildings | no | no | no | no | no | no |
A2P024: Other | ||||||
A2P025: Technological Solutions / Innovations - Energy Efficiency | ||||||
A2P025: Deep Retrofitting | no | no | no | yes | yes | no |
A2P025: Energy efficiency measures in historic buildings | no | no | no | no | no | no |
A2P025: High-performance new buildings | no | no | no | no | yes | yes |
A2P025: Smart Public infrastructure (e.g. smart lighting) | no | no | no | no | no | yes |
A2P025: Urban data platforms | no | no | no | no | yes | yes |
A2P025: Mobile applications for citizens | no | no | no | no | no | no |
A2P025: Building services (HVAC & Lighting) | no | yes | no | yes | yes | yes |
A2P025: Smart irrigation | no | no | no | no | no | no |
A2P025: Digital tracking for waste disposal | no | no | no | no | no | yes |
A2P025: Smart surveillance | no | no | no | no | no | no |
A2P025: Other | ||||||
A2P026: Technological Solutions / Innovations - Mobility | ||||||
A2P026: Efficiency of vehicles (public and/or private) | no | yes | no | no | yes | no |
A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances) | no | no | no | no | yes | yes |
A2P026: e-Mobility | no | no | no | no | yes | yes |
A2P026: Soft mobility infrastructures and last mile solutions | no | no | no | no | yes | yes |
A2P026: Car-free area | no | no | no | yes | no | yes |
A2P026: Other | ||||||
A2P027: Mobility strategies - Additional notes | ||||||
A2P027: Mobility strategies - Additional notes | Test-Concept for bidirectional charging. | Walkability | ||||
A2P028: Energy efficiency certificates | ||||||
A2P028: Energy efficiency certificates | Yes | Yes | Yes | |||
A2P028: If yes, please specify and/or enter notes | Energy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwelling | In Spain it is mandatory the Energy Performance Certificate in order to buy or rent a house or a dwelling | The obligatory buildijng energy classification | Miljöbyggnad silver/guld | ||
A2P029: Any other building / district certificates | ||||||
A2P029: Any other building / district certificates | No | No | No | |||
A2P029: If yes, please specify and/or enter notes | ||||||
A3P001: Relevant city /national strategy | ||||||
A3P001: Relevant city /national strategy |
|
|
|
|
| |
A3P002: Quantitative targets included in the city / national strategy | ||||||
A3P002: Quantitative targets included in the city / national strategy | - Testing the combination of renewable technologies at district level. - Optimization of the generation side based on the weather forecasting and demand side. - Optimization of the control system, connected to the central node, to design and perform virtual analyses based on the combination of all the systems and infrastructures. - Optimization of ICT systems. - Design and management of a virtual analysis - Optimization of efficient measures: building performance, user´s behaviour… - Combination of flexible storage systems to operate the global installation. | Carbon neutrality by 2035 | City strategy: Net climate neutrality 2030 | |||
A3P003: Strategies towards decarbonization of the gas grid | ||||||
A3P003: Strategies towards decarbonization of the gas grid |
|
| ||||
A3P003: Other | No gas grid in Brunnshög | |||||
A3P004: Identification of needs and priorities | ||||||
A3P004: Identification of needs and priorities | -Allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation -Pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation. | - Create a thermal energy storage tank to be used for air conditioning the buildings. - Some buildings need to be renovated both to increase the energy performance, the seismic behaviour and spaces liveability and comfort. - Optimizing the coupling between technologies. - Guarantee the flexibility to operate the renewable installations to operate in different phases and with different configurations. - CEDER is a public research center and needs to have connected any energy system to the same grid. - CEDER has an industrial develop area where some experimental thermal storage system could be tested. | Developing and demonstrating solutions for carbon neutrality | Local waste heat is utlized to a very large extent. More local electricity production is needed. Need to minimise the use of private cars. | ||
A3P005: Sustainable behaviour | ||||||
A3P005: Sustainable behaviour | -Improving the development of Net Zero Energy Buildings and Flexible Energy buildings. | - Minimize the building energy consumption while maintaining indoor comfort levels. - Onsite renewable production with flexible storage elements to fix demand side and generation side. - Flexible control solutions through digitalization systems. | E. g. visualizing energy and water consumption | Need to minimise the use of private cars. Need to provide efficient methods for sorce separated waste collection. | ||
A3P006: Economic strategies | ||||||
A3P006: Economic strategies |
|
|
|
|
| |
A3P006: Other | operational savings through efficiency measures | Attractivenes | ||||
A3P007: Social models | ||||||
A3P007: Social models |
|
|
|
|
| |
A3P007: Other | ||||||
A3P008: Integrated urban strategies | ||||||
A3P008: Integrated urban strategies |
|
|
| |||
A3P008: Other | ||||||
A3P009: Environmental strategies | ||||||
A3P009: Environmental strategies |
|
|
|
|
| |
A3P009: Other | Positive Energy Balance for the demo site | |||||
A3P010: Legal / Regulatory aspects | ||||||
A3P010: Legal / Regulatory aspects | - European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013. | - European Commission has legislated on Energy Community (Renewable energy directive - 2018/2001/EU and Common rules for the internal electricity market directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013. | The municipality cannot demand a specific energy solution to private property owners. It has to be voluntary and market based solutions. | |||
B1P001: PED/PED relevant concept definition | ||||||
B1P001: PED/PED relevant concept definition | The original idea is that the area produces at least as much it consumes. | Vision: The city as a power plant. The ultimate goal is that more energy is produced within the distric boundaries than is being used (heating, electricity & mobility). Energy efficient buildings, efficient mobility, reuse of residual heat and solar electricity are the main methods. | ||||
B1P002: Motivation behind PED/PED relevant project development | ||||||
B1P002: Motivation behind PED/PED relevant project development | Developing systems towards carbon neutrality. Also urban renewal. | The aim is to build a sustainable city with minimal climate impact and maximum quality of life. PED is an important step to acheive the aims of a very ambitious city development. | ||||
B1P003: Environment of the case study area | ||||||
B2P003: Environment of the case study area | Rural | Suburban area | Urban area | |||
B1P004: Type of district | ||||||
B2P004: Type of district |
|
| ||||
B1P005: Case Study Context | ||||||
B1P005: Case Study Context |
|
|
| |||
B1P006: Year of construction | ||||||
B1P006: Year of construction | ||||||
B1P007: District population before intervention - Residential | ||||||
B1P007: District population before intervention - Residential | 3500 | 0 | ||||
B1P008: District population after intervention - Residential | ||||||
B1P008: District population after intervention - Residential | 3500 | 18000 | ||||
B1P009: District population before intervention - Non-residential | ||||||
B1P009: District population before intervention - Non-residential | 2000 | |||||
B1P010: District population after intervention - Non-residential | ||||||
B1P010: District population after intervention - Non-residential | 22000 | |||||
B1P011: Population density before intervention | ||||||
B1P011: Population density before intervention | 0 | 0 | 0 | 0 | 0 | 0 |
B1P012: Population density after intervention | ||||||
B1P012: Population density after intervention | 0 | 0 | 0 | 0 | 0.058333333333333 | 0.026666666666667 |
B1P013: Building and Land Use before intervention | ||||||
B1P013: Residential | no | no | no | no | yes | no |
B1P013 - Residential: Specify the sqm [m²] | ||||||
B1P013: Office | no | no | no | no | no | yes |
B1P013 - Office: Specify the sqm [m²] | 60000 | |||||
B1P013: Industry and Utility | no | no | no | no | no | no |
B1P013 - Industry and Utility: Specify the sqm [m²] | ||||||
B1P013: Commercial | no | no | no | no | yes | no |
B1P013 - Commercial: Specify the sqm [m²] | ||||||
B1P013: Institutional | no | no | no | no | no | no |
B1P013 - Institutional: Specify the sqm [m²] | ||||||
B1P013: Natural areas | no | no | no | no | yes | yes |
B1P013 - Natural areas: Specify the sqm [m²] | 2000000 | |||||
B1P013: Recreational | no | no | no | no | yes | no |
B1P013 - Recreational: Specify the sqm [m²] | ||||||
B1P013: Dismissed areas | no | no | no | no | no | no |
B1P013 - Dismissed areas: Specify the sqm [m²] | ||||||
B1P013: Other | no | no | no | no | no | yes |
B1P013 - Other: Specify the sqm [m²] | Outdoor parking: 100000 | |||||
B1P014: Building and Land Use after intervention | ||||||
B1P014: Residential | no | no | no | no | yes | yes |
B1P014 - Residential: Specify the sqm [m²] | 600000 | |||||
B1P014: Office | no | no | no | no | no | yes |
B1P014 - Office: Specify the sqm [m²] | 650000 | |||||
B1P014: Industry and Utility | no | no | no | no | no | no |
B1P014 - Industry and Utility: Specify the sqm [m²] | ||||||
B1P014: Commercial | no | no | no | no | yes | no |
B1P014 - Commercial: Specify the sqm [m²] | ||||||
B1P014: Institutional | no | no | no | no | no | yes |
B1P014 - Institutional: Specify the sqm [m²] | 50000 | |||||
B1P014: Natural areas | no | no | no | no | yes | no |
B1P014 - Natural areas: Specify the sqm [m²] | ||||||
B1P014: Recreational | no | no | no | no | yes | yes |
B1P014 - Recreational: Specify the sqm [m²] | 400000 | |||||
B1P014: Dismissed areas | no | no | no | no | no | no |
B1P014 - Dismissed areas: Specify the sqm [m²] | ||||||
B1P014: Other | no | no | no | no | no | no |
B1P014 - Other: Specify the sqm [m²] | ||||||
B2P001: PED Lab concept definition | ||||||
B2P001: PED Lab concept definition | addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation | |||||
B2P002: Installation life time | ||||||
B2P002: Installation life time | CEDER will follow an integrative approach including technology for a permanent installation. | |||||
B2P003: Scale of action | ||||||
B2P003: Scale | Virtual | District | ||||
B2P004: Operator of the installation | ||||||
B2P004: Operator of the installation | IREC | CIEMAT. Data detail in contact: mariano.martin@ciemat.es and oscar.izquiedo@ciemat.es | ||||
B2P005: Replication framework: Applied strategy to reuse and recycling the materials | ||||||
B2P005: Replication framework: Applied strategy to reuse and recycling the materials | ||||||
B2P006: Circular Economy Approach | ||||||
B2P006: Do you apply any strategy to reuse and recycling the materials? | No | No | ||||
B2P006: Other | ||||||
B2P007: Motivation for developing the PED Lab | ||||||
B2P007: Motivation for developing the PED Lab |
|
| ||||
B2P007: Other | ||||||
B2P008: Lead partner that manages the PED Lab | ||||||
B2P008: Lead partner that manages the PED Lab | Research center/University | Research center/University | ||||
B2P008: Other | ||||||
B2P009: Collaborative partners that participate in the PED Lab | ||||||
B2P009: Collaborative partners that participate in the PED Lab |
| |||||
B2P009: Other | ||||||
B2P010: Synergies between the fields of activities | ||||||
B2P010: Synergies between the fields of activities | The operation of the laboratory with all the components of the energy networks requires a collaborative work between various departments and entities. On the one hand, it is necessary to optimize the operation of renewable systems based on the weather conditions, forecast of the demand side and the flexibility of the generation systems. On the other hand, the optimization of the energy demands through a more sustainable behaviour of both the building and the users want to be acquired. For this, it is necessary to take into account technical aspects but also market, comfort and encourage the user participation, creating a decision-making matrix that allows optimizing the operation of the global system. | |||||
B2P011: Available facilities to test urban configurations in PED Lab | ||||||
B2P011: Available facilities to test urban configurations in PED Lab |
|
| ||||
B2P011: Other | ||||||
B2P012: Incubation capacities of PED Lab | ||||||
B2P012: Incubation capacities of PED Lab |
|
| ||||
B2P013: Availability of the facilities for external people | ||||||
B2P013: Availability of the facilities for external people | ||||||
B2P014: Monitoring measures | ||||||
B2P014: Monitoring measures |
|
| ||||
B2P015: Key Performance indicators | ||||||
B2P015: Key Performance indicators |
|
| ||||
B2P016: Execution of operations | ||||||
B2P016: Execution of operations | ||||||
B2P017: Capacities | ||||||
B2P017: Capacities | - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. | - Innovative grid configuration to connect bio boilers and solar thermal on buildings. - Environmental & air quality evaluation. - Testing and evaluation of high efficient heating & cooling systems: Gas, biomass, geothermal and absorption H&C pumps … - Definition and implementation of the different regulation modes for the global system. Using the data from the research focused-partners, several regulation modes for the DH network could be defined and implemented in order to obtain an optimal operation of the network. - Innovation in MPC control to enable harvesting 100% renewables in the most efficient way. - Physical integration of the technologies with the existing facilities at the living lab. - Connection between the solar thermal collectors to achieve the lowest heat losses, providing the possibility to use the grid as high or low temperature DH, according to the demand schedule of the buildings. - Test the bio-boiler of the last generation and ultra-low emissions biomass condensing boiler in order to increase efficiency and reduce GHG and air pollutant emissions of the DH plant. - Control of the supply temperature of the DH grid to enable 100% renewables harvesting in the most efficient way. - Research of the incidence of a normal building or a bioclimatic building in the DH grid demand. - Methodologies for concept validation: Definition of the minimum requirements to verify the suitability of the solutions proposed. - Tests campaign: Experimental operation and characterization in a relevant environment, to exploit the technologies at their best and test different demand profiles, different configuration and loads, with real time monitoring and continuous commissioning to control the performance of the technology. - Validation and upgrading recommendation for the DH&C at district level. - Evaluation of innovation actions for potential energy interventions with demand response in buildings. - The complete available infrastructure (MV and LV electric systems, transformation hubs, end consumption, generation sources, communication elements, etc.) belongs to CEDER-CIEMAT, making this the perfect scenario to test and try the performance of “Smart Grid” and “Microgrid” projects. - The type of electric grid, its voltage levels (MV or LV), its variety of real loads (different buildings with different profiles: industrial buildings, offices and so on) and its sources of renewable generation and storage, mean it is ideal for intermediate tests between a small-scale laboratory and final deployment of the real product. | ||||
B2P018: Relations with stakeholders | ||||||
B2P018: Relations with stakeholders | CEDER - CIEMAT is a public research body assigned to the Ministry of Science and Innovation under the General Secretariat for Research, focusing on energy and environment. To develop this lab CIEMAT has relations with private renewable companies, research centers and academia institutions. | |||||
B2P019: Available tools | ||||||
B2P019: Available tools |
|
| ||||
B2P019: Available tools | ||||||
B2P020: External accessibility | ||||||
B2P020: External accessibility | CIEMAT is a public body, so it´s open to any institution according the actual regulation and agreements. | |||||
C1P001: Unlocking Factors | ||||||
C1P001: Recent technological improvements for on-site RES production | 5 - Very important | 1 - Unimportant | 2 - Slightly important | 5 - Very important | 5 - Very important | |
C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock | 5 - Very important | 1 - Unimportant | 5 - Very important | 2 - Slightly important | 5 - Very important | |
C1P001: Energy Communities, P2P, Prosumers concepts | 5 - Very important | 3 - Moderately important | 5 - Very important | 2 - Slightly important | 5 - Very important | |
C1P001: Storage systems and E-mobility market penetration | 5 - Very important | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important | ||
C1P001: Decreasing costs of innovative materials | 4 - Important | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 4 - Important | |
C1P001: Financial mechanisms to reduce costs and maximize benefits | 4 - Important | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | |
C1P001: The ability to predict Multiple Benefits | 4 - Important | 3 - Moderately important | 4 - Important | 2 - Slightly important | ||
C1P001: The ability to predict the distribution of benefits and impacts | 4 - Important | 4 - Important | 2 - Slightly important | 3 - Moderately important | ||
C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up) | 5 - Very important | 1 - Unimportant | 4 - Important | 3 - Moderately important | 4 - Important | |
C1P001: Social acceptance (top-down) | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 5 - Very important | 3 - Moderately important | |
C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.) | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 2 - Slightly important | 5 - Very important | |
C1P001: Presence of integrated urban strategies and plans | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 4 - Important | 3 - Moderately important | |
C1P001: Multidisciplinary approaches available for systemic integration | 3 - Moderately important | 4 - Important | 2 - Slightly important | 4 - Important | 5 - Very important | |
C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects | 4 - Important | 5 - Very important | 5 - Very important | 3 - Moderately important | 3 - Moderately important | |
C1P001: Availability of RES on site (Local RES) | 4 - Important | 5 - Very important | 4 - Important | 5 - Very important | ||
C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders | 4 - Important | 5 - Very important | 3 - Moderately important | 4 - Important | 2 - Slightly important | |
C1P001: Any other UNLOCKING FACTORS | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant | ||
C1P001: Any other UNLOCKING FACTORS (if any) | ||||||
C1P002: Driving Factors | ||||||
C1P002: Climate Change adaptation need | 4 - Important | 4 - Important | 4 - Important | 1 - Unimportant | 5 - Very important | |
C1P002: Climate Change mitigation need (local RES production and efficiency) | 5 - Very important | 4 - Important | 5 - Very important | 5 - Very important | 5 - Very important | |
C1P002: Rapid urbanization trend and need of urban expansions | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | |
C1P002: Urban re-development of existing built environment | 3 - Moderately important | 4 - Important | 5 - Very important | 5 - Very important | 5 - Very important | |
C1P002: Economic growth need | 2 - Slightly important | 4 - Important | 3 - Moderately important | 2 - Slightly important | 4 - Important | |
C1P002: Improved local environmental quality (air, noise, aesthetics, etc.) | 3 - Moderately important | 4 - Important | 4 - Important | 3 - Moderately important | 5 - Very important | |
C1P002: Territorial and market attractiveness | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important | 5 - Very important | 5 - Very important | |
C1P002: Energy autonomy/independence | 5 - Very important | 5 - Very important | 4 - Important | 3 - Moderately important | 1 - Unimportant | |
C1P002: Any other DRIVING FACTOR | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | ||
C1P002: Any other DRIVING FACTOR (if any) | ||||||
C1P003: Administrative barriers | ||||||
C1P003: Difficulty in the coordination of high number of partners and authorities | 4 - Important | 4 - Important | 4 - Important | 2 - Slightly important | 5 - Very important | |
C1P003: Lack of good cooperation and acceptance among partners | 3 - Moderately important | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant | 5 - Very important | |
C1P003: Lack of public participation | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | |
C1P003: Lack of institutions/mechanisms to disseminate information | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | 2 - Slightly important | 3 - Moderately important | |
C1P003:Long and complex procedures for authorization of project activities | 5 - Very important | 5 - Very important | 5 - Very important | 3 - Moderately important | 4 - Important | |
C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy | 4 - Important | 5 - Very important | 4 - Important | 5 - Very important | 1 - Unimportant | |
C1P003: Complicated and non-comprehensive public procurement | 4 - Important | 3 - Moderately important | 4 - Important | 2 - Slightly important | 3 - Moderately important | |
C1P003: Fragmented and or complex ownership structure | 3 - Moderately important | 5 - Very important | 5 - Very important | 2 - Slightly important | 2 - Slightly important | |
C1P003: City administration & cross-sectoral attitude/approaches (silos) | 3 - Moderately important | 4 - Important | 5 - Very important | 2 - Slightly important | 5 - Very important | |
C1P003: Lack of internal capacities to support energy transition | 3 - Moderately important | 4 - Important | 4 - Important | 2 - Slightly important | 1 - Unimportant | |
C1P003: Any other Administrative BARRIER | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | ||
C1P003: Any other Administrative BARRIER (if any) | ||||||
C1P004: Policy barriers | ||||||
C1P004: Lack of long-term and consistent energy plans and policies | 4 - Important | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 5 - Very important | |
C1P004: Lacking or fragmented local political commitment and support on the long term | 4 - Important | 1 - Unimportant | 2 - Slightly important | 3 - Moderately important | 5 - Very important | |
C1P004: Lack of Cooperation & support between national-regional-local entities | 3 - Moderately important | 2 - Slightly important | 3 - Moderately important | 3 - Moderately important | 2 - Slightly important | |
C1P004: Any other Political BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | ||
C1P004: Any other Political BARRIER (if any) | ||||||
C1P005: Legal and Regulatory barriers | ||||||
C1P005: Inadequate regulations for new technologies | 4 - Important | 5 - Very important | 4 - Important | 3 - Moderately important | 5 - Very important | |
C1P005: Regulatory instability | 3 - Moderately important | 2 - Slightly important | 3 - Moderately important | 2 - Slightly important | 5 - Very important | |
C1P005: Non-effective regulations | 4 - Important | 2 - Slightly important | 4 - Important | 2 - Slightly important | 2 - Slightly important | |
C1P005: Unfavorable local regulations for innovative technologies | 3 - Moderately important | 4 - Important | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important | |
C1P005: Building code and land-use planning hindering innovative technologies | 4 - Important | 3 - Moderately important | 2 - Slightly important | 2 - Slightly important | 3 - Moderately important | |
C1P005: Insufficient or insecure financial incentives | 4 - Important | 5 - Very important | 3 - Moderately important | 2 - Slightly important | 5 - Very important | |
C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation | 4 - Important | 1 - Unimportant | 4 - Important | 4 - Important | 1 - Unimportant | |
C1P005: Shortage of proven and tested solutions and examples | 4 - Important | 2 - Slightly important | 2 - Slightly important | 4 - Important | ||
C1P005: Any other Legal and Regulatory BARRIER | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | ||
C1P005: Any other Legal and Regulatory BARRIER (if any) | ||||||
C1P006: Environmental barriers | ||||||
C1P006: Environmental barriers | 3 - Moderately important | ? | ||||
C1P007: Technical barriers | ||||||
C1P007: Lack of skilled and trained personnel | 4 - Important | 5 - Very important | 1 - Unimportant | 2 - Slightly important | 5 - Very important | |
C1P007: Deficient planning | 3 - Moderately important | 5 - Very important | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important | |
C1P007: Retrofitting work in dwellings in occupied state | 4 - Important | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | |
C1P007: Lack of well-defined process | 4 - Important | 4 - Important | 2 - Slightly important | 1 - Unimportant | 4 - Important | |
C1P007: Inaccuracy in energy modelling and simulation | 4 - Important | 5 - Very important | 2 - Slightly important | 3 - Moderately important | 2 - Slightly important | |
C1P007: Lack/cost of computational scalability | 4 - Important | 4 - Important | 5 - Very important | 1 - Unimportant | 1 - Unimportant | |
C1P007: Grid congestion, grid instability | 4 - Important | 5 - Very important | 5 - Very important | 1 - Unimportant | 4 - Important | |
C1P007: Negative effects of project intervention on the natural environment | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 5 - Very important | |
C1P007: Energy retrofitting work in dense and/or historical urban environment | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P007: Difficult definition of system boundaries | 3 - Moderately important | 1 - Unimportant | 2 - Slightly important | 5 - Very important | 2 - Slightly important | |
C1P007: Any other Thecnical BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | ||
C1P007: Any other Thecnical BARRIER (if any) | ||||||
C1P008: Social and Cultural barriers | ||||||
C1P008: Inertia | 4 - Important | 4 - Important | 2 - Slightly important | 2 - Slightly important | 3 - Moderately important | |
C1P008: Lack of values and interest in energy optimization measurements | 5 - Very important | 5 - Very important | 2 - Slightly important | 1 - Unimportant | 4 - Important | |
C1P008: Low acceptance of new projects and technologies | 5 - Very important | 5 - Very important | 2 - Slightly important | 2 - Slightly important | 2 - Slightly important | |
C1P008: Difficulty of finding and engaging relevant actors | 5 - Very important | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 5 - Very important | |
C1P008: Lack of trust beyond social network | 4 - Important | 3 - Moderately important | 4 - Important | 1 - Unimportant | 3 - Moderately important | |
C1P008: Rebound effect | 4 - Important | 4 - Important | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | |
C1P008: Hostile or passive attitude towards environmentalism | 5 - Very important | 5 - Very important | 5 - Very important | 2 - Slightly important | 4 - Important | |
C1P008: Exclusion of socially disadvantaged groups | 2 - Slightly important | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant | 4 - Important | |
C1P008: Non-energy issues are more important and urgent for actors | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | |
C1P008: Hostile or passive attitude towards energy collaboration | 1 - Unimportant | 5 - Very important | 2 - Slightly important | 3 - Moderately important | ||
C1P008: Any other Social BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | ||
C1P008: Any other Social BARRIER (if any) | ||||||
C1P009: Information and Awareness barriers | ||||||
C1P009: Insufficient information on the part of potential users and consumers | 1 - Unimportant | 2 - Slightly important | 2 - Slightly important | 4 - Important | ||
C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts | 5 - Very important | 5 - Very important | 2 - Slightly important | 4 - Important | ||
C1P009: Lack of awareness among authorities | 2 - Slightly important | 4 - Important | 1 - Unimportant | 3 - Moderately important | ||
C1P009: Information asymmetry causing power asymmetry of established actors | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant | 2 - Slightly important | ||
C1P009: High costs of design, material, construction, and installation | 5 - Very important | 4 - Important | 3 - Moderately important | 5 - Very important | ||
C1P009: Any other Information and Awareness BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | ||
C1P009: Any other Information and Awareness BARRIER (if any) | ||||||
C1P010: Financial barriers | ||||||
C1P010: Hidden costs | 5 - Very important | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important | ||
C1P010: Insufficient external financial support and funding for project activities | 5 - Very important | 5 - Very important | 2 - Slightly important | 2 - Slightly important | ||
C1P010: Economic crisis | 4 - Important | 3 - Moderately important | 1 - Unimportant | 5 - Very important | ||
C1P010: Risk and uncertainty | 5 - Very important | 2 - Slightly important | 3 - Moderately important | 5 - Very important | ||
C1P010: Lack of consolidated and tested business models | 5 - Very important | 2 - Slightly important | 3 - Moderately important | 4 - Important | ||
C1P010: Limited access to capital and cost disincentives | 5 - Very important | 2 - Slightly important | 5 - Very important | |||
C1P010: Any other Financial BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | ||
C1P010: Any other Financial BARRIER (if any) | ||||||
C1P011: Market barriers | ||||||
C1P011: Split incentives | 4 - Important | 5 - Very important | 2 - Slightly important | 3 - Moderately important | ||
C1P011: Energy price distortion | 5 - Very important | 5 - Very important | 2 - Slightly important | 3 - Moderately important | ||
C1P011: Energy market concentration, gatekeeper actors (DSOs) | 5 - Very important | 2 - Slightly important | 1 - Unimportant | 2 - Slightly important | ||
C1P011: Any other Market BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | ||
C1P011: Any other Market BARRIER (if any) | ||||||
C1P012: Stakeholders involved | ||||||
C1P012: Government/Public Authorities |
|
|
| |||
C1P012: Research & Innovation |
|
|
| |||
C1P012: Financial/Funding |
|
|
| |||
C1P012: Analyst, ICT and Big Data |
|
|
| |||
C1P012: Business process management |
|
|
| |||
C1P012: Urban Services providers |
|
|
| |||
C1P012: Real Estate developers |
|
|
| |||
C1P012: Design/Construction companies |
|
|
| |||
C1P012: End‐users/Occupants/Energy Citizens |
|
|
| |||
C1P012: Social/Civil Society/NGOs |
|
|
| |||
C1P012: Industry/SME/eCommerce |
|
|
| |||
C1P012: Other | ||||||
C1P012: Other (if any) | ||||||
Summary |
Authors (framework concept)
Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)
Contributors (to the content)
Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)
Implemented by
Boutik.pt: Filipe Martins, Jamal Khan
Marek Suchánek (Czech Technical University in Prague)