Filters:
NameProjectTypeCompare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Uncompare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Uncompare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Uncompare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Uncompare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Uncompare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Leipzig, Baumwollspinnerei district
Stor-Elvdal, Campus Evenstad
Lubia (Soria), CEDER-CIEMAT
Leon, Former Sugar Factory district
Halmstad, Fyllinge
Borlänge, Rymdgatan’s Residential Portfolio
Graz, Reininghausgründe
Barcelona, SEILAB & Energy SmartLab
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityLeipzig, Baumwollspinnerei districtStor-Elvdal, Campus EvenstadLubia (Soria), CEDER-CIEMATLeon, Former Sugar Factory districtHalmstad, FyllingeBorlänge, Rymdgatan’s Residential PortfolioGraz, ReininghausgründeBarcelona, SEILAB & Energy SmartLab
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesnonoyesnonoyesno
PED relevant case studyyesnoyesnonoyesyesnono
PED Lab.nononoyesnonononoyes
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesyesnononoyesyesno
Annual energy surplusnonoyesnoyesnoyesnono
Energy communityyesnonononoyesyesnoyes
Circularitynonononononononono
Air quality and urban comfortyesyesnoyesnonononono
Electrificationyesyesnonononoyesnoyes
Net-zero energy costnonononononononono
Net-zero emissionnononoyesnonononoyes
Self-sufficiency (energy autonomous)nononoyesnonononoyes
Maximise self-sufficiencynonononoyesnoyesnono
Othernoyesyesnononononoyes
Other (A1P004)Net-zero emission; Annual energy surplusEnergy-flexibilityGreen IT
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhaseImplementation PhaseIn operationImplementation PhasePlanning PhasePlanning PhasePlanning PhaseImplementation PhaseIn operation
A1P006: Start Date
A1P006: Start date01/1311/1912/1801/21201901/2011
A1P007: End Date
A1P007: End date12/2412/2312/2301/30202502/2013
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Meteorological open data
  • General statistical datasets
  • General statistical datasets
  • Open data city platform – different dashboards
  • GIS open datasets
  • General statistical datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
      • http://www.ceder.es/redes-inteligentes,
      • O. Izquierdo-Monge, Paula Peña-Carro et al. Conversion of a network section with loads, storage systems and renewable generation sources into a smart microgrid. Appl. Sci. 2021, 11(11), 5012. https://doi.org/10.3390/app11115012,
      • O. Izquierdo-Monge, Paula Peña-Carro et al. A Methodology for the Conversion of a Network Section with Generation Sources, Storage and Loads into an Electrical Microgrid Based on Raspberry Pi and Home Assistant. ICSC-Cities 2020, CCIS 1359 proceedings. Springer. https:// doi.org/10.1007/978-3-030-69136-3_1
      •  https://makingcity.eu/wp-content/uploads/2021/12/MakingCity_D4_3_Analysis_of_FWC_candidate_areas_to_become_a_PED_Final.pdf.
          • E. Rainer, H. Schnitzer, T. Mach, T. Wieland, M. Reiter, L. Fickert, E. Schmautzer, A. Passer, H. Oblak, H. Kreiner, R. Lazar, M. Duschek, et al. (2015): Rahmenplan Energy City Graz-Reininghaus – Subprojekt 2 des Leitprojektes „ECR Energy City Graz – Reininghaus Online: Rahmenplan Energy City Graz-Reininghaus - Haus der Zukunft (nachhaltigwirtschaften.at),
          • H.Schnitzer et al. (2016): Arbeiten und Wohnen in der Smart City Reininghaus, Online: Arbeiten und Wohnen in Graz Reininghaus - Smartcities
          A1P011: Geographic coordinates
          X Coordinate (longitude):23.81458812.31845811.078770773531746-2.508-5.58479512.9205415.39449515.4074402.1
          Y Coordinate (latitude):38.07734951.32649261.4260442039911241.60342.59339156.6519460.48660947.060741.3
          A1P012: Country
          A1P012: CountryGreeceGermanyNorwaySpainSpainSwedenSwedenAustriaSpain
          A1P013: City
          A1P013: CityMunicipality of KifissiaLeipzigEvenstad, Stor-Elvdal municipalityLubia - SoriaLeonHalmstadBorlängeGrazBarcelona and Tarragona
          A1P014: Climate Zone (Köppen Geiger classification)
          A1P014: Climate Zone (Köppen Geiger classification).CsaDfbDwcCfbCsbDwbDsbDfbCsa
          A1P015: District boundary
          A1P015: District boundaryVirtualFunctionalGeographicGeographicGeographicGeographicGeographicGeographicVirtual
          OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhoodGeographic
          A1P016: Ownership of the case study/PED Lab
          A1P016: Ownership of the case study/PED Lab:PublicPublicMixedMixedMixedMixedPublic
          A1P017: Ownership of the land / physical infrastructure
          A1P017: Ownership of the land / physical infrastructure:Single OwnerSingle OwnerMultiple OwnersMultiple OwnersSingle OwnerMultiple OwnersSingle Owner
          A1P018: Number of buildings in PED
          A1P018: Number of buildings in PED222621250101000
          A1P019: Conditioned space
          A1P019: Conditioned space [m²]170001000016.069003700
          A1P020: Total ground area
          A1P020: Total ground area [m²]30000640000073.1456999451000000
          A1P021: Floor area ratio: Conditioned space / total ground area
          A1P021: Floor area ratio: Conditioned space / total ground area010000000
          A1P022: Financial schemes
          A1P022a: Financing - PRIVATE - Real estatenononononoyesnoyesno
          A1P022a: Add the value in EUR if available [EUR]
          A1P022b: Financing - PRIVATE - ESCO schemenonononononononono
          A1P022b: Add the value in EUR if available [EUR]
          A1P022c: Financing - PRIVATE - Othernonononononononono
          A1P022c: Add the value in EUR if available [EUR]
          A1P022d: Financing - PUBLIC - EU structural fundingnonononononononono
          A1P022d: Add the value in EUR if available [EUR]
          A1P022e: Financing - PUBLIC - National fundingnonoyesnonononoyesno
          A1P022e: Add the value in EUR if available [EUR]
          A1P022f: Financing - PUBLIC - Regional fundingnonononononononono
          A1P022f: Add the value in EUR if available [EUR]
          A1P022g: Financing - PUBLIC - Municipal fundingnononononononoyesno
          A1P022g: Add the value in EUR if available [EUR]
          A1P022h: Financing - PUBLIC - Othernonononononononono
          A1P022h: Add the value in EUR if available [EUR]
          A1P022i: Financing - RESEARCH FUNDING - EUnononononoyesnonono
          A1P022i: Add the value in EUR if available [EUR]
          A1P022j: Financing - RESEARCH FUNDING - Nationalnonoyesyesnonononono
          A1P022j: Add the value in EUR if available [EUR]
          A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononoyesnonononono
          A1P022k: Add the value in EUR if available [EUR]
          A1P022l: Financing - RESEARCH FUNDING - Othernonononononononono
          A1P022l: Add the value in EUR if available [EUR]
          A1P022: Other
          A1P023: Economic Targets
          A1P023: Economic Targets
          • Boosting local businesses,
          • Boosting local and sustainable production
          • Boosting local and sustainable production,
          • Boosting consumption of local and sustainable products
          • Boosting local and sustainable production
          • Positive externalities,
          • Boosting local businesses,
          • Boosting consumption of local and sustainable products
          • Job creation,
          • Boosting local businesses,
          • Boosting consumption of local and sustainable products
          • Job creation,
          • Boosting local and sustainable production
          A1P023: OtherSustainable and replicable business models regarding renewable energy systems
          A1P024: More comments:
          A1P024: More comments:The Centre for the Development of Renewable Energy (CEDER)is specialized in applied research, development and promotion of renewable energy. Among the facilities of this Centre, the urban laboratory CEDER-CIEMAT assess the performance of different configurations of energy networks at the district level. This PED-Lab infrastructure is an energy district that connects six office buildings with energy generation installations by means of two energy rings: electrical grid (in operation phase) and thermal network (in the implementation phase). The buildings of this PED Lab can act as energy demanders or suppliers depending on the climatic and operational conditions. The majority of these buildings are constructed with conventional technologies but some of them are implemented with efficient and sustainable measures. The thermal network is composed by two biomass boilers, 300 kW power each, and water tanks with 90 kWh of thermal storage. This network will shortly be expanded with a low temperature (90°C) and high temperature (150°-250°C) rings. The low-temperature ring is made up by two Stirling engine cogeneration boilers (one biomass gasification boiler and one gas boiler). The high-temperature ring has a thermal generator made up of Fresnel solar concentrators and an ORC cogeneration system fed directly from the solar concentrator. The high-temperature ring is interconnected with the low-temperature ring through an oil/water heat exchanger. This network has thermal storage systems in the modalities of: aquifers, boreholes, phase change materials, cold storage with geothermal exchange ground recovery and thermal storage at very low temperature with zeolites. The electrical grid incorporates different renewable generation technologies (50 kW wind turbine and eight different photovoltaic systems, a reversible hydraulic system), and engine generator of 100 kVA, electricity storages (batteries) and flexible loads.The “Reininghausgründe” are a new quarter near the centre of the City of Graz. In the area of a former brewery, close to more, still working industries, a new town centre is being established. It will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the city centre by bike paths, busses and a tram. Car sharing is provided as well. Some key-energy aspects: • characteristic 1: For the heat supply in the innovative Reininghaus energy model, low-temperature waste heat from a nearby steel plant is harnessed through the use of heat pumps. • characteristic 2: The district heating system operates at low temperatures. • characteristic 3: Generated heat that is not used immediately is stored in the power tower and supplied on demand. Other important aspects of the project are the following: • characteristic 1: Most houses are low-energy houses, some of the certified with the “Klima Aktiv” label • characteristic 2: There are extremely few parking possibilities for residents and visitors; this will foster the use of public transport and bikes • characteristic 3: All the necessary infrastructure for the “daily need” can be reached within walking distance The area of the project is going to be very “green” when finished. Featuring a big district parc, lots of other green spaces are in planning.Semi-Virtual Energy Integration Laboratory (SEILAB) The Energy Smart Lab is an infrastructure conceived as a flexible and versatile platform for innovative technological developments for both industry and competitive R+D projects. The areas of expertise of this laboratory pivot around the following technologies: – Power Electronics for the integration and control of the elements within a building or community: Renewable Energy Sources (RES), Energy Storage Systems and Electric Vehicles (EV) – ICT Platform for smart communications and energy management of systems, building, networks and communities. – Energy System Integration technologies for smart and flexible buildings and grids including RES and EV. The laboratory operation is based on the hardware emulation approach, which allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation. The laboratory is pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.
          A1P025: Estimated PED case study / PED LAB costs
          A1P025: Estimated PED case study / PED LAB costs [mil. EUR]
          Contact person for general enquiries
          A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaSimon BaumÅse Lekang SørensenDr. Raquel RamosBegoña Gonzalo OrdenMarkus OlofsgårdJingchun ShenKatharina SchwarzDr. Jaume Salom, Dra. Cristina Corchero
          A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamCENERO Energy GmbHSINTEF / The Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart CitiesCentre for the Development of Renewable Energy (CEDER) - Centre for Energy, Environment and Technology Research (CIEMAT)Municipality of LeonAFRYHögskolan DalarnaStadtLABOR, Innovationen für urbane Lebensqualität GmbHIREC
          A1P028: AffiliationMunicipality / Public BodiesOtherResearch Center / UniversityResearch Center / UniversityOtherOtherResearch Center / UniversitySME / IndustryResearch Center / University
          A1P028: OtherCENERO Energy GmbHMunicipality of Leon - ILRUV
          A1P029: Emailgiavasoglou@kifissia.grsib@cenero.dease.sorensen@sintef.noraquel.ramos@ciemat.esbegona.gonzalo@aytoleon.esmarkus.olofsgard@afry.comjih@du.sekatharina.schwarz@stadtlaborgraz.atJsalom@irec.cat
          Contact person for other special topics
          A1P030: NameStavros Zapantis - vice mayorSimon BaumDr. Oscar SecoMonica Prada CorralXingxing ZhangHans Schnitzer
          A1P031: Emailstavros.zapantis@gmail.comsib@cenero.deoscar.seco@ciemat.esMonica.Prada@ilruv.esxza@du.sehans.schnitzer@stadtlaborgraz.at
          Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYes
          A2P001: Fields of application
          A2P001: Fields of application
          • Energy production
          • Energy efficiency,
          • Energy flexibility,
          • Energy production
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies,
          • Construction materials
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • Digital technologies,
          • Indoor air quality
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Construction materials
          • Energy efficiency,
          • Urban comfort (pollution, heat island, noise level etc.),
          • Water use,
          • Indoor air quality,
          • Other
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies
          A2P001: OtherUrban Management; Air Quality
          A2P002: Tools/strategies/methods applied for each of the above-selected fields
          A2P002: Tools/strategies/methods applied for each of the above-selected fieldsCampus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. The vision for Campus Evenstad is an energy-flexible Campus Evenstad in an emission-free Europe. The area consists of approx. 20 buildings managed and owned by Statsbygg; the Norwegian government’s building commissioner, property manager and developer. The oldest building is from the 1700-century and the newest is the administration centre (2017) which is a Zero Emission Building (ZEB) with the highest ambitions (ZEB-COM). Their concept has been to realize Campus Evenstad as an energy pilot, where innovative energy solutions are demonstrated, showing how local areas can become more self-sufficient in energy. The energy system at Evenstad consists of several innovative energy solutions that are new in a Norwegian and European context. They are combined in local infrastructure for electricity and heat, which has led to new knowledge and learning about how the solutions work together, and how the interaction is between the local and the national energy system. The solutions consist of solar cells (PV), solar collectors, combined heat and power plant (CHP) based on wood chips, biofuel boiler, electric boiler, grid connection, district heating, heat storage, stationary battery and bidirectional electric vehicle (EV) charging (V2G). Statsbygg has gained a lot of operational experience from Campus Evenstad - both from individual technologies and from the interaction between these, which benefits Statsbygg's 2,200 buildings and 3 million m2 around Norway. Sharing of experiences is central. Campus Evenstad is a pilot in the Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart Cities were several of the solutions has been developed and studied.Energy efficiency: - Buildings energy retrofit. Energy production: - Biomass Boiler capacity: 0.6 MW. Annual production: 1.2 GWh - Solar thermal collectors: 70 kW, planned extended to: 0.47MW - Geotermal & Absorption Pumps: 100 kW - Share of renewables after extension: 100% (30% solar thermal and 70% biomass) - AOC 50kW wind turbine. Awaiting installation of a two-way AC-AC converter for subsequent connection to the grid - Bornay Inclin 3 kW wind turbine, connected to 24 Vdc batteries, to be connected to the grid by means of Xantrex inverter/charger - 9kW photovoltaic park (66PV panels, brand BP Solar,type BP5140,of 140W) connected to the grid by means of two INGECON SUN 5 inverters - 5kW photovoltaic pergola (24PV panels, brand Solon, type P200, of 210W) connected to the grid by means of one INGECON SUN 5 inverter - 8.28kW photovoltaic roof (36PV panels, Brand LDK, type LDK-230P-20), connected to the grid by means of one INGECONSUN 10 inverter - 12kW photovoltaic roof (80PV panels, brand Gamesa, type GS-1501), connected to the grid. - Reversible hydraulic system connected to a 60 kW electric generator and a pumping system. -Stirling engine with a heat lamp based on natural gas, a helium cool lamp, 10kWe maximum power delivered and global performance of approximately 33%. Energy flexibility: - Thermal storage systems: water tanks 90kW, aquifers, boreholes, phase change materials, cold storage with geothermal exchange ground recovery and thermal storage at very low temperature with zeolites. - Electrical storage systems: batteries (lead-acid and lithium-ion). - Flexible loads. Control systems and Digital technologies: - Full monitoring campaign. - Smart-meters installation to monitor consumption and suggest another energy behaviours. - Dynamic simulation tools to optimize the energy performance. Urban comfort and air quality: - Meteorological stations to monitor the climate evolution. - Microclimatic simulation tools to quantify the thermal behaviour.Energy efficiency: - buildings energy retrofit Energy production: - installation of new photovoltaic (PV) systems for renewable on-site energy production; Energy flexibility: - testing share energy solutions (public-private stakeholders) Digital technologies - smart city platform - smart energy management E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services implementation.link based regulation of electricity gridLoad calculation and system optimisation: City Energy Analyst Identification of stranded assets for asset owners and investors to understand the carbon risks: CRREMEnergy efficiency: o Several activities: Workshops, Webinars to deepen the knowledge and raise awareness renewable energies o for example rooftop Photovoltaics green & blue infrastructures o Parks, Rooftop Gardens, Quarter Parks, Water elements included in the parks rooftop farming o To produce vegetables in the quarter stormwater management mobility o less parking and less cars in the district. Solutions for boosting public transport with sponsored public transport tickets; building of better bike and pedestrian infrastructure social aspects o district management was established in the district local supply of goods of daily need o Schools within 15 minutes walking distance Supermarkets and other shops within the districtEnergy SmartLab capacities - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. Energy SmartLab systems - SAFT Li-ion battery: maximum stored energy 20000 Wh, rated power 150 kW, rated discharge current 200 A, rated charge current 34 A, operating voltage 189 V – 227 V – 254 V, capacity 82 Ah. – Ultracapacitors: maximum stored energy 57 Wh, rated power 10 kW, rated current 20 A, peak current (<1s) 200 Apk, operating voltage 250 V – 500 V, capacity 1,65 F. – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah - 5 microgrid emulators (emulated power 5.5 kVA, max generation connected 10kVA, max consumption connected 10 kVA) - 1 grid emulator (Rated power: 200 kVA, Rated current per phase: 350 A, Rated current per neutral conductor: 35)
          A2P003: Application of ISO52000
          A2P003: Application of ISO52000NoNoNoNoNoNo
          A2P004: Appliances included in the calculation of the energy balance
          A2P004: Appliances included in the calculation of the energy balanceYesYesNoNoYesYesYes
          A2P005: Mobility included in the calculation of the energy balance
          A2P005: Mobility included in the calculation of the energy balanceYesNoNoYesNoYesYes
          A2P006: Description of how mobility is included (or not included) in the calculation
          A2P006: Description of how mobility is included (or not included) in the calculationAt Campus Evenstad there is infrastructure for EV charging and bidirectional charging (V2G). EV charging is included in the energy balance.- Number of cars per household - Fraction of electric cars - Number of public transport tickets (week/ annual tickets)– Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah
          A2P007: Annual energy demand in buildings / Thermal demand
          A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]1.650.773.490.6777
          A2P008: Annual energy demand in buildings / Electric Demand
          A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.760.570.03656
          A2P009: Annual energy demand for e-mobility
          A2P009: Annual energy demand for e-mobility [GWh/annum]00
          A2P010: Annual energy demand for urban infrastructure
          A2P010: Annual energy demand for urban infrastructure [GWh/annum]0
          A2P011: Annual renewable electricity production on-site during target year
          A2P011: PVyesyesyesyesyesyesnoyesyes
          A2P011: PV - specify production in GWh/annum [GWh/annum]0.0651.24
          A2P011: Windnononoyesnonononono
          A2P011: Wind - specify production in GWh/annum [GWh/annum]
          A2P011: Hydronononoyesyesnononono
          A2P011: Hydro - specify production in GWh/annum [GWh/annum]1.28
          A2P011: Biomass_elnonoyesyesnonononono
          A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]0.050
          A2P011: Biomass_peat_elnonononononononono
          A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
          A2P011: PVT_elnonononoyesnoyesnono
          A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.280.01818
          A2P011: Othernonononononononono
          A2P011: Other - specify production in GWh/annum [GWh/annum]
          A2P012: Annual renewable thermal production on-site during target year
          A2P012: Geothermalnononoyesnoyesnoyesno
          A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
          A2P012: Solar Thermalnonoyesyesnononoyesno
          A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.045
          A2P012: Biomass_heatnonoyesyesnonononono
          A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.35
          A2P012: Waste heat+HPnononoyesnononoyesno
          A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_peat_heatnonononononononono
          A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
          A2P012: PVT_thnonononoyesnoyesnono
          A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]0.0825
          A2P012: Biomass_firewood_thnononoyesnonononono
          A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
          A2P012: Othernonononoyesnononono
          A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
          A2P013: Renewable resources on-site - Additional notes
          A2P013: Renewable resources on-site - Additional notesListed values are measurements from 2018. Renewable energy share is increasing.Groundwater (used for heat pumps)
          A2P014: Annual energy use
          A2P014: Annual energy use [GWh/annum]2.4211.5000.318
          A2P015: Annual energy delivered
          A2P015: Annual energy delivered [GWh/annum]10.2055
          A2P016: Annual non-renewable electricity production on-site during target year
          A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]00
          A2P017: Annual non-renewable thermal production on-site during target year
          A2P017: Gasnonononononononoyes
          A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Coalnonononononononono
          A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Oilnonononononononono
          A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Othernonononononoyesnono
          A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]0
          A2P018: Annual renewable electricity imports from outside the boundary during target year
          A2P018: PVnononononononoyesno
          A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
          A2P018: Windnononononononoyesno
          A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
          A2P018: Hydronononononononoyesno
          A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_elnonononononononono
          A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_peat_elnonononononononono
          A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: PVT_elnonononononononono
          A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Othernonononononoyesnono
          A2P018 - Other: specify production in GWh/annum if available [GWh/annum]0.187
          A2P019: Annual renewable thermal imports from outside the boundary during target year
          A2P019: Geothermalnonononononononono
          A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Solar Thermalnononononononoyesno
          A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_heatnononononononoyesno
          A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Waste heat+HPnononononononoyesno
          A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_peat_heatnonononononononono
          A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
          A2P019: PVT_thnonononononononono
          A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_firewood_thnonononononononono
          A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Othernonononononoyesnono
          A2P019 Other: Please specify imports in GWh/annum [GWh/annum]0
          A2P020: Share of RES on-site / RES outside the boundary
          A2P020: Share of RES on-site / RES outside the boundary0000000.5383957219251300
          A2P021: GHG-balance calculated for the PED
          A2P021: GHG-balance calculated for the PED [tCO2/annum]6.930.036
          A2P022: KPIs related to the PED case study / PED Lab
          A2P022: Safety & Securitynone
          A2P022: Healththermal comfort diagram
          A2P022: Educationnone
          A2P022: Mobilitynonex
          A2P022: Energyapplynormalized CO2/GHG & Energy intensityx
          A2P022: Waterx
          A2P022: Economic developmentcost of excess emissionsx
          A2P022: Housing and Communityx
          A2P022: Waste
          A2P022: Other
          A2P023: Technological Solutions / Innovations - Energy Generation
          A2P023: Photovoltaicsnonoyesyesyesyesyesyesyes
          A2P023: Solar thermal collectorsnonoyesyesyesnoyesnono
          A2P023: Wind Turbinesnononoyesnonononono
          A2P023: Geothermal energy systemnononoyesnonoyesnono
          A2P023: Waste heat recoverynononoyesnonoyesyesno
          A2P023: Waste to energynonononononononono
          A2P023: Polygenerationnononoyesnonononono
          A2P023: Co-generationnonoyesyesnonononono
          A2P023: Heat Pumpnononoyesyesnoyesyesno
          A2P023: Hydrogennononoyesnonononono
          A2P023: Hydropower plantnononoyesyesnononono
          A2P023: Biomassnonoyesyesnonononono
          A2P023: Biogasnonononononononono
          A2P023: OtherThe Co-generation is biomass based.
          A2P024: Technological Solutions / Innovations - Energy Flexibility
          A2P024: A2P024: Information and Communication Technologies (ICT)nonoyesyesyesyesyesyesyes
          A2P024: Energy management systemnonoyesyesyesnononoyes
          A2P024: Demand-side managementnonoyesyesyesyesnonono
          A2P024: Smart electricity gridnononoyesnoyesnonoyes
          A2P024: Thermal Storagenonoyesyesnonoyesyesno
          A2P024: Electric Storagenonoyesyesnonononoyes
          A2P024: District Heating and Coolingnonoyesyesnonoyesyesno
          A2P024: Smart metering and demand-responsive control systemsnonoyesyesnoyesnonono
          A2P024: P2P – buildingsnonononoyesnononono
          A2P024: OtherBidirectional electric vehicle (EV) charging (V2G)
          A2P025: Technological Solutions / Innovations - Energy Efficiency
          A2P025: Deep Retrofittingnononoyesyesnoyesnono
          A2P025: Energy efficiency measures in historic buildingsnonononoyesnononono
          A2P025: High-performance new buildingsnonoyesnonononoyesno
          A2P025: Smart Public infrastructure (e.g. smart lighting)nononononononoyesno
          A2P025: Urban data platformsnonononoyesnononono
          A2P025: Mobile applications for citizensnononononononoyesno
          A2P025: Building services (HVAC & Lighting)nononoyesnonoyesnoyes
          A2P025: Smart irrigationnononononononoyesno
          A2P025: Digital tracking for waste disposalnonononononononono
          A2P025: Smart surveillancenonononononononono
          A2P025: Other
          A2P026: Technological Solutions / Innovations - Mobility
          A2P026: Efficiency of vehicles (public and/or private)nonononoyesnonoyesyes
          A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nononononononoyesno
          A2P026: e-Mobilitynonoyesnoyesnonoyesno
          A2P026: Soft mobility infrastructures and last mile solutionsnonononoyesnonoyesno
          A2P026: Car-free areanononoyesnononoyesno
          A2P026: Other
          A2P027: Mobility strategies - Additional notes
          A2P027: Mobility strategies - Additional notesTest-Concept for bidirectional charging.- Multimodal mobility nodes - Support of public transport tickets - Mobility consulting - District management
          A2P028: Energy efficiency certificates
          A2P028: Energy efficiency certificatesYesYesYesNoNoYes
          A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingPassive house (2 buildings, 4 200 m2, from 2015)In Spain it is mandatory the Energy Performance Certificate in order to buy or rent a house or a dwellingEnergy Performance Certificate - in Spain it is mandatory in order to buy or rent a house or a dwelling)Energieausweis mandatory if buildings/ flats/ apartments are sold
          A2P029: Any other building / district certificates
          A2P029: Any other building / district certificatesYesNoNoNoNoYes
          A2P029: If yes, please specify and/or enter notesZero Emission Building (ZEB) with the highest ambitions (ZEB-COM) (admin building, 1 141 m2, 2016)Klimaaktiv standard  Voluntary! Certification can be for buildings and/or quarters. The different quarters are built in different standards. Ranging from bronze/silver/gold
          A3P001: Relevant city /national strategy
          A3P001: Relevant city /national strategy
          • Energy master planning (SECAP, etc.),
          • Promotion of energy communities (REC/CEC)
          • Promotion of energy communities (REC/CEC),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Smart cities strategies,
          • New development strategies,
          • Promotion of energy communities (REC/CEC),
          • Climate change adaption plan/strategy (e.g. Climate City contract)
          • Smart cities strategies,
          • Energy master planning (SECAP, etc.)
          • Promotion of energy communities (REC/CEC)
          • Promotion of energy communities (REC/CEC),
          • Climate change adaption plan/strategy (e.g. Climate City contract)
          • Smart cities strategies,
          • Energy master planning (SECAP, etc.),
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Smart cities strategies,
          • New development strategies
          A3P002: Quantitative targets included in the city / national strategy
          A3P002: Quantitative targets included in the city / national strategy- Testing the combination of renewable technologies at district level. - Optimization of the generation side based on the weather forecasting and demand side. - Optimization of the control system, connected to the central node, to design and perform virtual analyses based on the combination of all the systems and infrastructures. - Optimization of ICT systems. - Design and management of a virtual analysis - Optimization of efficient measures: building performance, user´s behaviour… - Combination of flexible storage systems to operate the global installation.The study aligns closely with the decarbonisation and energy reduction pathways of residential multi family buildings with 1.5°C global warming target in Sweden. This study will also contribute to the achievement of the carbon neturality of whole Borlänge city by 2030.City level targets Klimaschutzplan Graz - 2022 | Targets: - Climate neutrality until 2040 - Social justice and high quality of life - High innovation levels Mobilitätsplan Graz 2040 – under development | Targets: - Modal Split 80:20 until 2040 80% Public transport, bike, walking | 20% cars Kommunales Energiekonzept (2017) | Targets: - Increase of district heating Energiemasterplan Graz (2018) | Targets: - Energy efficiency of urban dwellings and infrastructures - District heating and solar energy - Energy efficiency of private dwellings - Climate conscious mobility National level targets Klimaschutzplan Österreich -draft, expected by 2024 | Targets: - Decarbonisation (reduction of GHG, renewable energies, - Climate neutrality until 2040 - Energy efficiency - Security of energy supply
          A3P003: Strategies towards decarbonization of the gas grid
          A3P003: Strategies towards decarbonization of the gas grid
          • Biogas
          • Electrification of Heating System based on Heat Pumps,
          • Biogas,
          • Hydrogen
          • Electrification of Heating System based on Heat Pumps,
          • Electrification of Cooking Methods,
          • Biogas
          A3P003: Other
          A3P004: Identification of needs and priorities
          A3P004: Identification of needs and priorities- Create a thermal energy storage tank to be used for air conditioning the buildings. - Some buildings need to be renovated both to increase the energy performance, the seismic behaviour and spaces liveability and comfort. - Optimizing the coupling between technologies. - Guarantee the flexibility to operate the renewable installations to operate in different phases and with different configurations. - CEDER is a public research center and needs to have connected any energy system to the same grid. - CEDER has an industrial develop area where some experimental thermal storage system could be tested.In our project, we carried out a comprehensive exploration of strategies to achieve positive energy districts in a Swedish residential portfolio. The focus on urban energy transitions necessitates a holistic approach that integrates building retrofit, solar technology exploration, and heating supply optimisation. Exploration of Local Solar Sources: The analysis reveals varying solar irradiance resources throughout the year, emphasizing the importance of strategic placement. Integration of combined photovoltaic and thermal panels into building envelopes demonstrates the potential to cover a significant portion of the energy demand even in Sweden. Heating Supply Optimisation with Solar Technologies: Despite the surplus energy production from on-site solar technology, challenges arise due to temporal energy asymmetry. The introduction of heat pumps emerges as a feasible solution to balance energy gaps, utilising both rejected and free heat. Optimisation scenarios, utilising a combination of geothermal heat pumps, water source heat pumps, and PVT, showcase remarkable reductions in emissions and primary energy consumption. Urban Form and Energy Infrastructure Design: We realised the importance of returning to urban form and energy infrastructure design to optimise future residential portfolio potential. Building layout design, influenced by zoning regulations and innovative typologies, plays a crucial role in achieving district level energy efficiency. Future challenges, including demographic shifts, e-mobility, and climate change, necessitate a more holistic approach to energy infrastructure design, addressing not only heating and electricity demands but also cooling requirements.Reininghaus needs green spaces and places Sector coupling of water, waste water, electricity ICT and demand side management Mobility - Reininghaus needs better infrastructure for bikes and pedestrians - Public transportation should be more affordable and Sharing should be implemented in the district Infrastructure should cover daily needs within walking distance Infrastructure for local jobs and shared offices-Allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation -Pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.
          A3P005: Sustainable behaviour
          A3P005: Sustainable behaviour- Minimize the building energy consumption while maintaining indoor comfort levels. - Onsite renewable production with flexible storage elements to fix demand side and generation side. - Flexible control solutions through digitalization systems.While our investigation primarily centres on technical optimisation within Positive Energy District (PED) development, it is essential to acknowledge the broader scope encompassing social and governance dimensions. Specifically, understanding stakeholders' willingness to embrace technical recommendations upon project completion is important. Several potential influencing factors merit exploration, including economic considerations, technical optimisation-associated embodied carbon balance, the general public's technical perceptions, and operational feasibility. Evaluating these aspects holistically not only enhances the efficacy of PED initiatives but also fosters greater acceptance and participation within the communities they serve.- citizen participation and promotion of functioning neighbourhoods (e.g., through city district management) As of today, solutions for the energy transition in the residential sector have focused on the construction of energy-efficient buildings and on the energy-efficient refurbishment of existing buildings. Measures to influence user behaviour and to directly address residents and neighbourhoods as actors of the energy transition play a minor role and are also not formalized. At the same time, moving into a new apartment offers a ‘window of opportunity’ to establish new everyday practices and behaviour. In already inhabited housing developments, well-functioning neighbourhoods or existing, ‘sustainability pioneers’ are key to motivating people to adopt more resource-efficient lifestyles. In order to prepare such agents of change towards more climate protection and sustainability in the context of housing, Austria launched the BAREWO project. The aim is to develop a kit of formats, methods, and interventions for resource-efficient housing. This toolkit will be tested in six testbeds, among which quarter 12 (Q12) of Graz- Reininghaus, as soon as first residents move in (approx. 2024). Austrian TRANS-PED partner StadtLABOR, which is also a partner in the BAREWO project, will support Q12 in this process. In parallel, a monitoring system will be developed to make the (climate) effects of the kit measurable. In addition, a guideline for property managers will be developed, which will serve as an orientation for them on how their residents can be coached in matters of climate protection and sustainability in everyday (residential) life. From the very beginning, (communication) measures are implemented and relevant stakeholders are involved in the project (project advisory board) to ensure the multiplicability, financing and broad application of the toolkit. If successful, the toolkit could also be scaled up to other quarters in Reininghaus.-Improving the development of Net Zero Energy Buildings and Flexible Energy buildings.
          A3P006: Economic strategies
          A3P006: Economic strategies
          • Innovative business models,
          • Other
          • Demand management Living Lab
          • Local trading
          • Open data business models,
          • Life Cycle Cost,
          • Circular economy models,
          • Local trading
          • PPP models,
          • Local trading
          • Demand management Living Lab
          A3P006: Otheroperational savings through efficiency measures
          A3P007: Social models
          A3P007: Social models
          • Behavioural Change / End-users engagement
          • Behavioural Change / End-users engagement,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour),
          • Other
          • Digital Inclusion,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Strategies towards (local) community-building,
          • Behavioural Change / End-users engagement,
          • Citizen/owner involvement in planning and maintenance,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Behavioural Change / End-users engagement,
          • Citizen/owner involvement in planning and maintenance
          • Strategies towards (local) community-building,
          • Behavioural Change / End-users engagement,
          • Social incentives,
          • Affordability,
          • Digital Inclusion
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Behavioural Change / End-users engagement,
          • Social incentives,
          • Quality of Life,
          • Affordability,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Digital Inclusion,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          A3P007: OtherCampus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. Sharing knowledge is essential: Evenstad has regular visits from Politicians, decision-makers, researchers, environmental organizations, and energy- and building companies.
          A3P008: Integrated urban strategies
          A3P008: Integrated urban strategies
          • District Energy plans,
          • Building / district Certification
          • Strategic urban planning,
          • City Vision 2050,
          • SECAP Updates
          • Strategic urban planning
          • Strategic urban planning,
          • Digital twinning and visual 3D models,
          • District Energy plans,
          • Building / district Certification
          • Strategic urban planning,
          • City Vision 2050,
          • Building / district Certification
          A3P008: Other
          A3P009: Environmental strategies
          A3P009: Environmental strategies
          • Other
          • Low Emission Zone
          • Energy Neutral,
          • Low Emission Zone,
          • Pollutants Reduction,
          • Greening strategies
          • Energy Neutral,
          • Carbon-free
          • Low Emission Zone,
          • Net zero carbon footprint,
          • Life Cycle approach,
          • Sustainable Urban drainage systems (SUDS)
          • Pollutants Reduction,
          • Greening strategies,
          • Sustainable Urban drainage systems (SUDS),
          • Nature Based Solutions (NBS)
          • Energy Neutral,
          • Low Emission Zone,
          • Pollutants Reduction,
          • Greening strategies
          A3P009: OtherPositive Energy Balance for the demo site
          A3P010: Legal / Regulatory aspects
          A3P010: Legal / Regulatory aspectsCampus Evenstad became a prosumer in 2016, as the first with DSO Eidsiva. Evenstad is also one of the first three PV systems in Norway to receive green certificates.- European Commission has legislated on Energy Community (Renewable energy directive - 2018/2001/EU and Common rules for the internal electricity market directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.Mobility contracts: A mobility contract is concluded between the City of Graz and the property developers in the course of development plans and serves to reduce the motor vehicle traffic to be expected as a result of the construction project. Push & pull measures are agreed: With a lower car parking space key, which is significantly lower than today's usual requirements, offers and information for easier use of public transport, walking and cycling, as well as car sharing and e-mobility are simultaneously created by the property developers, leading to a win-win-win situation for all parties involved. Basic principles - Possibility of combining effective "push & pull" measures => control option (e.g. reduction of car parking spaces, but optimisation of accessibility to public transport and walking and cycling networks, public transport tickets, mobility information, ... etc.) - Changing mobility behaviour in favour of sustainable forms of transport from the moment the flat is handed over ("upheaval" in personal mobility behaviour when changing the residential location) - Reduction in construction and maintenance costs (underground car parks, public road infrastructure) - Easier realisation of larger construction projects in the inner city area with lower generation of vehicle demand Städtebauliche Verträge in Graz / Urban development contracts in Graz Qualitative urban (neighbourhood) development with added value for all stakeholders: urban development contracts are modern instruments in the development of cities and neighbourhoods. As one of the pioneers in this field, the City of Graz also increasingly favours this form of quality assurance. Urban development contracts are a contractual form of regulation between the City of Graz and landowners, which enables flexible control of urban (sub)development in the interests of the common interests while at the same time relieving the public authorities. The contracts make property-related stipulations in accordance with urban planning requirements (e.g. urban development concept, development concept, framework plan, zoning plan) and the specialist planning requirements in particular infrastructure, development, design and mobility. This is intended to infrastructure, services of general interest, building land quality and settlement development required for the (parts of the) city.- European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.
          B1P001: PED/PED relevant concept definition
          B1P001: PED/PED relevant concept definitionThe biggest impact is the demonstration of several new energy solutions for local communities. Statsbygg/Campus Evenstad contributes to the development of innovations, pushing technological development through purchasing and demonstration of the solutions. This is a benefit for both end users, energy service providers and society at large. Evenstad also contribute to developing the local business community. For example, local biomass chip production for CHP, development of V2G-software etc. Several key solutions have been important when aiming to achieve the goals of reduced emissions, increased self-sufficiency in energy, and an energy-flexible campus. Example Vehicle-to-grid (V2G): We realized bidirectional EV charging at Campus Evenstad in 2019, demonstrating V2G for the first time in Norway. The experiences from Evenstad provide increased knowledge and practical experience from purchasing, installing and operating the V2G solution, and can contribute to creating new solutions within the energy system. With the equipment installed, the batteries in EVs can supply power back to buildings or the power grid. Example solar cells (PV): We installed PV in 2013 when there were only a few grid-connected PV systems in Norway. The PV system was an important piece in changing the view on solar energy in Norway, where businesses, the public sector and private individuals started seeing the potential for solar energy also this far north. In 2022, the PV system was expanded with PV cells on the facade of the energy center. Example Solar collector system: Covers 100m2 of the roof surface of dormitories and supplies supplies 117 dormitories with all the hot water they need (4000m2 floor area. The solar collector system is connected to the district heating system, where the main heat source is bioenergy. Solar energy and bioenergy complement each other at different times of the year. Example battery bank: Among the 5 largest electrical batteries in Norway connected to the grid. Example CHP: First of its kind in Norway, generating heat and electricity from biomass. Already in 2010, fossil fuels were phased out by converting from oil to wood-chip heating.The Rymdgatan's Residential Portfolio in Sweden presents a compelling case study for its classification as a PED-related research, given its alignment with sustainable behaviours and overarching PED development principles as follows: Inclusivity and Social Equity: The residential portfolio situated in Rymdgatan caters primarily to a low-income community. By focusing on this demographic, the project addresses critical aspects of social equity within sustainable urban development. Ensuring access to energy-efficient housing and amenities for economically disadvantaged populations not only fosters social cohesion but also mitigates energy poverty, a pressing concern in many urban contexts. Multifamily Residential Building: The inclusion of multifamily residential buildings within the portfolio underscores a commitment to density and efficient land use, both essential components of sustainable urban design. Such developments promote resource optimisation by consolidating housing units, thereby reducing per capita energy consumption and infrastructure demands. Moreover, multifamily dwellings often facilitate community engagement and shared resource management, fostering a culture of sustainability among residents. Low Carbon Retrofitting and Transition: The overarching initiative to transition the entire Jakobsgårdarna district. The included Rymdgatan portfolio, towards low carbon retrofitting, represents a significant example of decarbonization and climate resilience. By integrating energy-efficient technologies and renewable energy solutions into existing infrastructure, the project not only reduces carbon emissions but also serves as a blueprint for revitalising old urban environments sustainably. This holistic approach to retrofitting demonstrates a systemic commitment to environmental stewardship and long-term sustainability. Climate Adaptation and Renewable Energy Integration: Despite Sweden's climatic challenges, including lower solar resources during winter months, the Rymdgatan project leverages its geographical context to optimize renewable energy utilization. Sweden's greater solar resource availability during summer and geothermal potentials complement the design's emphasis on seasonal energy planning, where surplus energy generated during peak periods can be stored or redistributed efficiently. By embracing climate-responsive design strategies, the project demonstrates resilience in the face of climate variability while harnessing renewable energy potential effectively.Reininghaus addresses some relevant key aspects listed in the JPI UE PED Framework Definition such as: - high level of aspiration in terms of energy efficiency, energy flexibility and energy production; - integration of different systems and infrastructures; - inclusion of aspects not only related to energy sector, but also connected with social, economic and environmental sustainability.
          B1P002: Motivation behind PED/PED relevant project development
          B1P002: Motivation behind PED/PED relevant project developmentIn line with the EU's vision of "local energy communities", Campus Evenstad demonstrates energy actions that contribute to the clean energy transition. The campus has been developed over several years, demonstrating several innovative and sustainable technologies and energy solutions in a microgrid, e.g. vehicle to grid (V2G), biomass-based combined heat and power (CHP), solar energy, energy storage and zero emission buildings. It shows how to use new technology to enable zero emissions areas. Dedicated professionals, both Statsbygg's operating staff and researchers from FME ZEN have been central to the realization, together with dedicated management at the University campus, who have shown a great willingness to implement new solutions.Borlänge city has committed to become the carbon-neutral city by 2030.The Reininghausgründe is a new quarter near the centre of the City of Graz. On the area of a former brewery, close to more, still working industries, a new town centre is being established. The quarter will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the historical city centre by bike paths, busses and a tram. Car sharing is provided as well.
          B1P003: Environment of the case study area
          B2P003: Environment of the case study areaRuralRuralUrban areaSuburban areaUrban areaUrban area
          B1P004: Type of district
          B2P004: Type of district
          • New construction,
          • Renovation
          • New construction,
          • Renovation
          • New construction
          • Renovation
          • New construction
          B1P005: Case Study Context
          B1P005: Case Study Context
          • Preservation Area
          • Retrofitting Area
          • Re-use / Transformation Area,
          • Retrofitting Area,
          • Preservation Area
          • New Development
          • Re-use / Transformation Area,
          • Retrofitting Area
          • New Development
          B1P006: Year of construction
          B1P006: Year of construction19902025
          B1P007: District population before intervention - Residential
          B1P007: District population before intervention - Residential1000
          B1P008: District population after intervention - Residential
          B1P008: District population after intervention - Residential10010000
          B1P009: District population before intervention - Non-residential
          B1P009: District population before intervention - Non-residential60
          B1P010: District population after intervention - Non-residential
          B1P010: District population after intervention - Non-residential6
          B1P011: Population density before intervention
          B1P011: Population density before intervention000000000
          B1P012: Population density after intervention
          B1P012: Population density after intervention0000000.0106586224233280.010
          B1P013: Building and Land Use before intervention
          B1P013: Residentialnonononoyesnoyesnono
          B1P013 - Residential: Specify the sqm [m²]4360
          B1P013: Officenonononononononono
          B1P013 - Office: Specify the sqm [m²]
          B1P013: Industry and Utilitynononononononoyesno
          B1P013 - Industry and Utility: Specify the sqm [m²]
          B1P013: Commercialnonononononononono
          B1P013 - Commercial: Specify the sqm [m²]
          B1P013: Institutionalnonononononononono
          B1P013 - Institutional: Specify the sqm [m²]
          B1P013: Natural areasnononononoyesnoyesno
          B1P013 - Natural areas: Specify the sqm [m²]
          B1P013: Recreationalnonononononononono
          B1P013 - Recreational: Specify the sqm [m²]
          B1P013: Dismissed areasnonononononononono
          B1P013 - Dismissed areas: Specify the sqm [m²]
          B1P013: Othernonononoyesnoyesnono
          B1P013 - Other: Specify the sqm [m²]706
          B1P014: Building and Land Use after intervention
          B1P014: Residentialnonononoyesnoyesyesno
          B1P014 - Residential: Specify the sqm [m²]4360
          B1P014: Officenononononononoyesno
          B1P014 - Office: Specify the sqm [m²]
          B1P014: Industry and Utilitynonononononononono
          B1P014 - Industry and Utility: Specify the sqm [m²]
          B1P014: Commercialnononononononoyesno
          B1P014 - Commercial: Specify the sqm [m²]
          B1P014: Institutionalnononononononoyesno
          B1P014 - Institutional: Specify the sqm [m²]
          B1P014: Natural areasnononononononoyesno
          B1P014 - Natural areas: Specify the sqm [m²]
          B1P014: Recreationalnononononononoyesno
          B1P014 - Recreational: Specify the sqm [m²]
          B1P014: Dismissed areasnonononononononono
          B1P014 - Dismissed areas: Specify the sqm [m²]
          B1P014: Othernonononoyesnoyesnono
          B1P014 - Other: Specify the sqm [m²]706
          B2P001: PED Lab concept definition
          B2P001: PED Lab concept definitionaddressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation
          B2P002: Installation life time
          B2P002: Installation life timeCEDER will follow an integrative approach including technology for a permanent installation.
          B2P003: Scale of action
          B2P003: ScaleDistrictVirtual
          B2P004: Operator of the installation
          B2P004: Operator of the installationCIEMAT. Data detail in contact: mariano.martin@ciemat.es and oscar.izquiedo@ciemat.esIREC
          B2P005: Replication framework: Applied strategy to reuse and recycling the materials
          B2P005: Replication framework: Applied strategy to reuse and recycling the materials
          B2P006: Circular Economy Approach
          B2P006: Do you apply any strategy to reuse and recycling the materials?NoNo
          B2P006: Other
          B2P007: Motivation for developing the PED Lab
          B2P007: Motivation for developing the PED Lab
          • Strategic
          • Strategic,
          • Private
          B2P007: Other
          B2P008: Lead partner that manages the PED Lab
          B2P008: Lead partner that manages the PED LabResearch center/UniversityResearch center/University
          B2P008: Other
          B2P009: Collaborative partners that participate in the PED Lab
          B2P009: Collaborative partners that participate in the PED Lab
          • Academia,
          • Industrial
          B2P009: Other
          B2P010: Synergies between the fields of activities
          B2P010: Synergies between the fields of activitiesThe operation of the laboratory with all the components of the energy networks requires a collaborative work between various departments and entities. On the one hand, it is necessary to optimize the operation of renewable systems based on the weather conditions, forecast of the demand side and the flexibility of the generation systems. On the other hand, the optimization of the energy demands through a more sustainable behaviour of both the building and the users want to be acquired. For this, it is necessary to take into account technical aspects but also market, comfort and encourage the user participation, creating a decision-making matrix that allows optimizing the operation of the global system.
          B2P011: Available facilities to test urban configurations in PED Lab
          B2P011: Available facilities to test urban configurations in PED Lab
          • Buildings,
          • Demand-side management,
          • Prosumers,
          • Renewable generation,
          • Energy storage,
          • Energy networks,
          • Efficiency measures,
          • Information and Communication Technologies (ICT),
          • Ambient measures,
          • Social interactions
          • Demand-side management,
          • Energy storage,
          • Energy networks,
          • Efficiency measures,
          • Information and Communication Technologies (ICT)
          B2P011: Other
          B2P012: Incubation capacities of PED Lab
          B2P012: Incubation capacities of PED Lab
          • Monitoring and evaluation infrastructure,
          • Tools for prototyping and modelling
          • Monitoring and evaluation infrastructure,
          • Tools for prototyping and modelling,
          • Tools, spaces, events for testing and validation
          B2P013: Availability of the facilities for external people
          B2P013: Availability of the facilities for external people
          B2P014: Monitoring measures
          B2P014: Monitoring measures
          • Equipment
          • Equipment
          B2P015: Key Performance indicators
          B2P015: Key Performance indicators
          • Energy,
          • Environmental,
          • Economical / Financial
          • Energy,
          • Environmental
          B2P016: Execution of operations
          B2P016: Execution of operations
          B2P017: Capacities
          B2P017: Capacities- Innovative grid configuration to connect bio boilers and solar thermal on buildings. - Environmental & air quality evaluation. - Testing and evaluation of high efficient heating & cooling systems: Gas, biomass, geothermal and absorption H&C pumps … - Definition and implementation of the different regulation modes for the global system. Using the data from the research focused-partners, several regulation modes for the DH network could be defined and implemented in order to obtain an optimal operation of the network. - Innovation in MPC control to enable harvesting 100% renewables in the most efficient way. - Physical integration of the technologies with the existing facilities at the living lab. - Connection between the solar thermal collectors to achieve the lowest heat losses, providing the possibility to use the grid as high or low temperature DH, according to the demand schedule of the buildings. - Test the bio-boiler of the last generation and ultra-low emissions biomass condensing boiler in order to increase efficiency and reduce GHG and air pollutant emissions of the DH plant. - Control of the supply temperature of the DH grid to enable 100% renewables harvesting in the most efficient way. - Research of the incidence of a normal building or a bioclimatic building in the DH grid demand. - Methodologies for concept validation: Definition of the minimum requirements to verify the suitability of the solutions proposed. - Tests campaign: Experimental operation and characterization in a relevant environment, to exploit the technologies at their best and test different demand profiles, different configuration and loads, with real time monitoring and continuous commissioning to control the performance of the technology. - Validation and upgrading recommendation for the DH&C at district level. - Evaluation of innovation actions for potential energy interventions with demand response in buildings. - The complete available infrastructure (MV and LV electric systems, transformation hubs, end consumption, generation sources, communication elements, etc.) belongs to CEDER-CIEMAT, making this the perfect scenario to test and try the performance of “Smart Grid” and “Microgrid” projects. - The type of electric grid, its voltage levels (MV or LV), its variety of real loads (different buildings with different profiles: industrial buildings, offices and so on) and its sources of renewable generation and storage, mean it is ideal for intermediate tests between a small-scale laboratory and final deployment of the real product.- Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network.
          B2P018: Relations with stakeholders
          B2P018: Relations with stakeholdersCEDER - CIEMAT is a public research body assigned to the Ministry of Science and Innovation under the General Secretariat for Research, focusing on energy and environment. To develop this lab CIEMAT has relations with private renewable companies, research centers and academia institutions.
          B2P019: Available tools
          B2P019: Available tools
          • Energy modelling
          • Energy modelling
          B2P019: Available tools
          B2P020: External accessibility
          B2P020: External accessibilityCIEMAT is a public body, so it´s open to any institution according the actual regulation and agreements.
          C1P001: Unlocking Factors
          C1P001: Recent technological improvements for on-site RES production5 - Very important5 - Very important2 - Slightly important1 - Unimportant3 - Moderately important4 - Important3 - Moderately important1 - Unimportant
          C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
          C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important5 - Very important5 - Very important1 - Unimportant5 - Very important3 - Moderately important4 - Important3 - Moderately important
          C1P001: Storage systems and E-mobility market penetration5 - Very important2 - Slightly important1 - Unimportant5 - Very important3 - Moderately important2 - Slightly important5 - Very important
          C1P001: Decreasing costs of innovative materials4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important2 - Slightly important3 - Moderately important
          C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important2 - Slightly important5 - Very important
          C1P001: The ability to predict Multiple Benefits1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important4 - Important4 - Important4 - Important
          C1P001: The ability to predict the distribution of benefits and impacts1 - Unimportant4 - Important1 - Unimportant4 - Important4 - Important4 - Important4 - Important
          C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important4 - Important4 - Important1 - Unimportant4 - Important5 - Very important5 - Very important1 - Unimportant
          C1P001: Social acceptance (top-down)5 - Very important4 - Important3 - Moderately important1 - Unimportant4 - Important5 - Very important4 - Important1 - Unimportant
          C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important4 - Important3 - Moderately important1 - Unimportant4 - Important4 - Important5 - Very important1 - Unimportant
          C1P001: Presence of integrated urban strategies and plans3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important5 - Very important5 - Very important1 - Unimportant
          C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important5 - Very important5 - Very important4 - Important
          C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important4 - Important5 - Very important
          C1P001: Availability of RES on site (Local RES)5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important3 - Moderately important4 - Important
          C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important5 - Very important5 - Very important
          C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P001: Any other UNLOCKING FACTORS (if any)
          C1P002: Driving Factors
          C1P002: Climate Change adaptation need4 - Important3 - Moderately important4 - Important1 - Unimportant3 - Moderately important5 - Very important5 - Very important4 - Important
          C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important5 - Very important5 - Very important1 - Unimportant3 - Moderately important5 - Very important5 - Very important4 - Important
          C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important4 - Important1 - Unimportant
          C1P002: Urban re-development of existing built environment3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important5 - Very important4 - Important
          C1P002: Economic growth need2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important4 - Important
          C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important4 - Important
          C1P002: Territorial and market attractiveness2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
          C1P002: Energy autonomy/independence5 - Very important4 - Important4 - Important1 - Unimportant2 - Slightly important2 - Slightly important3 - Moderately important5 - Very important
          C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P002: Any other DRIVING FACTOR (if any)
          C1P003: Administrative barriers
          C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important5 - Very important4 - Important
          C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important1 - Unimportant
          C1P003: Lack of public participation3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important2 - Slightly important
          C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important4 - Important2 - Slightly important3 - Moderately important
          C1P003:Long and complex procedures for authorization of project activities5 - Very important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant5 - Very important5 - Very important5 - Very important
          C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important5 - Very important
          C1P003: Complicated and non-comprehensive public procurement4 - Important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important3 - Moderately important
          C1P003: Fragmented and or complex ownership structure3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant4 - Important5 - Very important5 - Very important
          C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important4 - Important4 - Important
          C1P003: Lack of internal capacities to support energy transition3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important4 - Important
          C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
          C1P003: Any other Administrative BARRIER (if any)
          C1P004: Policy barriers
          C1P004: Lack of long-term and consistent energy plans and policies4 - Important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important5 - Very important2 - Slightly important1 - Unimportant
          C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important3 - Moderately important2 - Slightly important1 - Unimportant4 - Important5 - Very important2 - Slightly important1 - Unimportant
          C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important2 - Slightly important
          C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P004: Any other Political BARRIER (if any)
          C1P005: Legal and Regulatory barriers
          C1P005: Inadequate regulations for new technologies4 - Important5 - Very important4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important
          C1P005: Regulatory instability3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important
          C1P005: Non-effective regulations4 - Important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important2 - Slightly important
          C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important4 - Important4 - Important
          C1P005: Building code and land-use planning hindering innovative technologies4 - Important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important3 - Moderately important
          C1P005: Insufficient or insecure financial incentives4 - Important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important4 - Important5 - Very important
          C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant
          C1P005: Shortage of proven and tested solutions and examples3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important4 - Important
          C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
          C1P005: Any other Legal and Regulatory BARRIER (if any)
          C1P006: Environmental barriers
          C1P006: Environmental barriers3 - Moderately important2 - Slightly important
          C1P007: Technical barriers
          C1P007: Lack of skilled and trained personnel4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important2 - Slightly important5 - Very important
          C1P007: Deficient planning3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important4 - Important2 - Slightly important5 - Very important
          C1P007: Retrofitting work in dwellings in occupied state4 - Important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
          C1P007: Lack of well-defined process4 - Important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important4 - Important
          C1P007: Inaccuracy in energy modelling and simulation4 - Important3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important2 - Slightly important2 - Slightly important5 - Very important
          C1P007: Lack/cost of computational scalability4 - Important5 - Very important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important4 - Important
          C1P007: Grid congestion, grid instability4 - Important5 - Very important5 - Very important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant5 - Very important
          C1P007: Negative effects of project intervention on the natural environment3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant
          C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P007: Difficult definition of system boundaries3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P007: Any other Thecnical BARRIER5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P007: Any other Thecnical BARRIER (if any)Energy management systems of different new technologies does not "talk together" (e.g. solar inverter, V2G inverter). This creates challenges.
          C1P008: Social and Cultural barriers
          C1P008: Inertia4 - Important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important4 - Important
          C1P008: Lack of values and interest in energy optimization measurements5 - Very important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important4 - Important5 - Very important
          C1P008: Low acceptance of new projects and technologies5 - Very important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important5 - Very important
          C1P008: Difficulty of finding and engaging relevant actors5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important4 - Important4 - Important5 - Very important
          C1P008: Lack of trust beyond social network4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important
          C1P008: Rebound effect4 - Important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important4 - Important
          C1P008: Hostile or passive attitude towards environmentalism5 - Very important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important
          C1P008: Exclusion of socially disadvantaged groups2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
          C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
          C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
          C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P008: Any other Social BARRIER (if any)
          C1P009: Information and Awareness barriers
          C1P009: Insufficient information on the part of potential users and consumers1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important3 - Moderately important2 - Slightly important1 - Unimportant
          C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important5 - Very important
          C1P009: Lack of awareness among authorities4 - Important4 - Important1 - Unimportant3 - Moderately important5 - Very important2 - Slightly important2 - Slightly important
          C1P009: Information asymmetry causing power asymmetry of established actors1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important5 - Very important4 - Important1 - Unimportant
          C1P009: High costs of design, material, construction, and installation5 - Very important4 - Important1 - Unimportant1 - Unimportant5 - Very important4 - Important5 - Very important
          C1P009: Any other Information and Awareness BARRIER5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P009: Any other Information and Awareness BARRIER (if any)Different interests - Grid/energy stakeholders and building stakeholders
          C1P010: Financial barriers
          C1P010: Hidden costs5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important5 - Very important
          C1P010: Insufficient external financial support and funding for project activities5 - Very important5 - Very important1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important5 - Very important
          C1P010: Economic crisis1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important4 - Important4 - Important
          C1P010: Risk and uncertainty5 - Very important2 - Slightly important1 - Unimportant2 - Slightly important5 - Very important2 - Slightly important5 - Very important
          C1P010: Lack of consolidated and tested business models5 - Very important2 - Slightly important1 - Unimportant4 - Important5 - Very important2 - Slightly important5 - Very important
          C1P010: Limited access to capital and cost disincentives4 - Important5 - Very important1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important
          C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P010: Any other Financial BARRIER (if any)
          C1P011: Market barriers
          C1P011: Split incentives1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important4 - Important
          C1P011: Energy price distortion1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important4 - Important5 - Very important
          C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important5 - Very important
          C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P011: Any other Market BARRIER (if any)
          C1P012: Stakeholders involved
          C1P012: Government/Public Authorities
          • Planning/leading
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Design/demand aggregation
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Research & Innovation
          • Monitoring/operation/management
          • Design/demand aggregation
          • Planning/leading
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Financial/Funding
          • Construction/implementation
          • None
          • None
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Analyst, ICT and Big Data
          • Monitoring/operation/management
          • Monitoring/operation/management
          • Monitoring/operation/management
          • None
          • Planning/leading,
          • Monitoring/operation/management
          C1P012: Business process management
          • Planning/leading
          • Construction/implementation,
          • Monitoring/operation/management
          • Design/demand aggregation
          • None
          • None
          C1P012: Urban Services providers
          • Planning/leading
          • Design/demand aggregation
          • None
          • Planning/leading,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Real Estate developers
          • Planning/leading,
          • Monitoring/operation/management
          • None
          • Construction/implementation
          • Design/demand aggregation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Design/Construction companies
          • Construction/implementation
          • Construction/implementation
          • Design/demand aggregation
          • None
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          C1P012: End‐users/Occupants/Energy Citizens
          • Monitoring/operation/management
          • Monitoring/operation/management
          • Monitoring/operation/management
          • Monitoring/operation/management
          • Design/demand aggregation
          C1P012: Social/Civil Society/NGOs
          • None
          • None
          • Design/demand aggregation
          • Monitoring/operation/management
          • Design/demand aggregation,
          • Monitoring/operation/management
          C1P012: Industry/SME/eCommerce
          • Construction/implementation
          • Construction/implementation,
          • Monitoring/operation/management
          • Construction/implementation
          • None
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Other
          • None
          C1P012: Other (if any)
          Summary

          Authors (framework concept)

          Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

          Contributors (to the content)

          Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

          Implemented by

          Boutik.pt: Filipe Martins, Jamal Khan
          Marek Suchánek (Czech Technical University in Prague)