Filters:
NameProjectTypeCompare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Compare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Compare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Compare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr, Geothermal District Heating Project PED Relevant Case Study Compare
Drammen, Jacobs Borchs Gate PED Relevant Case Study Compare
Freiburg im Breisgau, Dietenbach PED Relevant Case Study Compare
Lecce, SmartEnCity SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Uncompare
Trento, STARDUST STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Malmö, Klimatkontrakt Hyllie PED Relevant Case Study Compare
Kaiserslautern, EnStadt:Pfaff PED Relevant Case Study / PED Lab Compare
Helsinki, mySMARTlife PED Relevant Case Study Compare
Firenze, Novoli-Cascine district on “le PIagge” buildings PED Relevant Case Study Compare
Bolzano, Sinfonia PED Relevant Case Study Compare
Zürich, Hunziker Areal PED Relevant Case Study Compare
Hammarby Sjöstad, Hammarby Sjöstad 2.0 PED Relevant Case Study Compare
Milano, Sharing Cities PED Relevant Case Study Compare
Mieres, District Heating Pozo Barredo PED Relevant Case Study Compare
Lund, Cityfied (demo Linero) PED Relevant Case Study
Espoo, Smart Otaniemi PED Relevant Case Study / PED Lab Compare
Vienna, Zukunftsquartier PED Case Study Compare
Trento, Santa Chiara Open Lab PED Case Study Compare
Paterna, Barrio La Pinada PED Case Study / PED Lab Compare
Bergen, Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru, +CityxChange PED Case Study Compare
Trondheim, NTNU Campus within the Knowledge Axis ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Oslo, Furuset project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Măgurele, Laser Valley – Land of Lights PED Case Study Compare
Elverum, Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bodø, Airport, NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bærum, Fornebu ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Carquefou, Fleuraye west PED Case Study Compare
Åland, Smart Energy PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Uncompare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleLund, Cityfied (demo Linero)
Lecce, SmartEnCity
Innsbruck, Campagne-Areal
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabLund, Cityfied (demo Linero)Lecce, SmartEnCityInnsbruck, Campagne-Areal
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynonono
PED relevant case studyyesyesyes
PED Lab.nonono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyes
Annual energy surplusnonono
Energy communitynonono
Circularitynonono
Air quality and urban comfortnonono
Electrificationnonono
Net-zero energy costnonono
Net-zero emissionyesnoyes
Self-sufficiency (energy autonomous)nonono
Maximise self-sufficiencynonono
Otheryesyesno
Other (A1P004)Social aspects/affordabilityCarbon-free
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabCompletedImplementation PhaseCompleted
A1P006: Start Date
A1P006: Start date01/1401/1604/16
A1P007: End Date
A1P007: End date12/1904/22
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
A1P011: Geographic coordinates
X Coordinate (longitude):13.24337518.17446311.424346738140256
Y Coordinate (latitude):55.69922340.35097247.271470786729104
A1P012: Country
A1P012: CountrySwedenItalyAustria
A1P013: City
A1P013: CityLundLecceInnsbruck
A1P014: Climate Zone (Köppen Geiger classification)
A1P014: Climate Zone (Köppen Geiger classification).CfbCsaDfb
A1P015: District boundary
A1P015: District boundaryGeographic
Other
A1P016: Ownership of the case study/PED Lab
A1P016: Ownership of the case study/PED Lab:MixedMixedMixed
A1P017: Ownership of the land / physical infrastructure
A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersMultiple Owners
A1P018: Number of buildings in PED
A1P018: Number of buildings in PED4
A1P019: Conditioned space
A1P019: Conditioned space [m²]22277
A1P020: Total ground area
A1P020: Total ground area [m²]8000011351
A1P021: Floor area ratio: Conditioned space / total ground area
A1P021: Floor area ratio: Conditioned space / total ground area002
A1P022: Financial schemes
A1P022a: Financing - PRIVATE - Real estatenonono
A1P022a: Add the value in EUR if available [EUR]
A1P022b: Financing - PRIVATE - ESCO schemenonono
A1P022b: Add the value in EUR if available [EUR]
A1P022c: Financing - PRIVATE - Othernonono
A1P022c: Add the value in EUR if available [EUR]
A1P022d: Financing - PUBLIC - EU structural fundingnoyesno
A1P022d: Add the value in EUR if available [EUR]
A1P022e: Financing - PUBLIC - National fundingnonono
A1P022e: Add the value in EUR if available [EUR]
A1P022f: Financing - PUBLIC - Regional fundingnonono
A1P022f: Add the value in EUR if available [EUR]
A1P022g: Financing - PUBLIC - Municipal fundingnonono
A1P022g: Add the value in EUR if available [EUR]
A1P022h: Financing - PUBLIC - Otheryesnono
A1P022h: Add the value in EUR if available [EUR]
A1P022i: Financing - RESEARCH FUNDING - EUnonono
A1P022i: Add the value in EUR if available [EUR]
A1P022j: Financing - RESEARCH FUNDING - Nationalnonoyes
A1P022j: Add the value in EUR if available [EUR]
A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonono
A1P022k: Add the value in EUR if available [EUR]
A1P022l: Financing - RESEARCH FUNDING - Otheryesyesno
A1P022l: Add the value in EUR if available [EUR]
A1P022: Other
A1P023: Economic Targets
A1P023: Economic Targets
  • Job creation,
  • Other
A1P023: OtherCreate affordable appartments for the citizens
A1P024: More comments:
A1P024: More comments:Owners are two local social housing companies. The complete district will consist 4 building blocks, from which only the first one with 4 building is ready built and occupied. At the end, it would be a district of ca. 1100 flats in 16 buildings with 78000 m2
A1P025: Estimated PED case study / PED LAB costs
A1P025: Estimated PED case study / PED LAB costs [mil. EUR]
Contact person for general enquiries
A1P026: NameChristoph GollnerChristoph GollnerGeorgios Dermentzis
A1P027: OrganizationFFGFFGUniversity of Innsbruck
A1P028: AffiliationOtherOtherResearch Center / University
A1P028: Other
A1P029: Emailchristoph.gollner@ffg.atchristoph.gollner@ffg.atGeorgios.Dermentzis@uibk.ac.at
Contact person for other special topics
A1P030: Name
A1P031: Email
Pursuant to the General Data Protection RegulationYesYesYes
A2P001: Fields of application
A2P001: Fields of application
  • Energy efficiency,
  • Energy production
  • Energy efficiency,
  • Energy production,
  • E-mobility,
  • Digital technologies
  • Energy efficiency,
  • Energy production,
  • Indoor air quality
A2P001: Other
A2P002: Tools/strategies/methods applied for each of the above-selected fields
A2P002: Tools/strategies/methods applied for each of the above-selected fieldsThe buildings are designed based on Passive House standards and dynamic building and system simulations are performed to optimise the HVAC systems, that are a ground-water heat pump for space heating and district heating for domestic hot water preparation. Photovoltaic systems are installed in the available roof spaces, however, more renewable sources are required due to very large number of apartments (very high density) to reach PED, and thus, simulation studies are performed.
A2P003: Application of ISO52000
A2P003: Application of ISO52000No
A2P004: Appliances included in the calculation of the energy balance
A2P004: Appliances included in the calculation of the energy balanceYes
A2P005: Mobility included in the calculation of the energy balance
A2P005: Mobility included in the calculation of the energy balanceNo
A2P006: Description of how mobility is included (or not included) in the calculation
A2P006: Description of how mobility is included (or not included) in the calculation
A2P007: Annual energy demand in buildings / Thermal demand
A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]0.39
A2P008: Annual energy demand in buildings / Electric Demand
A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.655
A2P009: Annual energy demand for e-mobility
A2P009: Annual energy demand for e-mobility [GWh/annum]0
A2P010: Annual energy demand for urban infrastructure
A2P010: Annual energy demand for urban infrastructure [GWh/annum]
A2P011: Annual renewable electricity production on-site during target year
A2P011: PVnonoyes
A2P011: PV - specify production in GWh/annum [GWh/annum]0.42
A2P011: Windnonono
A2P011: Wind - specify production in GWh/annum [GWh/annum]
A2P011: Hydrononono
A2P011: Hydro - specify production in GWh/annum [GWh/annum]
A2P011: Biomass_elnonono
A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
A2P011: Biomass_peat_elnonono
A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
A2P011: PVT_elnonono
A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
A2P011: Othernonono
A2P011: Other - specify production in GWh/annum [GWh/annum]
A2P012: Annual renewable thermal production on-site during target year
A2P012: Geothermalnonono
A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
A2P012: Solar Thermalnonono
A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
A2P012: Biomass_heatnonono
A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
A2P012: Waste heat+HPnonono
A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
A2P012: Biomass_peat_heatnonono
A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
A2P012: PVT_thnonono
A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
A2P012: Biomass_firewood_thnonono
A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
A2P012: Othernonono
A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
A2P013: Renewable resources on-site - Additional notes
A2P013: Renewable resources on-site - Additional notes
A2P014: Annual energy use
A2P014: Annual energy use [GWh/annum]0.96
A2P015: Annual energy delivered
A2P015: Annual energy delivered [GWh/annum]-2
A2P016: Annual non-renewable electricity production on-site during target year
A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]
A2P017: Annual non-renewable thermal production on-site during target year
A2P017: Gasnonono
A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Coalnonono
A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Oilnonono
A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Othernonono
A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P018: Annual renewable electricity imports from outside the boundary during target year
A2P018: PVnonono
A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
A2P018: Windnonono
A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
A2P018: Hydrononono
A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
A2P018: Biomass_elnonono
A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
A2P018: Biomass_peat_elnonono
A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
A2P018: PVT_elnonono
A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
A2P018: Othernonono
A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
A2P019: Annual renewable thermal imports from outside the boundary during target year
A2P019: Geothermalnonono
A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
A2P019: Solar Thermalnonono
A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_heatnonono
A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
A2P019: Waste heat+HPnonono
A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_peat_heatnonono
A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
A2P019: PVT_thnonono
A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_firewood_thnonono
A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
A2P019: Othernonono
A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
A2P020: Share of RES on-site / RES outside the boundary
A2P020: Share of RES on-site / RES outside the boundary000
A2P021: GHG-balance calculated for the PED
A2P021: GHG-balance calculated for the PED [tCO2/annum]
A2P022: KPIs related to the PED case study / PED Lab
A2P022: Safety & Security
A2P022: Healthindoor air quility (indoor CO2 concentration) - measured on the extract air of the mechanical ventilation system. Relative humidity to avoid mold.
A2P022: Education
A2P022: Mobility
A2P022: EnergySpace heating demand, thermal energy delivered by district heating, electricity of the heat pump, thermal losses of the pipes, and PV production.
A2P022: Water
A2P022: Economic development
A2P022: Housing and Community
A2P022: Waste
A2P022: Other
A2P023: Technological Solutions / Innovations - Energy Generation
A2P023: Photovoltaicsyesyesyes
A2P023: Solar thermal collectorsyesyesno
A2P023: Wind Turbinesnonono
A2P023: Geothermal energy systemnonono
A2P023: Waste heat recoverynonono
A2P023: Waste to energynonono
A2P023: Polygenerationnonono
A2P023: Co-generationnonono
A2P023: Heat Pumpyesnoyes
A2P023: Hydrogennonono
A2P023: Hydropower plantnonono
A2P023: Biomassnonono
A2P023: Biogasnonono
A2P023: Other
A2P024: Technological Solutions / Innovations - Energy Flexibility
A2P024: A2P024: Information and Communication Technologies (ICT)noyesno
A2P024: Energy management systemnonono
A2P024: Demand-side managementnonono
A2P024: Smart electricity gridnonono
A2P024: Thermal Storagenonoyes
A2P024: Electric Storagenonono
A2P024: District Heating and Coolingyesyesyes
A2P024: Smart metering and demand-responsive control systemsnonono
A2P024: P2P – buildingsnonoyes
A2P024: Other
A2P025: Technological Solutions / Innovations - Energy Efficiency
A2P025: Deep Retrofittingyesyesno
A2P025: Energy efficiency measures in historic buildingsnonono
A2P025: High-performance new buildingsnonoyes
A2P025: Smart Public infrastructure (e.g. smart lighting)nonono
A2P025: Urban data platformsnonono
A2P025: Mobile applications for citizensnonono
A2P025: Building services (HVAC & Lighting)nonoyes
A2P025: Smart irrigationnonono
A2P025: Digital tracking for waste disposalnonono
A2P025: Smart surveillancenonono
A2P025: Other
A2P026: Technological Solutions / Innovations - Mobility
A2P026: Efficiency of vehicles (public and/or private)nonono
A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nonono
A2P026: e-Mobilitynoyesno
A2P026: Soft mobility infrastructures and last mile solutionsnonono
A2P026: Car-free areanonono
A2P026: Other
A2P027: Mobility strategies - Additional notes
A2P027: Mobility strategies - Additional notes
A2P028: Energy efficiency certificates
A2P028: Energy efficiency certificatesYes
A2P028: If yes, please specify and/or enter notesTwo buildings are certified "Passive House new build"
A2P029: Any other building / district certificates
A2P029: Any other building / district certificatesNo
A2P029: If yes, please specify and/or enter notes
A3P001: Relevant city /national strategy
A3P001: Relevant city /national strategy
  • Smart cities strategies
  • Smart cities strategies
  • Smart cities strategies
A3P002: Quantitative targets included in the city / national strategy
A3P002: Quantitative targets included in the city / national strategy
A3P003: Strategies towards decarbonization of the gas grid
A3P003: Strategies towards decarbonization of the gas grid
  • Electrification of Heating System based on Heat Pumps,
  • Other
A3P003: OtherDistrict heating based mainly on heat pumps and renewable sources
A3P004: Identification of needs and priorities
A3P004: Identification of needs and prioritiesThe priority was to eliminate the CO2 emissions by optimizing the building envelope and the heating systems.
A3P005: Sustainable behaviour
A3P005: Sustainable behaviour
A3P006: Economic strategies
A3P006: Economic strategies
A3P006: Other
A3P007: Social models
A3P007: Social models
  • Co-creation / Citizen engagement strategies,
  • Social incentives,
  • Affordability,
  • Prevention of energy poverty,
  • Citizen/owner involvement in planning and maintenance
A3P007: Other
A3P008: Integrated urban strategies
A3P008: Integrated urban strategies
A3P008: Other
A3P009: Environmental strategies
A3P009: Environmental strategies
  • Carbon-free
  • Energy Neutral,
  • Low Emission Zone
A3P009: Other
A3P010: Legal / Regulatory aspects
A3P010: Legal / Regulatory aspects
B1P001: PED/PED relevant concept definition
B1P001: PED/PED relevant concept definitionExtremely low building energy demand, the electric energy of the heat pump used for space heating is significantly lower compared to thermal energy for the domestic hot water preparation.
B1P002: Motivation behind PED/PED relevant project development
B1P002: Motivation behind PED/PED relevant project developmentSince it is an urban area, with high building and apartment density, the need for CO2 reduction is quite relevant and thus, in new built, the minimization of CO2 emissions is crucial.
B1P003: Environment of the case study area
B2P003: Environment of the case study areaUrban areaUrban area
B1P004: Type of district
B2P004: Type of district
  • Renovation
  • Renovation
  • New construction
B1P005: Case Study Context
B1P005: Case Study Context
  • Retrofitting Area
  • Retrofitting Area
  • Re-use / Transformation Area,
  • New Development
B1P006: Year of construction
B1P006: Year of construction2022
B1P007: District population before intervention - Residential
B1P007: District population before intervention - Residential
B1P008: District population after intervention - Residential
B1P008: District population after intervention - Residential780
B1P009: District population before intervention - Non-residential
B1P009: District population before intervention - Non-residential
B1P010: District population after intervention - Non-residential
B1P010: District population after intervention - Non-residential
B1P011: Population density before intervention
B1P011: Population density before intervention000
B1P012: Population density after intervention
B1P012: Population density after intervention000.068716412650868
B1P013: Building and Land Use before intervention
B1P013: Residentialyesnono
B1P013 - Residential: Specify the sqm [m²]
B1P013: Officenonono
B1P013 - Office: Specify the sqm [m²]
B1P013: Industry and Utilitynonono
B1P013 - Industry and Utility: Specify the sqm [m²]
B1P013: Commercialnonono
B1P013 - Commercial: Specify the sqm [m²]
B1P013: Institutionalnonono
B1P013 - Institutional: Specify the sqm [m²]
B1P013: Natural areasnonono
B1P013 - Natural areas: Specify the sqm [m²]
B1P013: Recreationalnonono
B1P013 - Recreational: Specify the sqm [m²]
B1P013: Dismissed areasnonono
B1P013 - Dismissed areas: Specify the sqm [m²]
B1P013: Othernonono
B1P013 - Other: Specify the sqm [m²]
B1P014: Building and Land Use after intervention
B1P014: Residentialyesnoyes
B1P014 - Residential: Specify the sqm [m²]
B1P014: Officenonono
B1P014 - Office: Specify the sqm [m²]
B1P014: Industry and Utilitynonono
B1P014 - Industry and Utility: Specify the sqm [m²]
B1P014: Commercialnonoyes
B1P014 - Commercial: Specify the sqm [m²]
B1P014: Institutionalnonoyes
B1P014 - Institutional: Specify the sqm [m²]
B1P014: Natural areasnonono
B1P014 - Natural areas: Specify the sqm [m²]
B1P014: Recreationalnonoyes
B1P014 - Recreational: Specify the sqm [m²]
B1P014: Dismissed areasnonono
B1P014 - Dismissed areas: Specify the sqm [m²]
B1P014: Othernonono
B1P014 - Other: Specify the sqm [m²]
B2P001: PED Lab concept definition
B2P001: PED Lab concept definition
B2P002: Installation life time
B2P002: Installation life time
B2P003: Scale of action
B2P003: ScaleDistrict
B2P004: Operator of the installation
B2P004: Operator of the installation
B2P005: Replication framework: Applied strategy to reuse and recycling the materials
B2P005: Replication framework: Applied strategy to reuse and recycling the materials
B2P006: Circular Economy Approach
B2P006: Do you apply any strategy to reuse and recycling the materials?
B2P006: Other
B2P007: Motivation for developing the PED Lab
B2P007: Motivation for developing the PED Lab
B2P007: Other
B2P008: Lead partner that manages the PED Lab
B2P008: Lead partner that manages the PED Lab
B2P008: Other
B2P009: Collaborative partners that participate in the PED Lab
B2P009: Collaborative partners that participate in the PED Lab
B2P009: Other
B2P010: Synergies between the fields of activities
B2P010: Synergies between the fields of activities
B2P011: Available facilities to test urban configurations in PED Lab
B2P011: Available facilities to test urban configurations in PED Lab
B2P011: Other
B2P012: Incubation capacities of PED Lab
B2P012: Incubation capacities of PED Lab
B2P013: Availability of the facilities for external people
B2P013: Availability of the facilities for external people
B2P014: Monitoring measures
B2P014: Monitoring measures
B2P015: Key Performance indicators
B2P015: Key Performance indicators
B2P016: Execution of operations
B2P016: Execution of operations
B2P017: Capacities
B2P017: Capacities
B2P018: Relations with stakeholders
B2P018: Relations with stakeholdersInvolvement of local stakeholders for supporting the private-public partnerships
B2P019: Available tools
B2P019: Available tools
B2P019: Available tools
B2P020: External accessibility
B2P020: External accessibility
C1P001: Unlocking Factors
C1P001: Recent technological improvements for on-site RES production1 - Unimportant1 - Unimportant1 - Unimportant
C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock1 - Unimportant1 - Unimportant2 - Slightly important
C1P001: Energy Communities, P2P, Prosumers concepts1 - Unimportant1 - Unimportant3 - Moderately important
C1P001: Storage systems and E-mobility market penetration1 - Unimportant1 - Unimportant2 - Slightly important
C1P001: Decreasing costs of innovative materials1 - Unimportant1 - Unimportant1 - Unimportant
C1P001: Financial mechanisms to reduce costs and maximize benefits1 - Unimportant1 - Unimportant1 - Unimportant
C1P001: The ability to predict Multiple Benefits1 - Unimportant1 - Unimportant3 - Moderately important
C1P001: The ability to predict the distribution of benefits and impacts1 - Unimportant1 - Unimportant3 - Moderately important
C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)1 - Unimportant1 - Unimportant2 - Slightly important
C1P001: Social acceptance (top-down)1 - Unimportant1 - Unimportant4 - Important
C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)1 - Unimportant1 - Unimportant3 - Moderately important
C1P001: Presence of integrated urban strategies and plans1 - Unimportant1 - Unimportant4 - Important
C1P001: Multidisciplinary approaches available for systemic integration1 - Unimportant1 - Unimportant4 - Important
C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects1 - Unimportant1 - Unimportant4 - Important
C1P001: Availability of RES on site (Local RES)1 - Unimportant1 - Unimportant3 - Moderately important
C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders1 - Unimportant1 - Unimportant3 - Moderately important
C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant
C1P001: Any other UNLOCKING FACTORS (if any)
C1P002: Driving Factors
C1P002: Climate Change adaptation need1 - Unimportant1 - Unimportant5 - Very important
C1P002: Climate Change mitigation need (local RES production and efficiency)1 - Unimportant1 - Unimportant4 - Important
C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant5 - Very important
C1P002: Urban re-development of existing built environment1 - Unimportant1 - Unimportant3 - Moderately important
C1P002: Economic growth need1 - Unimportant1 - Unimportant1 - Unimportant
C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)1 - Unimportant1 - Unimportant3 - Moderately important
C1P002: Territorial and market attractiveness1 - Unimportant1 - Unimportant4 - Important
C1P002: Energy autonomy/independence1 - Unimportant1 - Unimportant4 - Important
C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant
C1P002: Any other DRIVING FACTOR (if any)
C1P003: Administrative barriers
C1P003: Difficulty in the coordination of high number of partners and authorities1 - Unimportant1 - Unimportant2 - Slightly important
C1P003: Lack of good cooperation and acceptance among partners1 - Unimportant1 - Unimportant2 - Slightly important
C1P003: Lack of public participation1 - Unimportant1 - Unimportant1 - Unimportant
C1P003: Lack of institutions/mechanisms to disseminate information1 - Unimportant1 - Unimportant1 - Unimportant
C1P003:Long and complex procedures for authorization of project activities1 - Unimportant1 - Unimportant1 - Unimportant
C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy1 - Unimportant1 - Unimportant1 - Unimportant
C1P003: Complicated and non-comprehensive public procurement1 - Unimportant1 - Unimportant1 - Unimportant
C1P003: Fragmented and or complex ownership structure1 - Unimportant1 - Unimportant1 - Unimportant
C1P003: City administration & cross-sectoral attitude/approaches (silos)1 - Unimportant1 - Unimportant1 - Unimportant
C1P003: Lack of internal capacities to support energy transition1 - Unimportant1 - Unimportant1 - Unimportant
C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant
C1P003: Any other Administrative BARRIER (if any)
C1P004: Policy barriers
C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant1 - Unimportant1 - Unimportant
C1P004: Lacking or fragmented local political commitment and support on the long term1 - Unimportant1 - Unimportant1 - Unimportant
C1P004: Lack of Cooperation & support between national-regional-local entities1 - Unimportant1 - Unimportant1 - Unimportant
C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant
C1P004: Any other Political BARRIER (if any)
C1P005: Legal and Regulatory barriers
C1P005: Inadequate regulations for new technologies1 - Unimportant1 - Unimportant1 - Unimportant
C1P005: Regulatory instability1 - Unimportant1 - Unimportant1 - Unimportant
C1P005: Non-effective regulations1 - Unimportant1 - Unimportant1 - Unimportant
C1P005: Unfavorable local regulations for innovative technologies1 - Unimportant1 - Unimportant1 - Unimportant
C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant1 - Unimportant1 - Unimportant
C1P005: Insufficient or insecure financial incentives1 - Unimportant1 - Unimportant1 - Unimportant
C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation1 - Unimportant1 - Unimportant1 - Unimportant
C1P005: Shortage of proven and tested solutions and examples1 - Unimportant1 - Unimportant1 - Unimportant
C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant
C1P005: Any other Legal and Regulatory BARRIER (if any)
C1P006: Environmental barriers
C1P006: Environmental barriersUrban area very high buildings (and apartment) density and thus, less available space for renewable sources.
C1P007: Technical barriers
C1P007: Lack of skilled and trained personnel1 - Unimportant1 - Unimportant2 - Slightly important
C1P007: Deficient planning1 - Unimportant1 - Unimportant1 - Unimportant
C1P007: Retrofitting work in dwellings in occupied state1 - Unimportant1 - Unimportant1 - Unimportant
C1P007: Lack of well-defined process1 - Unimportant1 - Unimportant1 - Unimportant
C1P007: Inaccuracy in energy modelling and simulation1 - Unimportant1 - Unimportant1 - Unimportant
C1P007: Lack/cost of computational scalability1 - Unimportant1 - Unimportant1 - Unimportant
C1P007: Grid congestion, grid instability1 - Unimportant1 - Unimportant1 - Unimportant
C1P007: Negative effects of project intervention on the natural environment1 - Unimportant1 - Unimportant1 - Unimportant
C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant1 - Unimportant1 - Unimportant
C1P007: Difficult definition of system boundaries1 - Unimportant1 - Unimportant1 - Unimportant
C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant
C1P007: Any other Thecnical BARRIER (if any)
C1P008: Social and Cultural barriers
C1P008: Inertia1 - Unimportant1 - Unimportant1 - Unimportant
C1P008: Lack of values and interest in energy optimization measurements1 - Unimportant1 - Unimportant1 - Unimportant
C1P008: Low acceptance of new projects and technologies1 - Unimportant1 - Unimportant1 - Unimportant
C1P008: Difficulty of finding and engaging relevant actors1 - Unimportant1 - Unimportant1 - Unimportant
C1P008: Lack of trust beyond social network1 - Unimportant1 - Unimportant1 - Unimportant
C1P008: Rebound effect1 - Unimportant1 - Unimportant1 - Unimportant
C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant1 - Unimportant1 - Unimportant
C1P008: Exclusion of socially disadvantaged groups1 - Unimportant1 - Unimportant1 - Unimportant
C1P008: Non-energy issues are more important and urgent for actors1 - Unimportant1 - Unimportant1 - Unimportant
C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant1 - Unimportant1 - Unimportant
C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant
C1P008: Any other Social BARRIER (if any)
C1P009: Information and Awareness barriers
C1P009: Insufficient information on the part of potential users and consumers1 - Unimportant1 - Unimportant1 - Unimportant
C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts1 - Unimportant1 - Unimportant1 - Unimportant
C1P009: Lack of awareness among authorities1 - Unimportant1 - Unimportant1 - Unimportant
C1P009: Information asymmetry causing power asymmetry of established actors1 - Unimportant1 - Unimportant1 - Unimportant
C1P009: High costs of design, material, construction, and installation1 - Unimportant1 - Unimportant5 - Very important
C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant
C1P009: Any other Information and Awareness BARRIER (if any)
C1P010: Financial barriers
C1P010: Hidden costs1 - Unimportant1 - Unimportant1 - Unimportant
C1P010: Insufficient external financial support and funding for project activities1 - Unimportant1 - Unimportant1 - Unimportant
C1P010: Economic crisis1 - Unimportant1 - Unimportant4 - Important
C1P010: Risk and uncertainty1 - Unimportant1 - Unimportant1 - Unimportant
C1P010: Lack of consolidated and tested business models1 - Unimportant1 - Unimportant1 - Unimportant
C1P010: Limited access to capital and cost disincentives1 - Unimportant1 - Unimportant1 - Unimportant
C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant
C1P010: Any other Financial BARRIER (if any)
C1P011: Market barriers
C1P011: Split incentives1 - Unimportant1 - Unimportant1 - Unimportant
C1P011: Energy price distortion1 - Unimportant1 - Unimportant1 - Unimportant
C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant1 - Unimportant1 - Unimportant
C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant
C1P011: Any other Market BARRIER (if any)
C1P012: Stakeholders involved
C1P012: Government/Public Authorities
  • Planning/leading
C1P012: Research & Innovation
  • Planning/leading,
  • Design/demand aggregation,
  • Monitoring/operation/management
C1P012: Financial/Funding
  • Planning/leading,
  • Construction/implementation
C1P012: Analyst, ICT and Big Data
  • Monitoring/operation/management
C1P012: Business process management
C1P012: Urban Services providers
  • Construction/implementation
C1P012: Real Estate developers
  • Planning/leading
C1P012: Design/Construction companies
  • Design/demand aggregation,
  • Construction/implementation
C1P012: End‐users/Occupants/Energy Citizens
  • Planning/leading,
  • Design/demand aggregation
C1P012: Social/Civil Society/NGOs
  • Planning/leading
C1P012: Industry/SME/eCommerce
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
C1P012: Other
C1P012: Other (if any)
Summary

Authors (framework concept)

Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

Contributors (to the content)

Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

Implemented by

Boutik.pt: Filipe Martins, Jamal Khan
Marek Suchánek (Czech Technical University in Prague)