Filters:
NameProjectTypeCompare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Uncompare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Uncompare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Uncompare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Uncompare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Uncompare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Leipzig, Baumwollspinnerei district
Barcelona, SEILAB & Energy SmartLab
Kladno, Sletiště (Sport Area), PED Winter Stadium
Oulu, Kaukovainio
Tampere, Ilokkaanpuisto district
Vantaa, Aviapolis
Salzburg, Gneis district
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityLeipzig, Baumwollspinnerei districtBarcelona, SEILAB & Energy SmartLabKladno, Sletiště (Sport Area), PED Winter StadiumOulu, KaukovainioTampere, Ilokkaanpuisto districtVantaa, AviapolisSalzburg, Gneis district
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesnonoyesnoyesyes
PED relevant case studyyesnonoyesnoyesyesno
PED Lab.nonoyesnononoyesno
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesnoyesyesyesyesyes
Annual energy surplusnononoyesnononoyes
Energy communityyesnoyesyesnoyesnoyes
Circularitynonononoyesnoyesno
Air quality and urban comfortyesyesnononononoyes
Electrificationyesyesyesyesyesyesnono
Net-zero energy costnononononononono
Net-zero emissionnonoyesnonoyesnono
Self-sufficiency (energy autonomous)nonoyesnonoyesnono
Maximise self-sufficiencynononononononono
Othernoyesyesnonononono
Other (A1P004)Net-zero emission; Annual energy surplusGreen IT
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhaseImplementation PhaseIn operationPlanning PhaseIn operationCompletedPlanning PhaseCompleted
A1P006: Start Date
A1P006: Start date01/2011202204/1401/2301/20
A1P007: End Date
A1P007: End date02/201310/2312/2701/24
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • General statistical datasets
  • Open data city platform – different dashboards,
  • General statistical datasets
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • Meteorological open data
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
      • None yet, but coming
      A1P011: Geographic coordinates
      X Coordinate (longitude):23.81458812.3184582.114.0929625.51759508409350723.79808324.95882113.041216
      Y Coordinate (latitude):38.07734951.32649241.350.1371564.9928809817313261.46408860.30548847.771019
      A1P012: Country
      A1P012: CountryGreeceGermanySpainCzech RepublicFinlandFinlandFinlandAustria
      A1P013: City
      A1P013: CityMunicipality of KifissiaLeipzigBarcelona and TarragonaKladnoOuluTampereVantaaSalzburg
      A1P014: Climate Zone (Köppen Geiger classification)
      A1P014: Climate Zone (Köppen Geiger classification).CsaDfbCsaCfbDfcDfbDfbDfb
      A1P015: District boundary
      A1P015: District boundaryVirtualFunctionalVirtualGeographicVirtualGeographicGeographic
      OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhoodGeographicV1* (ca 8 buildings)Regional (close to virtual)
      A1P016: Ownership of the case study/PED Lab
      A1P016: Ownership of the case study/PED Lab:PublicMixedMixedMixedMixedMixed
      A1P017: Ownership of the land / physical infrastructure
      A1P017: Ownership of the land / physical infrastructure:Single OwnerMultiple OwnersSingle OwnerMultiple OwnersMultiple OwnersSingle Owner
      A1P018: Number of buildings in PED
      A1P018: Number of buildings in PED2086617
      A1P019: Conditioned space
      A1P019: Conditioned space [m²]17000197009.000199762
      A1P020: Total ground area
      A1P020: Total ground area [m²]300006000025.0003881000
      A1P021: Floor area ratio: Conditioned space / total ground area
      A1P021: Floor area ratio: Conditioned space / total ground area01000000
      A1P022: Financial schemes
      A1P022a: Financing - PRIVATE - Real estatenononoyesyesyesyesno
      A1P022a: Add the value in EUR if available [EUR]
      A1P022b: Financing - PRIVATE - ESCO schemenononoyesnononono
      A1P022b: Add the value in EUR if available [EUR]
      A1P022c: Financing - PRIVATE - Othernononononoyesyesno
      A1P022c: Add the value in EUR if available [EUR]
      A1P022d: Financing - PUBLIC - EU structural fundingnononoyesnononono
      A1P022d: Add the value in EUR if available [EUR]
      A1P022e: Financing - PUBLIC - National fundingnononononoyesnono
      A1P022e: Add the value in EUR if available [EUR]
      A1P022f: Financing - PUBLIC - Regional fundingnononononononono
      A1P022f: Add the value in EUR if available [EUR]
      A1P022g: Financing - PUBLIC - Municipal fundingnononoyesyesnoyesno
      A1P022g: Add the value in EUR if available [EUR]
      A1P022h: Financing - PUBLIC - Othernononononononono
      A1P022h: Add the value in EUR if available [EUR]
      A1P022i: Financing - RESEARCH FUNDING - EUnononoyesyesyesyesyes
      A1P022i: Add the value in EUR if available [EUR]
      A1P022j: Financing - RESEARCH FUNDING - Nationalnononoyesnononono
      A1P022j: Add the value in EUR if available [EUR]
      A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononononono
      A1P022k: Add the value in EUR if available [EUR]
      A1P022l: Financing - RESEARCH FUNDING - Othernononononononono
      A1P022l: Add the value in EUR if available [EUR]
      A1P022: OtherMultiple different funding schemes depending on the development site within the District and Lab.
      A1P023: Economic Targets
      A1P023: Economic Targets
      • Job creation,
      • Boosting local and sustainable production
      • Job creation,
      • Positive externalities
      • Positive externalities,
      • Boosting local and sustainable production
      • Boosting local and sustainable production
      • Positive externalities,
      • Boosting local businesses,
      • Boosting local and sustainable production
      • Positive externalities,
      • Other
      A1P023: OtherSustainable and replicable business models regarding renewable energy systemsDeveloping and demonstrating new solutionsBoosting social cooperation and social aid
      A1P024: More comments:
      A1P024: More comments:Semi-Virtual Energy Integration Laboratory (SEILAB) The Energy Smart Lab is an infrastructure conceived as a flexible and versatile platform for innovative technological developments for both industry and competitive R+D projects. The areas of expertise of this laboratory pivot around the following technologies: – Power Electronics for the integration and control of the elements within a building or community: Renewable Energy Sources (RES), Energy Storage Systems and Electric Vehicles (EV) – ICT Platform for smart communications and energy management of systems, building, networks and communities. – Energy System Integration technologies for smart and flexible buildings and grids including RES and EV. The laboratory operation is based on the hardware emulation approach, which allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation. The laboratory is pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.
      A1P025: Estimated PED case study / PED LAB costs
      A1P025: Estimated PED case study / PED LAB costs [mil. EUR]5
      Contact person for general enquiries
      A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaSimon BaumDr. Jaume Salom, Dra. Cristina CorcheroDavid ŠkorňaSamuli RinneSenior Scientist Terttu VainioEira LinkoAbel Magyari
      A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamCENERO Energy GmbHIRECMěsto KladnoCity of OuluVTT Technical Research Centre of FinlandCity of VantaaABUD
      A1P028: AffiliationMunicipality / Public BodiesOtherResearch Center / UniversityMunicipality / Public BodiesMunicipality / Public BodiesResearch Center / UniversityMunicipality / Public BodiesResearch Center / University
      A1P028: OtherCENERO Energy GmbH
      A1P029: Emailgiavasoglou@kifissia.grsib@cenero.deJsalom@irec.catdavid.skorna@mestokladno.czsamuli.rinne@ouka.fiterttu.vainio@vtt.fieira.linko@vantaa.fimagyari.abel@abud.hu
      Contact person for other special topics
      A1P030: NameStavros Zapantis - vice mayorSimon BaumMichal KuzmičSamuli RinneStrassl Ingeborg
      A1P031: Emailstavros.zapantis@gmail.comsib@cenero.demichal.kuzmic@cvut.czsamuli.rinne@ouka.fiinge.strassl@salzburg.gv.at
      Pursuant to the General Data Protection RegulationYesYesYesYesYesYes
      A2P001: Fields of application
      A2P001: Fields of application
      • Energy production
      • Energy efficiency,
      • Energy flexibility,
      • Energy production
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies,
      • Indoor air quality
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies,
      • Water use,
      • Indoor air quality
      • Energy efficiency,
      • Energy production,
      • Digital technologies
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies,
      • Construction materials,
      • Other
      • Energy efficiency,
      • Energy flexibility,
      • Energy production
      A2P001: Other
      A2P002: Tools/strategies/methods applied for each of the above-selected fields
      A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy SmartLab capacities - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. Energy SmartLab systems - SAFT Li-ion battery: maximum stored energy 20000 Wh, rated power 150 kW, rated discharge current 200 A, rated charge current 34 A, operating voltage 189 V – 227 V – 254 V, capacity 82 Ah. – Ultracapacitors: maximum stored energy 57 Wh, rated power 10 kW, rated current 20 A, peak current (<1s) 200 Apk, operating voltage 250 V – 500 V, capacity 1,65 F. – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah - 5 microgrid emulators (emulated power 5.5 kVA, max generation connected 10kVA, max consumption connected 10 kVA) - 1 grid emulator (Rated power: 200 kVA, Rated current per phase: 350 A, Rated current per neutral conductor: 35)Trnsys, PV modelling tools, CADDifferent kinds of waste heat streams are utilized by heat pumps. These are district heating return water (actually this is an indirect way to cool down the flue gas in the scrubber), ventilation exhaust air and sewage water. As a normal case, in ventilation also air-to-air heat exchanges are used. PV power is harvested also, in vertical and more horizontal panels. Buildings are well insulated to decrease the needed amount of heating energy in the first place.Energy efficiency: - A-class buildings - Heating by GSHP Energy production: - Installation of photovoltaic (PV) Digital technologies: - Smart control and monitoring of HVAC and indoor circumstances E-mobility - Installation of charging stations for electric vehicles;Pilot collaboration with landowners. Carbon footprint assessment and planning guidelines in zoning planning. Green infrastructure requirements. Examples of considered energy solutions: waste heat recovery and utilization, geothermal, air-water heat pumps, district heating return water, photovoltaics, A-class energy efficiency, smart control and monitoring, energy storages, E-mobility above national requirements, cooling- Dynamic district, and building scale energy modelling - Microclimate modelling - Klimaaktiv certification system - Energy community - Flexibility with shared heating and electricity systems
      A2P003: Application of ISO52000
      A2P003: Application of ISO52000NoNoNoNoYes
      A2P004: Appliances included in the calculation of the energy balance
      A2P004: Appliances included in the calculation of the energy balanceYesYesNoYesNo
      A2P005: Mobility included in the calculation of the energy balance
      A2P005: Mobility included in the calculation of the energy balanceYesNoNoNoNo
      A2P006: Description of how mobility is included (or not included) in the calculation
      A2P006: Description of how mobility is included (or not included) in the calculation– Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 AhNot yet included.Not included. However, there is a charging place for a shared EV in one building.The calculation of the energy balance will be further developed and specified under the Neutralpath-project. Mobility related emissions are taken into account in the carbon footprint calculation of each zoning plan in the development area.
      A2P007: Annual energy demand in buildings / Thermal demand
      A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]1.651.42.10
      A2P008: Annual energy demand in buildings / Electric Demand
      A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.30.20.7
      A2P009: Annual energy demand for e-mobility
      A2P009: Annual energy demand for e-mobility [GWh/annum]0
      A2P010: Annual energy demand for urban infrastructure
      A2P010: Annual energy demand for urban infrastructure [GWh/annum]
      A2P011: Annual renewable electricity production on-site during target year
      A2P011: PVyesyesyesyesyesyesyesyes
      A2P011: PV - specify production in GWh/annum [GWh/annum]1.10.10.70.7770664
      A2P011: Windnononononononono
      A2P011: Wind - specify production in GWh/annum [GWh/annum]
      A2P011: Hydronononononononono
      A2P011: Hydro - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_elnononononononono
      A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_peat_elnononononononono
      A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
      A2P011: PVT_elnononononononono
      A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
      A2P011: Othernononononononono
      A2P011: Other - specify production in GWh/annum [GWh/annum]
      A2P012: Annual renewable thermal production on-site during target year
      A2P012: Geothermalnononononoyesyesyes
      A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Solar Thermalnononononononono
      A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_heatnononononononono
      A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: Waste heat+HPnononoyesyesnoyesno
      A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]1.72.2
      A2P012: Biomass_peat_heatnononononononono
      A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: PVT_thnononononononono
      A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_firewood_thnononononononono
      A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Othernononononononono
      A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
      A2P013: Renewable resources on-site - Additional notes
      A2P013: Renewable resources on-site - Additional notesWaste heat from cooling the ice rink.Heat is produced from DH return, refrigeration and exhaust air. The mentioned 2200 MWh/a includes HP el. consumption (about 1/6 of that)PV plant of energy community locates outside of the city, not on the slot
      A2P014: Annual energy use
      A2P014: Annual energy use [GWh/annum]2.4212.12.30.70.819016
      A2P015: Annual energy delivered
      A2P015: Annual energy delivered [GWh/annum]
      A2P016: Annual non-renewable electricity production on-site during target year
      A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]00-1
      A2P017: Annual non-renewable thermal production on-site during target year
      A2P017: Gasnonoyesnonononono
      A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Coalnononononononono
      A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Oilnononononononono
      A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Othernononononononono
      A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P018: Annual renewable electricity imports from outside the boundary during target year
      A2P018: PVnonononoyesnoyesno
      A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
      A2P018: Windnonononoyesnoyesno
      A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
      A2P018: Hydrononononoyesnoyesno
      A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_elnonononoyesnoyesno
      A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_peat_elnonononoyesnonono
      A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: PVT_elnononononononono
      A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Othernononononononono
      A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
      A2P019: Annual renewable thermal imports from outside the boundary during target year
      A2P019: Geothermalnononononononono
      A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Solar Thermalnononononononono
      A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_heatnonononoyesnoyesno
      A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]0.7
      A2P019: Waste heat+HPnonononononoyesno
      A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_peat_heatnononononononono
      A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: PVT_thnononononononono
      A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_firewood_thnononononononono
      A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Othernononononononono
      A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
      A2P020: Share of RES on-site / RES outside the boundary
      A2P020: Share of RES on-site / RES outside the boundary00003.2857142857143000
      A2P021: GHG-balance calculated for the PED
      A2P021: GHG-balance calculated for the PED [tCO2/annum]-10400
      A2P022: KPIs related to the PED case study / PED Lab
      A2P022: Safety & Security
      A2P022: HealthEncouraging a healthy lifestyleCO2) levels, Predicted Mean Vote,Predicted Percentage of Dissatisfied, Temperature, Relative Humidity, Illuminance, Daylight factor, Sound pressure levels
      A2P022: Education
      A2P022: MobilityModal Split, Fuel mix in mobility, Energy use for transportation, Access to public transport, Public infrastructure promoting low-carbon mobility, Number of public EV charging stations, Energy delivered for EV charging
      A2P022: EnergyapplyEnergy demand (heating and hot water), Energy demand (cooling), Cooling demand, Distributin losses, PV production, RES production, OER, Primafry Non-renewable energy balance, AMR, HMR, CO2 balanceFinal energy consumption, Primary energy consumption, Energy imported to PED, Energy exported from PED, RES production, PED energy balance, Energy savings in the PED, GHG emissions, Reduction of emissions, Final energy consumption per capita, Primary energy consumption per capita, Primary energy sources (shares), Buildings connected to DH-network or renewable energy grid, GHG emissions per capita, System flexibility for energy players, RES storage usage, Peak load reductionNon-renewable primary energy balance, Renewable energy ratio, Grid Purchase factor, Load cover factor/Self-generation, Supply cover factor/Self-consumption, Net energy/Net power, Peak delivered/exported power, Connection capacity credit, Total greenhouse gas emissions
      A2P022: Water
      A2P022: Economic developmentInvestment cost, Caputal cost, Operation cost, payback period, NPV, cummulated cash flow, savings, Life cycle, ROI, SROITotal investments, Payback time, Economic value of savingsInvestment costs, Share of investments covered by grants, Maintenance-related costs, Requirement-related costs, Operation-related costs, Other costs, Net Present Value, Internal Rate of Return, Economic Value Added, Payback Period, nZEB Cost Comparison
      A2P022: Housing and CommunityDevelopment of housing prices, Housing cost overburden rate, Citizen engagement/empowerment to climate conscious actions, Inhabitants in dense areas, Energy povertyAccess to services, Affordability of energy, Affordability of housing, Democratic legitimacy, Living conditions, Social cohesion, Personal safety, Energy consciousness
      A2P022: WasteRecycling rate
      A2P022: OtherSmart Cities strategies, Quality of open data
      A2P023: Technological Solutions / Innovations - Energy Generation
      A2P023: Photovoltaicsnonoyesyesyesyesyesyes
      A2P023: Solar thermal collectorsnononononononono
      A2P023: Wind Turbinesnononononononono
      A2P023: Geothermal energy systemnononononoyesyesyes
      A2P023: Waste heat recoverynononoyesyesyesyesno
      A2P023: Waste to energynonononononoyesno
      A2P023: Polygenerationnonononononoyesno
      A2P023: Co-generationnonononoyesnonono
      A2P023: Heat Pumpnononoyesyesyesyesno
      A2P023: Hydrogennononononononono
      A2P023: Hydropower plantnononononononono
      A2P023: Biomassnonononoyesnoyesno
      A2P023: Biogasnononononononono
      A2P023: OtherThe technological solutions can vary within the PED Lab area and will be specified case by case.
      A2P024: Technological Solutions / Innovations - Energy Flexibility
      A2P024: A2P024: Information and Communication Technologies (ICT)nonoyesyesyesyesyesno
      A2P024: Energy management systemnonoyesyesyesyesyesyes
      A2P024: Demand-side managementnononoyesnoyesyesyes
      A2P024: Smart electricity gridnonoyesnononoyesyes
      A2P024: Thermal Storagenonononoyesnoyesno
      A2P024: Electric Storagenonoyesnononoyesno
      A2P024: District Heating and Coolingnononoyesyesnoyesno
      A2P024: Smart metering and demand-responsive control systemsnononoyesnoyesyesno
      A2P024: P2P – buildingsnononononononoyes
      A2P024: OtherElectric grid as virtual batteryThe technological solutions can vary within the PED Lab area and will be specified case by case.
      A2P025: Technological Solutions / Innovations - Energy Efficiency
      A2P025: Deep Retrofittingnononoyesyesnonono
      A2P025: Energy efficiency measures in historic buildingsnononononononono
      A2P025: High-performance new buildingsnonononoyesyesyesyes
      A2P025: Smart Public infrastructure (e.g. smart lighting)nononononononono
      A2P025: Urban data platformsnononoyesyesnonono
      A2P025: Mobile applications for citizensnononononoyesnono
      A2P025: Building services (HVAC & Lighting)nonoyesyesyesyesyesyes
      A2P025: Smart irrigationnononononononono
      A2P025: Digital tracking for waste disposalnononononononono
      A2P025: Smart surveillancenononononononono
      A2P025: OtherThe technological solutions can vary within the PED Lab area and will be specified case by case.
      A2P026: Technological Solutions / Innovations - Mobility
      A2P026: Efficiency of vehicles (public and/or private)nonoyesnoyesnoyesno
      A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nonononoyesnoyesyes
      A2P026: e-Mobilitynonononoyesnoyesyes
      A2P026: Soft mobility infrastructures and last mile solutionsnonononoyesnoyesno
      A2P026: Car-free areanononononononono
      A2P026: Other
      A2P027: Mobility strategies - Additional notes
      A2P027: Mobility strategies - Additional notesTest-Concept for bidirectional charging.Shared mobility: a mobility point will be implemented and ensure the flexible use of different mobility services.
      A2P028: Energy efficiency certificates
      A2P028: Energy efficiency certificatesYesYesYesYesYes
      A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingNational standards apply.The obligatory buildijng energy classificationEnergy Performance Certificate
      A2P029: Any other building / district certificates
      A2P029: Any other building / district certificatesNoNoNoYes
      A2P029: If yes, please specify and/or enter notesKlimaaktiv certificate, Greenpass certificate
      A3P001: Relevant city /national strategy
      A3P001: Relevant city /national strategy
      • Energy master planning (SECAP, etc.),
      • Promotion of energy communities (REC/CEC)
      • Smart cities strategies,
      • New development strategies
      • Smart cities strategies,
      • Energy master planning (SECAP, etc.),
      • Promotion of energy communities (REC/CEC),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Smart cities strategies,
      • Urban Renewal Strategies,
      • Energy master planning (SECAP, etc.),
      • New development strategies,
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Smart cities strategies,
      • Energy master planning (SECAP, etc.),
      • Promotion of energy communities (REC/CEC),
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Energy master planning (SECAP, etc.),
      • New development strategies,
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      A3P002: Quantitative targets included in the city / national strategy
      A3P002: Quantitative targets included in the city / national strategyCarbon neutrality 2050Carbon neutrality by 2035Carbon-Neutral Vantaa by 2030 (min. 80 % reduction of yearly emissions, capture or compensation os the residual 20 %),
      A3P003: Strategies towards decarbonization of the gas grid
      A3P003: Strategies towards decarbonization of the gas grid
      • Biogas
      • Electrification of Heating System based on Heat Pumps
      • Electrification of Heating System based on Heat Pumps
      A3P003: Other
      A3P004: Identification of needs and priorities
      A3P004: Identification of needs and priorities-Allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation -Pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.Developing and demonstrating solutions for carbon neutrality
      A3P005: Sustainable behaviour
      A3P005: Sustainable behaviour-Improving the development of Net Zero Energy Buildings and Flexible Energy buildings.E. g. visualizing energy and water consumption
      A3P006: Economic strategies
      A3P006: Economic strategies
      • Innovative business models,
      • Other
      • Demand management Living Lab
      • Innovative business models,
      • PPP models,
      • Existing incentives
      • Open data business models,
      • Innovative business models,
      • PPP models,
      • Life Cycle Cost,
      • Circular economy models
      • Open data business models,
      • Circular economy models
      • Innovative business models,
      • PPP models,
      • Life Cycle Cost,
      • Circular economy models
      • Innovative business models,
      • Local trading
      A3P006: Otheroperational savings through efficiency measures
      A3P007: Social models
      A3P007: Social models
      • Behavioural Change / End-users engagement
      • Digital Inclusion,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Strategies towards (local) community-building,
      • Affordability
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Citizen Social Research,
      • Policy Forums,
      • Quality of Life,
      • Strategies towards social mix,
      • Affordability,
      • Prevention of energy poverty,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Digital Inclusion,
      • Citizen/owner involvement in planning and maintenance
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Citizen Social Research,
      • Policy Forums,
      • Quality of Life,
      • Strategies towards social mix,
      • Affordability,
      • Prevention of energy poverty,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Strategies towards (local) community-building,
      • Behavioural Change / End-users engagement,
      • Social incentives,
      • Quality of Life,
      • Strategies towards social mix,
      • Affordability,
      • Citizen/owner involvement in planning and maintenance
      A3P007: Other
      A3P008: Integrated urban strategies
      A3P008: Integrated urban strategies
      • Strategic urban planning,
      • City Vision 2050,
      • SECAP Updates
      • Strategic urban planning,
      • District Energy plans,
      • City Vision 2050,
      • SECAP Updates
      • Strategic urban planning,
      • Digital twinning and visual 3D models,
      • SECAP Updates
      • Strategic urban planning,
      • SECAP Updates
      • Building / district Certification
      A3P008: Other
      A3P009: Environmental strategies
      A3P009: Environmental strategies
      • Other
      • Energy Neutral,
      • Low Emission Zone,
      • Pollutants Reduction,
      • Greening strategies
      • Net zero carbon footprint
      • Energy Neutral,
      • Net zero carbon footprint
      • Energy Neutral,
      • Net zero carbon footprint,
      • Carbon-free,
      • Greening strategies,
      • Sustainable Urban drainage systems (SUDS),
      • Nature Based Solutions (NBS)
      • Net zero carbon footprint,
      • Life Cycle approach,
      • Greening strategies,
      • Nature Based Solutions (NBS)
      • Energy Neutral,
      • Low Emission Zone
      A3P009: OtherPositive Energy Balance for the demo site
      A3P010: Legal / Regulatory aspects
      A3P010: Legal / Regulatory aspects- European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.
      B1P001: PED/PED relevant concept definition
      B1P001: PED/PED relevant concept definitionOnsite Energy Ratio > 1The original idea is that the area produces at least as much it consumes.Neutralpath-project is working with the cocept of PCEDs = Positive and Clean Energy Districts (energy-efficient and energy-flexible districts with net zero greenhouse gas emissions and a surplus of renewable energy). Aviapolis Climate-Neutral Lab will work with both PCED and PCED relevant cases within the district.
      B1P002: Motivation behind PED/PED relevant project development
      B1P002: Motivation behind PED/PED relevant project developmentStrategic, economicDeveloping systems towards carbon neutrality. Also urban renewal.According to Vantaa city strategy 2021-2025 Aviapolis area aims to become the greenest airport city in Europe. The district is transforming from a logistics and business focused area to a lively urban district which gives an opportunity to rethink the areas energy solutions. With Neutralpath-project Vantaa aims to support the development of the district's energy system and explore innovative, energy efficient and fossil free district energy solutions.
      B1P003: Environment of the case study area
      B2P003: Environment of the case study areaUrban areaSuburban areaSuburban areaUrban areaSuburban area
      B1P004: Type of district
      B2P004: Type of district
      • New construction,
      • Renovation
      • New construction,
      • Renovation
      • New construction
      • New construction,
      • Renovation
      • New construction
      B1P005: Case Study Context
      B1P005: Case Study Context
      • Preservation Area
      • New Development,
      • Retrofitting Area
      • New Development,
      • Retrofitting Area
      • New Development
      • Re-use / Transformation Area,
      • New Development
      • New Development
      B1P006: Year of construction
      B1P006: Year of construction2024
      B1P007: District population before intervention - Residential
      B1P007: District population before intervention - Residential35000
      B1P008: District population after intervention - Residential
      B1P008: District population after intervention - Residential3500300
      B1P009: District population before intervention - Non-residential
      B1P009: District population before intervention - Non-residential
      B1P010: District population after intervention - Non-residential
      B1P010: District population after intervention - Non-residential
      B1P011: Population density before intervention
      B1P011: Population density before intervention00000000
      B1P012: Population density after intervention
      B1P012: Population density after intervention00000.0583333333333331200
      B1P013: Building and Land Use before intervention
      B1P013: Residentialnononoyesyesnoyesno
      B1P013 - Residential: Specify the sqm [m²]
      B1P013: Officenononoyesnonoyesno
      B1P013 - Office: Specify the sqm [m²]
      B1P013: Industry and Utilitynonononononoyesno
      B1P013 - Industry and Utility: Specify the sqm [m²]
      B1P013: Commercialnonononoyesnoyesno
      B1P013 - Commercial: Specify the sqm [m²]
      B1P013: Institutionalnonononononoyesno
      B1P013 - Institutional: Specify the sqm [m²]
      B1P013: Natural areasnonononoyesyesnoyes
      B1P013 - Natural areas: Specify the sqm [m²]
      B1P013: Recreationalnononoyesyesnoyesno
      B1P013 - Recreational: Specify the sqm [m²]
      B1P013: Dismissed areasnonononononoyesno
      B1P013 - Dismissed areas: Specify the sqm [m²]
      B1P013: Othernononononononono
      B1P013 - Other: Specify the sqm [m²]
      B1P014: Building and Land Use after intervention
      B1P014: Residentialnononoyesyesyesyesyes
      B1P014 - Residential: Specify the sqm [m²]
      B1P014: Officenononoyesnonoyesno
      B1P014 - Office: Specify the sqm [m²]
      B1P014: Industry and Utilitynonononononoyesno
      B1P014 - Industry and Utility: Specify the sqm [m²]
      B1P014: Commercialnonononoyesnoyesno
      B1P014 - Commercial: Specify the sqm [m²]
      B1P014: Institutionalnonononononoyesno
      B1P014 - Institutional: Specify the sqm [m²]
      B1P014: Natural areasnonononoyesnonoyes
      B1P014 - Natural areas: Specify the sqm [m²]
      B1P014: Recreationalnononoyesyesnoyesno
      B1P014 - Recreational: Specify the sqm [m²]
      B1P014: Dismissed areasnononononononono
      B1P014 - Dismissed areas: Specify the sqm [m²]
      B1P014: Othernononononononono
      B1P014 - Other: Specify the sqm [m²]
      B2P001: PED Lab concept definition
      B2P001: PED Lab concept definitionaddressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility AggregationNeutralpath-project is working with the cocept of PCEDs = Positive and Clean Energy Districts (energy-efficient and energy-flexible districts with net zero greenhouse gas emissions and a surplus of renewable energy). Aviapolis Climate-Neutral Lab will work with both PCED and PCED relevant cases within the district.
      B2P002: Installation life time
      B2P002: Installation life time
      B2P003: Scale of action
      B2P003: ScaleVirtualDistrict
      B2P004: Operator of the installation
      B2P004: Operator of the installationIRECThe City of Vantaa manages the lab, working closely with landowners and other stakeholders such as energy companies, solution providers, universities and citizens.
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P006: Circular Economy Approach
      B2P006: Do you apply any strategy to reuse and recycling the materials?No
      B2P006: Other
      B2P007: Motivation for developing the PED Lab
      B2P007: Motivation for developing the PED Lab
      • Strategic,
      • Private
      • Strategic
      B2P007: Other
      B2P008: Lead partner that manages the PED Lab
      B2P008: Lead partner that manages the PED LabResearch center/UniversityMunicipality
      B2P008: Other
      B2P009: Collaborative partners that participate in the PED Lab
      B2P009: Collaborative partners that participate in the PED Lab
      • Academia,
      • Private,
      • Industrial,
      • Citizens, public, NGO
      B2P009: Other
      B2P010: Synergies between the fields of activities
      B2P010: Synergies between the fields of activities
      B2P011: Available facilities to test urban configurations in PED Lab
      B2P011: Available facilities to test urban configurations in PED Lab
      • Demand-side management,
      • Energy storage,
      • Energy networks,
      • Efficiency measures,
      • Information and Communication Technologies (ICT)
      B2P011: Other
      B2P012: Incubation capacities of PED Lab
      B2P012: Incubation capacities of PED Lab
      • Monitoring and evaluation infrastructure,
      • Tools for prototyping and modelling,
      • Tools, spaces, events for testing and validation
      B2P013: Availability of the facilities for external people
      B2P013: Availability of the facilities for external people
      B2P014: Monitoring measures
      B2P014: Monitoring measures
      • Equipment
      B2P015: Key Performance indicators
      B2P015: Key Performance indicators
      • Energy,
      • Environmental
      • Energy,
      • Environmental,
      • Social,
      • Economical / Financial
      B2P016: Execution of operations
      B2P016: Execution of operations
      B2P017: Capacities
      B2P017: Capacities- Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network.
      B2P018: Relations with stakeholders
      B2P018: Relations with stakeholders
      B2P019: Available tools
      B2P019: Available tools
      • Energy modelling
      • Energy modelling
      B2P019: Available tools
      B2P020: External accessibility
      B2P020: External accessibilityTo follow the lab and Vantaa's activities in Neutralpath, fill in the following form: https://neutralpath.eu/fi/tayta-lomake-liittyaksesi-cn-labiin/
      C1P001: Unlocking Factors
      C1P001: Recent technological improvements for on-site RES production5 - Very important1 - Unimportant4 - Important5 - Very important4 - Important5 - Very important1 - Unimportant
      C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important1 - Unimportant4 - Important2 - Slightly important3 - Moderately important4 - Important1 - Unimportant
      C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important3 - Moderately important3 - Moderately important2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant
      C1P001: Storage systems and E-mobility market penetration5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
      C1P001: Decreasing costs of innovative materials4 - Important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant
      C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important5 - Very important4 - Important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant
      C1P001: The ability to predict Multiple Benefits4 - Important2 - Slightly important4 - Important5 - Very important4 - Important1 - Unimportant
      C1P001: The ability to predict the distribution of benefits and impacts4 - Important3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant
      C1P001: Social acceptance (top-down)5 - Very important1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important4 - Important1 - Unimportant
      C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important5 - Very important5 - Very important1 - Unimportant
      C1P001: Presence of integrated urban strategies and plans3 - Moderately important1 - Unimportant4 - Important4 - Important5 - Very important5 - Very important1 - Unimportant
      C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important4 - Important3 - Moderately important4 - Important3 - Moderately important4 - Important1 - Unimportant
      C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important5 - Very important5 - Very important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant
      C1P001: Availability of RES on site (Local RES)4 - Important4 - Important4 - Important5 - Very important5 - Very important1 - Unimportant
      C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important5 - Very important4 - Important4 - Important5 - Very important5 - Very important1 - Unimportant
      C1P001: Any other UNLOCKING FACTORS1 - Unimportant4 - Important2 - Slightly important5 - Very important5 - Very important1 - Unimportant
      C1P001: Any other UNLOCKING FACTORS (if any)Collaboration with the local partnersReal-estate market situation
      C1P002: Driving Factors
      C1P002: Climate Change adaptation need4 - Important4 - Important3 - Moderately important1 - Unimportant5 - Very important4 - Important1 - Unimportant
      C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important4 - Important4 - Important5 - Very important5 - Very important5 - Very important1 - Unimportant
      C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
      C1P002: Urban re-development of existing built environment3 - Moderately important4 - Important3 - Moderately important5 - Very important3 - Moderately important5 - Very important1 - Unimportant
      C1P002: Economic growth need2 - Slightly important4 - Important4 - Important2 - Slightly important3 - Moderately important4 - Important1 - Unimportant
      C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important4 - Important3 - Moderately important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant
      C1P002: Territorial and market attractiveness2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important5 - Very important1 - Unimportant
      C1P002: Energy autonomy/independence5 - Very important5 - Very important4 - Important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant
      C1P002: Any other DRIVING FACTOR1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P002: Any other DRIVING FACTOR (if any)
      C1P003: Administrative barriers
      C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important4 - Important4 - Important2 - Slightly important4 - Important4 - Important1 - Unimportant
      C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
      C1P003: Lack of public participation3 - Moderately important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P003:Long and complex procedures for authorization of project activities5 - Very important5 - Very important4 - Important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant
      C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important5 - Very important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P003: Complicated and non-comprehensive public procurement4 - Important3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant
      C1P003: Fragmented and or complex ownership structure3 - Moderately important5 - Very important5 - Very important2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant
      C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important4 - Important5 - Very important2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant
      C1P003: Lack of internal capacities to support energy transition3 - Moderately important4 - Important4 - Important2 - Slightly important4 - Important3 - Moderately important1 - Unimportant
      C1P003: Any other Administrative BARRIER5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P003: Any other Administrative BARRIER (if any)Fragmented financial support; lack of experimental budget for complex projects, etc.
      C1P004: Policy barriers
      C1P004: Lack of long-term and consistent energy plans and policies4 - Important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important2 - Slightly important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P004: Any other Political BARRIER1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P004: Any other Political BARRIER (if any)Different priorities; overall problematic system od decentralization powers; non-fuctioning model of local development funding, etc.
      C1P005: Legal and Regulatory barriers
      C1P005: Inadequate regulations for new technologies4 - Important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P005: Regulatory instability3 - Moderately important2 - Slightly important3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant
      C1P005: Non-effective regulations4 - Important2 - Slightly important4 - Important2 - Slightly important4 - Important4 - Important1 - Unimportant
      C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important4 - Important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P005: Building code and land-use planning hindering innovative technologies4 - Important3 - Moderately important4 - Important2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant
      C1P005: Insufficient or insecure financial incentives4 - Important5 - Very important5 - Very important2 - Slightly important2 - Slightly important5 - Very important1 - Unimportant
      C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important1 - Unimportant3 - Moderately important4 - Important2 - Slightly important2 - Slightly important1 - Unimportant
      C1P005: Shortage of proven and tested solutions and examples4 - Important3 - Moderately important2 - Slightly important2 - Slightly important2 - Slightly important1 - Unimportant
      C1P005: Any other Legal and Regulatory BARRIER4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P005: Any other Legal and Regulatory BARRIER (if any)laws favouring big energy companies
      C1P006: Environmental barriers
      C1P006: Environmental barriers
      C1P007: Technical barriers
      C1P007: Lack of skilled and trained personnel4 - Important5 - Very important4 - Important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P007: Deficient planning3 - Moderately important5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P007: Retrofitting work in dwellings in occupied state4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P007: Lack of well-defined process4 - Important4 - Important5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
      C1P007: Inaccuracy in energy modelling and simulation4 - Important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P007: Lack/cost of computational scalability4 - Important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P007: Grid congestion, grid instability4 - Important5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P007: Negative effects of project intervention on the natural environment3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P007: Difficult definition of system boundaries3 - Moderately important1 - Unimportant4 - Important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P007: Any other Thecnical BARRIER1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P007: Any other Thecnical BARRIER (if any)Inadequate regulation towards energy transition
      C1P008: Social and Cultural barriers
      C1P008: Inertia4 - Important4 - Important3 - Moderately important2 - Slightly important3 - Moderately important4 - Important1 - Unimportant
      C1P008: Lack of values and interest in energy optimization measurements5 - Very important5 - Very important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
      C1P008: Low acceptance of new projects and technologies5 - Very important5 - Very important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P008: Difficulty of finding and engaging relevant actors5 - Very important5 - Very important4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P008: Lack of trust beyond social network4 - Important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
      C1P008: Rebound effect4 - Important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
      C1P008: Hostile or passive attitude towards environmentalism5 - Very important5 - Very important3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant
      C1P008: Exclusion of socially disadvantaged groups2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant
      C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant3 - Moderately important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant
      C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P008: Any other Social BARRIER (if any)
      C1P009: Information and Awareness barriers
      C1P009: Insufficient information on the part of potential users and consumers1 - Unimportant3 - Moderately important2 - Slightly important3 - Moderately important4 - Important1 - Unimportant
      C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts5 - Very important4 - Important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant
      C1P009: Lack of awareness among authorities2 - Slightly important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P009: Information asymmetry causing power asymmetry of established actors1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant
      C1P009: High costs of design, material, construction, and installation5 - Very important5 - Very important3 - Moderately important5 - Very important4 - Important1 - Unimportant
      C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P009: Any other Information and Awareness BARRIER (if any)
      C1P010: Financial barriers
      C1P010: Hidden costs5 - Very important4 - Important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
      C1P010: Insufficient external financial support and funding for project activities5 - Very important4 - Important2 - Slightly important3 - Moderately important2 - Slightly important1 - Unimportant
      C1P010: Economic crisis4 - Important3 - Moderately important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant
      C1P010: Risk and uncertainty5 - Very important4 - Important3 - Moderately important5 - Very important4 - Important1 - Unimportant
      C1P010: Lack of consolidated and tested business models5 - Very important4 - Important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant
      C1P010: Limited access to capital and cost disincentives1 - Unimportant2 - Slightly important3 - Moderately important2 - Slightly important1 - Unimportant
      C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P010: Any other Financial BARRIER (if any)
      C1P011: Market barriers
      C1P011: Split incentives4 - Important5 - Very important2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant
      C1P011: Energy price distortion5 - Very important5 - Very important2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant
      C1P011: Energy market concentration, gatekeeper actors (DSOs)5 - Very important5 - Very important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
      C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P011: Any other Market BARRIER (if any)
      C1P012: Stakeholders involved
      C1P012: Government/Public Authorities
      • Planning/leading,
      • Design/demand aggregation
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Planning/leading
      • Planning/leading
      C1P012: Research & Innovation
      • Planning/leading,
      • Design/demand aggregation
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Planning/leading,
      • Construction/implementation,
      • Monitoring/operation/management
      • Design/demand aggregation
      C1P012: Financial/Funding
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Construction/implementation
      C1P012: Analyst, ICT and Big Data
      • Monitoring/operation/management
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Design/demand aggregation
      C1P012: Business process management
      • Planning/leading,
      • Monitoring/operation/management
      • Planning/leading,
      • Construction/implementation
      C1P012: Urban Services providers
      • Design/demand aggregation
      • Planning/leading
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      C1P012: Real Estate developers
      • Design/demand aggregation
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading,
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Design/Construction companies
      • Design/demand aggregation
      • Planning/leading,
      • Construction/implementation
      • Construction/implementation
      C1P012: End‐users/Occupants/Energy Citizens
      • Design/demand aggregation
      • Monitoring/operation/management
      • None
      • Monitoring/operation/management
      C1P012: Social/Civil Society/NGOs
      • Monitoring/operation/management
      • None
      C1P012: Industry/SME/eCommerce
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Construction/implementation
      C1P012: Other
      C1P012: Other (if any)
      Summary

      Authors (framework concept)

      Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

      Contributors (to the content)

      Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

      Implemented by

      Boutik.pt: Filipe Martins, Jamal Khan
      Marek Suchánek (Czech Technical University in Prague)