Filters:
NameProjectTypeCompare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Compare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Compare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Compare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr, Geothermal District Heating Project PED Relevant Case Study Compare
Drammen, Jacobs Borchs Gate PED Relevant Case Study Compare
Freiburg im Breisgau, Dietenbach PED Relevant Case Study Compare
Lecce, SmartEnCity SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
Trento, STARDUST STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Malmö, Klimatkontrakt Hyllie PED Relevant Case Study Compare
Kaiserslautern, EnStadt:Pfaff PED Relevant Case Study / PED Lab Compare
Helsinki, mySMARTlife PED Relevant Case Study Compare
Firenze, Novoli-Cascine district on “le PIagge” buildings PED Relevant Case Study Compare
Bolzano, Sinfonia PED Relevant Case Study Compare
Zürich, Hunziker Areal PED Relevant Case Study Compare
Hammarby Sjöstad, Hammarby Sjöstad 2.0 PED Relevant Case Study Compare
Milano, Sharing Cities PED Relevant Case Study Compare
Mieres, District Heating Pozo Barredo PED Relevant Case Study Compare
Lund, Cityfied (demo Linero) PED Relevant Case Study
Espoo, Smart Otaniemi PED Relevant Case Study / PED Lab Compare
Vienna, Zukunftsquartier PED Case Study Compare
Trento, Santa Chiara Open Lab PED Case Study Compare
Paterna, Barrio La Pinada PED Case Study / PED Lab Uncompare
Bergen, Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru, +CityxChange PED Case Study Compare
Trondheim, NTNU Campus within the Knowledge Axis ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Oslo, Furuset project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Măgurele, Laser Valley – Land of Lights PED Case Study Compare
Elverum, Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bodø, Airport, NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bærum, Fornebu ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Uncompare
Carquefou, Fleuraye west PED Case Study Compare
Åland, Smart Energy PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Uncompare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Uncompare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Uncompare
TitleLund, Cityfied (demo Linero)
Bærum, Fornebu
Oulu, Kaukovainio
Groningen, PED North
Izmir, District of Karşıyaka
Valencia, Paterna, Barrio La Pinada
Kifissia, Energy community
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabLund, Cityfied (demo Linero)Bærum, FornebuOulu, KaukovainioGroningen, PED NorthIzmir, District of KarşıyakaValencia, Paterna, Barrio La PinadaKifissia, Energy community
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesyesnoyesyesno
PED relevant case studyyesnononononoyes
PED Lab.nononoyesnoyesno
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesyesyesyesno
Annual energy surplusnononoyesyesnono
Energy communitynononoyesnonoyes
Circularitynonoyesyesnonono
Air quality and urban comfortnonononoyesnoyes
Electrificationnonoyesnononoyes
Net-zero energy costnonononoyesnono
Net-zero emissionyesyesnoyesnoyesno
Self-sufficiency (energy autonomous)nonononononono
Maximise self-sufficiencynonononoyesnono
Otheryesyesnononoyesno
Other (A1P004)Social aspects/affordabilitySustainable neighbourhood; Energy efficientEnergy efficient; Sustainable neighbourhood; Social aspects/affordability
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabCompletedCompletedIn operationImplementation PhasePlanning PhaseImplementation PhasePlanning Phase
A1P006: Start Date
A1P006: Start date01/1401/1812/1810/2201/16
A1P007: End Date
A1P007: End date12/1912/2312/2310/25
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
  • Monitoring data available within the districts
A1P009: OtherOther
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • TNO, Hanze, RUG,
  • Ped noord book
    A1P011: Geographic coordinates
    X Coordinate (longitude):13.24337510.61140725.5175950840935076.53512127.110049-0.43525323.814588
    Y Coordinate (latitude):55.69922359.89898564.9928809817313253.23484638.49605439.51443438.077349
    A1P012: Country
    A1P012: CountrySwedenNorwayFinlandNetherlandsTurkeySpainGreece
    A1P013: City
    A1P013: CityLundBærumOuluGroningenİzmirPaternaMunicipality of Kifissia
    A1P014: Climate Zone (Köppen Geiger classification)
    A1P014: Climate Zone (Köppen Geiger classification).CfbDfbDfcCfaCsaCsaCsa
    A1P015: District boundary
    A1P015: District boundaryFunctionalGeographicVirtual
    OtherRegional (close to virtual)The energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhood
    A1P016: Ownership of the case study/PED Lab
    A1P016: Ownership of the case study/PED Lab:MixedMixedMixedMixedPrivatePrivate
    A1P017: Ownership of the land / physical infrastructure
    A1P017: Ownership of the land / physical infrastructure:Multiple OwnersSingle OwnerSingle OwnerMultiple OwnersMultiple OwnersSingle Owner
    A1P018: Number of buildings in PED
    A1P018: Number of buildings in PED6721
    A1P019: Conditioned space
    A1P019: Conditioned space [m²]197001.01102795
    A1P020: Total ground area
    A1P020: Total ground area [m²]800006000017.13232600
    A1P021: Floor area ratio: Conditioned space / total ground area
    A1P021: Floor area ratio: Conditioned space / total ground area0000300
    A1P022: Financial schemes
    A1P022a: Financing - PRIVATE - Real estatenonoyesyesnonono
    A1P022a: Add the value in EUR if available [EUR]
    A1P022b: Financing - PRIVATE - ESCO schemenonononononono
    A1P022b: Add the value in EUR if available [EUR]
    A1P022c: Financing - PRIVATE - Othernononoyesnoyesno
    A1P022c: Add the value in EUR if available [EUR]
    A1P022d: Financing - PUBLIC - EU structural fundingnonononononono
    A1P022d: Add the value in EUR if available [EUR]
    A1P022e: Financing - PUBLIC - National fundingnononoyesnonono
    A1P022e: Add the value in EUR if available [EUR]
    A1P022f: Financing - PUBLIC - Regional fundingnonononononono
    A1P022f: Add the value in EUR if available [EUR]
    A1P022g: Financing - PUBLIC - Municipal fundingnonoyesyesnonono
    A1P022g: Add the value in EUR if available [EUR]
    A1P022h: Financing - PUBLIC - Otheryesnononononono
    A1P022h: Add the value in EUR if available [EUR]
    A1P022i: Financing - RESEARCH FUNDING - EUnonoyesyesyesnono
    A1P022i: Add the value in EUR if available [EUR]1193355
    A1P022j: Financing - RESEARCH FUNDING - Nationalnonononoyesnono
    A1P022j: Add the value in EUR if available [EUR]
    A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononono
    A1P022k: Add the value in EUR if available [EUR]
    A1P022l: Financing - RESEARCH FUNDING - Otheryesnonononoyesno
    A1P022l: Add the value in EUR if available [EUR]
    A1P022: OtherGreen Financing
    A1P023: Economic Targets
    A1P023: Economic Targets
    • Positive externalities,
    • Boosting local and sustainable production
    • Boosting local businesses,
    • Boosting local and sustainable production
    • Positive externalities,
    • Boosting local and sustainable production
    A1P023: OtherDeveloping and demonstrating new solutions
    A1P024: More comments:
    A1P024: More comments:
    A1P025: Estimated PED case study / PED LAB costs
    A1P025: Estimated PED case study / PED LAB costs [mil. EUR]5
    Contact person for general enquiries
    A1P026: NameChristoph GollnerChristoph GollnerSamuli RinneJasper Tonen, Elisabeth KoopsOzlem SenyolChristoph GollnerArtemis Giavasoglou, Kleopatra Kalampoka
    A1P027: OrganizationFFGFFGCity of OuluMunicipality of GroningenKarsiyaka MunicipalityFFGMunicipality of Kifissia – SPARCS local team
    A1P028: AffiliationOtherOtherMunicipality / Public BodiesMunicipality / Public BodiesMunicipality / Public BodiesOtherMunicipality / Public Bodies
    A1P028: Other
    A1P029: Emailchristoph.gollner@ffg.atchristoph.gollner@ffg.atsamuli.rinne@ouka.fiJasper.tonen@groningen.nlozlemkocaer2@gmail.comchristoph.gollner@ffg.atgiavasoglou@kifissia.gr
    Contact person for other special topics
    A1P030: NameSamuli RinneHasan Burak CavkaStavros Zapantis - vice mayor
    A1P031: Emailsamuli.rinne@ouka.fihasancavka@iyte.edu.trstavros.zapantis@gmail.com
    Pursuant to the General Data Protection RegulationYesYesYesYesYesYes
    A2P001: Fields of application
    A2P001: Fields of application
    • Energy efficiency,
    • Energy production
    • Energy efficiency,
    • Energy production,
    • E-mobility
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Digital technologies,
    • Water use,
    • Indoor air quality
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Urban comfort (pollution, heat island, noise level etc.),
    • Waste management
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • Urban comfort (pollution, heat island, noise level etc.)
    • Energy efficiency,
    • Energy production
    • Energy production
    A2P001: Other
    A2P002: Tools/strategies/methods applied for each of the above-selected fields
    A2P002: Tools/strategies/methods applied for each of the above-selected fieldsDifferent kinds of waste heat streams are utilized by heat pumps. These are district heating return water (actually this is an indirect way to cool down the flue gas in the scrubber), ventilation exhaust air and sewage water. As a normal case, in ventilation also air-to-air heat exchanges are used. PV power is harvested also, in vertical and more horizontal panels. Buildings are well insulated to decrease the needed amount of heating energy in the first place.Energy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streamsMethods involve studying the feasibility of digital PED references for the case cities about their energy, environmental, and economic performance by EnergyPlus tool. In case of insufficient energy data and the need of high resolution data, ‘Gaussian mixture model and expectation-maximization algorithm’ and ‘time-series decomposition-recombination’ method will be used to supplement data to EnergyPlus. The feasibility results will be returned to stakeholders for iterative discussion, and the iterative results will be used to update digital references. Replication plans are developed based on such a cooperation process for strategies to implement PEDs. If a PED is demonstrated during the project period, the measured data will be used to verify the feasibility model to optimize previous results (WP7– R3 & R4). In the MAKING-CITY project, the overall PED design method is developed, which will be further optimised in this project. In addition, PED-ACT will use the methods and knowledge, including how to choose a suitable PED in a city, energy balance calculation, and technologies available for PED. The RUGGEDISED project outputs the governance model into the replication plan in PED-ACT. Its ‘smart city open-data decision platform’ will illustrate an excellent example for the database in PED-ACT. The IEA EBC Annex 83 and Cost Action 19126 create the basis for data collection, developing existing PED databases, characterization of PED, and review of regulations of PED, as well as development of simulation tools. The UBEM project further enables a detailed high-resolution energy balance calculation of PED.
    A2P003: Application of ISO52000
    A2P003: Application of ISO52000NoNoYes
    A2P004: Appliances included in the calculation of the energy balance
    A2P004: Appliances included in the calculation of the energy balanceNoNoYes
    A2P005: Mobility included in the calculation of the energy balance
    A2P005: Mobility included in the calculation of the energy balanceNoNoNo
    A2P006: Description of how mobility is included (or not included) in the calculation
    A2P006: Description of how mobility is included (or not included) in the calculationNot included. However, there is a charging place for a shared EV in one building.Mobility, till now, is not included in the energy model.Mobility is not included in the calculations.
    A2P007: Annual energy demand in buildings / Thermal demand
    A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]2.12.33.862
    A2P008: Annual energy demand in buildings / Electric Demand
    A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.20.331.226
    A2P009: Annual energy demand for e-mobility
    A2P009: Annual energy demand for e-mobility [GWh/annum]
    A2P010: Annual energy demand for urban infrastructure
    A2P010: Annual energy demand for urban infrastructure [GWh/annum]
    A2P011: Annual renewable electricity production on-site during target year
    A2P011: PVnonoyesnoyesnoyes
    A2P011: PV - specify production in GWh/annum [GWh/annum]0.11.028
    A2P011: Windnonononononono
    A2P011: Wind - specify production in GWh/annum [GWh/annum]
    A2P011: Hydrononononononono
    A2P011: Hydro - specify production in GWh/annum [GWh/annum]
    A2P011: Biomass_elnonononononono
    A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
    A2P011: Biomass_peat_elnonononononono
    A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
    A2P011: PVT_elnonononononono
    A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
    A2P011: Othernonononononono
    A2P011: Other - specify production in GWh/annum [GWh/annum]
    A2P012: Annual renewable thermal production on-site during target year
    A2P012: Geothermalnononoyesnonono
    A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
    A2P012: Solar Thermalnononoyesnonono
    A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
    A2P012: Biomass_heatnononoyesnonono
    A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.1
    A2P012: Waste heat+HPnonoyesyesnonono
    A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]2.2
    A2P012: Biomass_peat_heatnonononononono
    A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
    A2P012: PVT_thnononoyesnonono
    A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
    A2P012: Biomass_firewood_thnonononononono
    A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
    A2P012: Othernonononononono
    A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
    A2P013: Renewable resources on-site - Additional notes
    A2P013: Renewable resources on-site - Additional notesHeat is produced from DH return, refrigeration and exhaust air. The mentioned 2200 MWh/a includes HP el. consumption (about 1/6 of that)Geothermal heatpump systems, Waste heat from data centers
    A2P014: Annual energy use
    A2P014: Annual energy use [GWh/annum]2.35.088
    A2P015: Annual energy delivered
    A2P015: Annual energy delivered [GWh/annum]
    A2P016: Annual non-renewable electricity production on-site during target year
    A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]0
    A2P017: Annual non-renewable thermal production on-site during target year
    A2P017: Gasnonononoyesnono
    A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P017: Coalnonononononono
    A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P017: Oilnonononononono
    A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P017: Othernonononononono
    A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P018: Annual renewable electricity imports from outside the boundary during target year
    A2P018: PVnonoyesnoyesnono
    A2P018 - PV: specify production in GWh/annum if available [GWh/annum]0.707
    A2P018: Windnonoyesnononono
    A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
    A2P018: Hydrononoyesnononono
    A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
    A2P018: Biomass_elnonoyesnononono
    A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: Biomass_peat_elnonoyesnononono
    A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: PVT_elnonononononono
    A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: Othernonononononono
    A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
    A2P019: Annual renewable thermal imports from outside the boundary during target year
    A2P019: Geothermalnonononononono
    A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Solar Thermalnonononononono
    A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_heatnonoyesnononono
    A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]0.7
    A2P019: Waste heat+HPnonononononono
    A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_peat_heatnonononononono
    A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
    A2P019: PVT_thnonononononono
    A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_firewood_thnonononononono
    A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Othernonononononono
    A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
    A2P020: Share of RES on-site / RES outside the boundary
    A2P020: Share of RES on-site / RES outside the boundary003.285714285714301.454031117397500
    A2P021: GHG-balance calculated for the PED
    A2P021: GHG-balance calculated for the PED [tCO2/annum]0
    A2P022: KPIs related to the PED case study / PED Lab
    A2P022: Safety & Security
    A2P022: HealthEncouraging a healthy lifestyle
    A2P022: Education
    A2P022: MobilityMode of transport; Access to public transportModal Split, Fuel mix in mobility, Energy use for transportation, Access to public transport, Public infrastructure promoting low-carbon mobility, Number of public EV charging stations, Energy delivered for EV charging
    A2P022: EnergyEnergy efficiency in buildings (Net energy need; Gross energy need; Total energy need)Final energy consumption, Primary energy consumption, Energy imported to PED, Energy exported from PED, RES production, PED energy balance, Energy savings in the PED, GHG emissions, Reduction of emissions, Final energy consumption per capita, Primary energy consumption per capita, Primary energy sources (shares), Buildings connected to DH-network or renewable energy grid, GHG emissions per capita, System flexibility for energy players, RES storage usage, Peak load reduction
    A2P022: Water
    A2P022: Economic developmentTotal investments, Payback time, Economic value of savings
    A2P022: Housing and CommunityDelivery and proximity to amenitiesDevelopment of housing prices, Housing cost overburden rate, Citizen engagement/empowerment to climate conscious actions, Inhabitants in dense areas, Energy poverty
    A2P022: WasteRecycling rate
    A2P022: OtherGHG emissions; Power/load; Life cycle cost (LCC); Demographic needs and consultation plan; Public SpaceSmart Cities strategies, Quality of open data
    A2P023: Technological Solutions / Innovations - Energy Generation
    A2P023: Photovoltaicsyesyesyesyesyesyesno
    A2P023: Solar thermal collectorsyesnonoyesnonono
    A2P023: Wind Turbinesnonononononono
    A2P023: Geothermal energy systemnononoyesnoyesno
    A2P023: Waste heat recoverynonoyesyesnonono
    A2P023: Waste to energynononoyesnonono
    A2P023: Polygenerationnonononononono
    A2P023: Co-generationnonoyesnononono
    A2P023: Heat Pumpyesnoyesyesyesnono
    A2P023: Hydrogennonononononono
    A2P023: Hydropower plantnonononononono
    A2P023: Biomassnonoyesnononono
    A2P023: Biogasnonononononono
    A2P023: Other
    A2P024: Technological Solutions / Innovations - Energy Flexibility
    A2P024: A2P024: Information and Communication Technologies (ICT)nonoyesyesnonono
    A2P024: Energy management systemnonoyesyesnonono
    A2P024: Demand-side managementnononoyesnonono
    A2P024: Smart electricity gridnonononononono
    A2P024: Thermal Storagenonoyesyesnonono
    A2P024: Electric Storagenononoyesnonono
    A2P024: District Heating and Coolingyesnoyesyesnoyesno
    A2P024: Smart metering and demand-responsive control systemsnononoyesnonono
    A2P024: P2P – buildingsnonononononono
    A2P024: Other
    A2P025: Technological Solutions / Innovations - Energy Efficiency
    A2P025: Deep Retrofittingyesnoyesnoyesnono
    A2P025: Energy efficiency measures in historic buildingsnononoyesnonono
    A2P025: High-performance new buildingsnonoyesyesnonono
    A2P025: Smart Public infrastructure (e.g. smart lighting)nononoyesnonono
    A2P025: Urban data platformsnonoyesyesnonono
    A2P025: Mobile applications for citizensnonononononono
    A2P025: Building services (HVAC & Lighting)nonoyesnoyesnono
    A2P025: Smart irrigationnonononononono
    A2P025: Digital tracking for waste disposalnonononononono
    A2P025: Smart surveillancenonononononono
    A2P025: Other
    A2P026: Technological Solutions / Innovations - Mobility
    A2P026: Efficiency of vehicles (public and/or private)nonoyesnononono
    A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nonoyesnononono
    A2P026: e-Mobilitynonoyesyesnonono
    A2P026: Soft mobility infrastructures and last mile solutionsnonoyesnononono
    A2P026: Car-free areanonononononono
    A2P026: Other
    A2P027: Mobility strategies - Additional notes
    A2P027: Mobility strategies - Additional notesThe Fornebu area will contain urban structures that will facilitate low and zero carbon mobility within the area, including pedestrian walking, bicycling and electrical vehicles.
    A2P028: Energy efficiency certificates
    A2P028: Energy efficiency certificatesYesYesNo
    A2P028: If yes, please specify and/or enter notesThe obligatory buildijng energy classificationEnergy Performance CertificateEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwelling
    A2P029: Any other building / district certificates
    A2P029: Any other building / district certificatesYesNoNo
    A2P029: If yes, please specify and/or enter notesAll buildings should be certified according to BREEAM-NOR Excellent
    A3P001: Relevant city /national strategy
    A3P001: Relevant city /national strategy
    • Smart cities strategies
    • Smart cities strategies
    • Smart cities strategies,
    • Urban Renewal Strategies,
    • Energy master planning (SECAP, etc.),
    • New development strategies,
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Energy master planning (SECAP, etc.),
    • New development strategies,
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Energy master planning (SECAP, etc.),
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Smart cities strategies
    • Energy master planning (SECAP, etc.),
    • Promotion of energy communities (REC/CEC)
    A3P002: Quantitative targets included in the city / national strategy
    A3P002: Quantitative targets included in the city / national strategyCarbon neutrality by 2035Karşıyaka Municipality is the first local government in Turkey to sign the Covenant of Mayors in 2011. During this period, the greenhouse gas inventory of the district was carried out three times and reduction targets were set for 2020 and 2030. In the 2021 Sustainable Energy and Climate Action Plan prepared as of the end of 2021, Karşıyaka Municipality has targeted a 40% reduction in its emissions for 2030 compared to the base year 2018. In the 2021 Sustainable Energy and Climate Action Plan, Karşıyaka Municipality aims to reduce its greenhouse gas emissions from 3.96 tCO2e / person in 2018 to 2.37 tCO2e / person in 2030. System solutions such as the use of renewable energy sources, air, ground or water source heat pump, cogeneration and microcogeneration are analysed by designers in order to fully or partially meet the energy requirements for heating, cooling, ventilation, hot water, electricity and lighting for all buildings with a floor area of less than 20,000 square metres. If at least 50% of the building's total energy consumption costs are covered by one or more of these applications, the points are taken in the assessment table in the Building and housing estate business certification guide of 2023.
    A3P003: Strategies towards decarbonization of the gas grid
    A3P003: Strategies towards decarbonization of the gas grid
    • Electrification of Heating System based on Heat Pumps,
    • Electrification of Cooking Methods,
    • Biogas
    • Electrification of Heating System based on Heat Pumps
    A3P003: Other
    A3P004: Identification of needs and priorities
    A3P004: Identification of needs and prioritiesDeveloping and demonstrating solutions for carbon neutralityAccording to the model developed for the district, the electrification of heating and cooling is necessary.Therefore, there needs to be the implementation of a heat pump. The building-integrated photovoltaic panelsshould follow. Through net-metering practices, the district is expected to reach energy positivity throughthis scenario.
    A3P005: Sustainable behaviour
    A3P005: Sustainable behaviourE. g. visualizing energy and water consumptionIn Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.
    A3P006: Economic strategies
    A3P006: Economic strategies
    • Open data business models,
    • Innovative business models,
    • PPP models,
    • Life Cycle Cost,
    • Circular economy models
    • Innovative business models,
    • Blockchain
    A3P006: Other
    A3P007: Social models
    A3P007: Social models
    • Co-creation / Citizen engagement strategies,
    • Behavioural Change / End-users engagement,
    • Citizen Social Research,
    • Policy Forums,
    • Quality of Life,
    • Strategies towards social mix,
    • Affordability,
    • Prevention of energy poverty,
    • Citizen/owner involvement in planning and maintenance,
    • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Citizen Social Research,
    • Prevention of energy poverty,
    • Citizen/owner involvement in planning and maintenance
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Affordability
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Strategies towards social mix,
    • Citizen/owner involvement in planning and maintenance
    A3P007: Other
    A3P008: Integrated urban strategies
    A3P008: Integrated urban strategies
    • Strategic urban planning,
    • District Energy plans,
    • City Vision 2050,
    • SECAP Updates
    • Strategic urban planning,
    • District Energy plans,
    • City Vision 2050,
    • SECAP Updates
    • Digital twinning and visual 3D models,
    • District Energy plans,
    • SECAP Updates
    A3P008: Other
    A3P009: Environmental strategies
    A3P009: Environmental strategies
    • Energy Neutral,
    • Net zero carbon footprint,
    • Carbon-free
    • Energy Neutral,
    • Net zero carbon footprint
    • Energy Neutral
    • Energy Neutral,
    • Low Emission Zone,
    • Pollutants Reduction
    • Energy Neutral
    A3P009: Other
    A3P010: Legal / Regulatory aspects
    A3P010: Legal / Regulatory aspectsAt national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricity
    B1P001: PED/PED relevant concept definition
    B1P001: PED/PED relevant concept definitionThe original idea is that the area produces at least as much it consumes.The pilot area was selected on the basis of several criteria: its location within areas prioritised by Karşıyaka Municipality for combating climate change, compliance with the building regulations set out in the Green Building-Site-Operation (2023) guide, which are in line with Municipality's energy policy, the presence of open spaces that allow various applications for renewable energy, proximity to public facilities such as schools and municipal services, the availability of data on energy consumption (e.g. electricity and natural gas bills) and architectural features, the potential for community building, the suitability for solar energy systems, considering orientation and roof structure, and the potential for future building renovations. The aim of the initiative is to explore the feasibility of transforming the district into a Positive Energy District (PED).
    B1P002: Motivation behind PED/PED relevant project development
    B1P002: Motivation behind PED/PED relevant project developmentDeveloping systems towards carbon neutrality. Also urban renewal.
    B1P003: Environment of the case study area
    B2P003: Environment of the case study areaUrban areaSuburban areaUrban areaSuburban area
    B1P004: Type of district
    B2P004: Type of district
    • Renovation
    • New construction
    • New construction,
    • Renovation
    • Renovation
    • New construction
    B1P005: Case Study Context
    B1P005: Case Study Context
    • Retrofitting Area
    • New Development
    • New Development,
    • Retrofitting Area
    • Retrofitting Area
    • New Development
    B1P006: Year of construction
    B1P006: Year of construction2005
    B1P007: District population before intervention - Residential
    B1P007: District population before intervention - Residential3500
    B1P008: District population after intervention - Residential
    B1P008: District population after intervention - Residential3500
    B1P009: District population before intervention - Non-residential
    B1P009: District population before intervention - Non-residential
    B1P010: District population after intervention - Non-residential
    B1P010: District population after intervention - Non-residential
    B1P011: Population density before intervention
    B1P011: Population density before intervention0000000
    B1P012: Population density after intervention
    B1P012: Population density after intervention000.0583333333333330000
    B1P013: Building and Land Use before intervention
    B1P013: Residentialyesnoyesnoyesnono
    B1P013 - Residential: Specify the sqm [m²]102795
    B1P013: Officenonononononono
    B1P013 - Office: Specify the sqm [m²]
    B1P013: Industry and Utilitynonononononono
    B1P013 - Industry and Utility: Specify the sqm [m²]
    B1P013: Commercialnonoyesnononono
    B1P013 - Commercial: Specify the sqm [m²]
    B1P013: Institutionalnonononononono
    B1P013 - Institutional: Specify the sqm [m²]
    B1P013: Natural areasnonoyesnononono
    B1P013 - Natural areas: Specify the sqm [m²]
    B1P013: Recreationalnonoyesnononono
    B1P013 - Recreational: Specify the sqm [m²]
    B1P013: Dismissed areasnonononononono
    B1P013 - Dismissed areas: Specify the sqm [m²]
    B1P013: Othernonononononono
    B1P013 - Other: Specify the sqm [m²]
    B1P014: Building and Land Use after intervention
    B1P014: Residentialyesyesyesnoyesyesno
    B1P014 - Residential: Specify the sqm [m²]102795
    B1P014: Officenonononononono
    B1P014 - Office: Specify the sqm [m²]
    B1P014: Industry and Utilitynonononononono
    B1P014 - Industry and Utility: Specify the sqm [m²]
    B1P014: Commercialnonoyesnonoyesno
    B1P014 - Commercial: Specify the sqm [m²]
    B1P014: Institutionalnononononoyesno
    B1P014 - Institutional: Specify the sqm [m²]
    B1P014: Natural areasnonoyesnononono
    B1P014 - Natural areas: Specify the sqm [m²]
    B1P014: Recreationalnoyesyesnononono
    B1P014 - Recreational: Specify the sqm [m²]
    B1P014: Dismissed areasnonononononono
    B1P014 - Dismissed areas: Specify the sqm [m²]
    B1P014: Othernonononononono
    B1P014 - Other: Specify the sqm [m²]
    B2P001: PED Lab concept definition
    B2P001: PED Lab concept definitionGroningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.
    B2P002: Installation life time
    B2P002: Installation life timeThe MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.
    B2P003: Scale of action
    B2P003: ScaleDistrictDistrictDistrictDistrict
    B2P004: Operator of the installation
    B2P004: Operator of the installationThe Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.
    B2P005: Replication framework: Applied strategy to reuse and recycling the materials
    B2P005: Replication framework: Applied strategy to reuse and recycling the materialsGroningen does not have a strategy to reuse and recyle materials
    B2P006: Circular Economy Approach
    B2P006: Do you apply any strategy to reuse and recycling the materials?No
    B2P006: Other
    B2P007: Motivation for developing the PED Lab
    B2P007: Motivation for developing the PED Lab
    • Civic
    B2P007: Other
    B2P008: Lead partner that manages the PED Lab
    B2P008: Lead partner that manages the PED LabMunicipality
    B2P008: Other
    B2P009: Collaborative partners that participate in the PED Lab
    B2P009: Collaborative partners that participate in the PED Lab
    • Academia,
    • Private,
    • Industrial,
    • Other
    • Citizens, public, NGO
    B2P009: Otherresearch companies, monitoring company, ict company
    B2P010: Synergies between the fields of activities
    B2P010: Synergies between the fields of activities
    B2P011: Available facilities to test urban configurations in PED Lab
    B2P011: Available facilities to test urban configurations in PED Lab
    • Buildings,
    • Demand-side management,
    • Energy storage,
    • Energy networks,
    • Waste management,
    • Lighting,
    • E-mobility,
    • Information and Communication Technologies (ICT),
    • Social interactions,
    • Business models
    B2P011: Other
    B2P012: Incubation capacities of PED Lab
    B2P012: Incubation capacities of PED Lab
    • Tools for prototyping and modelling
    B2P013: Availability of the facilities for external people
    B2P013: Availability of the facilities for external people
    B2P014: Monitoring measures
    B2P014: Monitoring measures
    • Execution plan,
    • Available data,
    • Type of measured data,
    • Equipment,
    • Level of access
    B2P015: Key Performance indicators
    B2P015: Key Performance indicators
    • Energy,
    • Social,
    • Economical / Financial
    B2P016: Execution of operations
    B2P016: Execution of operations
    B2P017: Capacities
    B2P017: Capacities
    B2P018: Relations with stakeholders
    B2P018: Relations with stakeholders
    B2P019: Available tools
    B2P019: Available tools
    • Energy modelling,
    • Social models,
    • Business and financial models
    B2P019: Available tools
    B2P020: External accessibility
    B2P020: External accessibility
    C1P001: Unlocking Factors
    C1P001: Recent technological improvements for on-site RES production1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important5 - Very important1 - Unimportant5 - Very important
    C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important4 - Important1 - Unimportant5 - Very important
    C1P001: Energy Communities, P2P, Prosumers concepts1 - Unimportant1 - Unimportant2 - Slightly important4 - Important1 - Unimportant1 - Unimportant5 - Very important
    C1P001: Storage systems and E-mobility market penetration1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
    C1P001: Decreasing costs of innovative materials1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important5 - Very important1 - Unimportant4 - Important
    C1P001: Financial mechanisms to reduce costs and maximize benefits1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important4 - Important1 - Unimportant4 - Important
    C1P001: The ability to predict Multiple Benefits1 - Unimportant1 - Unimportant4 - Important3 - Moderately important4 - Important1 - Unimportant
    C1P001: The ability to predict the distribution of benefits and impacts1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important4 - Important1 - Unimportant
    C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important2 - Slightly important1 - Unimportant5 - Very important
    C1P001: Social acceptance (top-down)1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important5 - Very important1 - Unimportant5 - Very important
    C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)1 - Unimportant1 - Unimportant2 - Slightly important4 - Important5 - Very important1 - Unimportant3 - Moderately important
    C1P001: Presence of integrated urban strategies and plans1 - Unimportant1 - Unimportant4 - Important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important
    C1P001: Multidisciplinary approaches available for systemic integration1 - Unimportant1 - Unimportant4 - Important2 - Slightly important4 - Important1 - Unimportant3 - Moderately important
    C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant4 - Important
    C1P001: Availability of RES on site (Local RES)1 - Unimportant1 - Unimportant4 - Important4 - Important5 - Very important1 - Unimportant
    C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders1 - Unimportant1 - Unimportant4 - Important3 - Moderately important5 - Very important1 - Unimportant4 - Important
    C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P001: Any other UNLOCKING FACTORS (if any)
    C1P002: Driving Factors
    C1P002: Climate Change adaptation need1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant4 - Important
    C1P002: Climate Change mitigation need (local RES production and efficiency)1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important5 - Very important1 - Unimportant5 - Very important
    C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
    C1P002: Urban re-development of existing built environment1 - Unimportant1 - Unimportant5 - Very important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important
    C1P002: Economic growth need1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important4 - Important1 - Unimportant2 - Slightly important
    C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important
    C1P002: Territorial and market attractiveness1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important5 - Very important1 - Unimportant2 - Slightly important
    C1P002: Energy autonomy/independence1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant5 - Very important
    C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
    C1P002: Any other DRIVING FACTOR (if any)Earthquakes due to gas extraction
    C1P003: Administrative barriers
    C1P003: Difficulty in the coordination of high number of partners and authorities1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important4 - Important1 - Unimportant4 - Important
    C1P003: Lack of good cooperation and acceptance among partners1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important
    C1P003: Lack of public participation1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important
    C1P003: Lack of institutions/mechanisms to disseminate information1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important4 - Important1 - Unimportant3 - Moderately important
    C1P003:Long and complex procedures for authorization of project activities1 - Unimportant1 - Unimportant3 - Moderately important4 - Important3 - Moderately important1 - Unimportant5 - Very important
    C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy1 - Unimportant1 - Unimportant5 - Very important4 - Important5 - Very important1 - Unimportant4 - Important
    C1P003: Complicated and non-comprehensive public procurement1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant4 - Important
    C1P003: Fragmented and or complex ownership structure1 - Unimportant1 - Unimportant2 - Slightly important4 - Important5 - Very important1 - Unimportant3 - Moderately important
    C1P003: City administration & cross-sectoral attitude/approaches (silos)1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important5 - Very important1 - Unimportant3 - Moderately important
    C1P003: Lack of internal capacities to support energy transition1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important
    C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P003: Any other Administrative BARRIER (if any)
    C1P004: Policy barriers
    C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant4 - Important
    C1P004: Lacking or fragmented local political commitment and support on the long term1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important
    C1P004: Lack of Cooperation & support between national-regional-local entities1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant3 - Moderately important
    C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P004: Any other Political BARRIER (if any)
    C1P005: Legal and Regulatory barriers
    C1P005: Inadequate regulations for new technologies1 - Unimportant1 - Unimportant3 - Moderately important4 - Important5 - Very important1 - Unimportant4 - Important
    C1P005: Regulatory instability1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important
    C1P005: Non-effective regulations1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant4 - Important
    C1P005: Unfavorable local regulations for innovative technologies1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important
    C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant4 - Important
    C1P005: Insufficient or insecure financial incentives1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important4 - Important1 - Unimportant4 - Important
    C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation1 - Unimportant1 - Unimportant4 - Important2 - Slightly important3 - Moderately important1 - Unimportant4 - Important
    C1P005: Shortage of proven and tested solutions and examples1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant
    C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P005: Any other Legal and Regulatory BARRIER (if any)
    C1P006: Environmental barriers
    C1P006: Environmental barriers- Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Air and Water Pollution: 2 - Natural Disasters: 1 - Water Scarcity: 1
    C1P007: Technical barriers
    C1P007: Lack of skilled and trained personnel1 - Unimportant1 - Unimportant2 - Slightly important4 - Important5 - Very important1 - Unimportant4 - Important
    C1P007: Deficient planning1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important4 - Important1 - Unimportant3 - Moderately important
    C1P007: Retrofitting work in dwellings in occupied state1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant4 - Important
    C1P007: Lack of well-defined process1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant4 - Important
    C1P007: Inaccuracy in energy modelling and simulation1 - Unimportant1 - Unimportant3 - Moderately important4 - Important5 - Very important1 - Unimportant4 - Important
    C1P007: Lack/cost of computational scalability1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important
    C1P007: Grid congestion, grid instability1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant4 - Important
    C1P007: Negative effects of project intervention on the natural environment1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important
    C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant5 - Very important
    C1P007: Difficult definition of system boundaries1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
    C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Any other Thecnical BARRIER (if any)
    C1P008: Social and Cultural barriers
    C1P008: Inertia1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important5 - Very important1 - Unimportant4 - Important
    C1P008: Lack of values and interest in energy optimization measurements1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant5 - Very important
    C1P008: Low acceptance of new projects and technologies1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important5 - Very important1 - Unimportant5 - Very important
    C1P008: Difficulty of finding and engaging relevant actors1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important4 - Important1 - Unimportant5 - Very important
    C1P008: Lack of trust beyond social network1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant4 - Important
    C1P008: Rebound effect1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant4 - Important
    C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important
    C1P008: Exclusion of socially disadvantaged groups1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important
    C1P008: Non-energy issues are more important and urgent for actors1 - Unimportant1 - Unimportant3 - Moderately important4 - Important4 - Important1 - Unimportant3 - Moderately important
    C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant
    C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P008: Any other Social BARRIER (if any)
    C1P009: Information and Awareness barriers
    C1P009: Insufficient information on the part of potential users and consumers1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant
    C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important4 - Important1 - Unimportant
    C1P009: Lack of awareness among authorities1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important4 - Important1 - Unimportant
    C1P009: Information asymmetry causing power asymmetry of established actors1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
    C1P009: High costs of design, material, construction, and installation1 - Unimportant1 - Unimportant3 - Moderately important4 - Important5 - Very important1 - Unimportant
    C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P009: Any other Information and Awareness BARRIER (if any)
    C1P010: Financial barriers
    C1P010: Hidden costs1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important4 - Important1 - Unimportant
    C1P010: Insufficient external financial support and funding for project activities1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant
    C1P010: Economic crisis1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
    C1P010: Risk and uncertainty1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important4 - Important1 - Unimportant
    C1P010: Lack of consolidated and tested business models1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important4 - Important1 - Unimportant
    C1P010: Limited access to capital and cost disincentives1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important5 - Very important1 - Unimportant
    C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P010: Any other Financial BARRIER (if any)
    C1P011: Market barriers
    C1P011: Split incentives1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important5 - Very important1 - Unimportant
    C1P011: Energy price distortion1 - Unimportant1 - Unimportant2 - Slightly important4 - Important5 - Very important1 - Unimportant
    C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
    C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P011: Any other Market BARRIER (if any)
    C1P012: Stakeholders involved
    C1P012: Government/Public Authorities
    • Planning/leading,
    • Design/demand aggregation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    C1P012: Research & Innovation
    • Planning/leading,
    • Design/demand aggregation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Monitoring/operation/management
    C1P012: Financial/Funding
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Design/demand aggregation,
    • Construction/implementation
    C1P012: Analyst, ICT and Big Data
    • Monitoring/operation/management
    • Design/demand aggregation,
    • Monitoring/operation/management
    C1P012: Business process management
    • Planning/leading,
    • Monitoring/operation/management
    • Planning/leading
    C1P012: Urban Services providers
    • Planning/leading
    • Design/demand aggregation,
    • Monitoring/operation/management
    C1P012: Real Estate developers
    • Design/demand aggregation,
    • Construction/implementation
    • Construction/implementation
    C1P012: Design/Construction companies
    • Design/demand aggregation
    • Construction/implementation
    C1P012: End‐users/Occupants/Energy Citizens
    • Monitoring/operation/management
    • None
    C1P012: Social/Civil Society/NGOs
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation
    C1P012: Industry/SME/eCommerce
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    C1P012: Other
    C1P012: Other (if any)
    Summary

    Authors (framework concept)

    Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

    Contributors (to the content)

    Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

    Implemented by

    Boutik.pt: Filipe Martins, Jamal Khan
    Marek Suchánek (Czech Technical University in Prague)