Filters:
NameProjectTypeCompare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Uncompare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Uncompare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Uncompare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Uncompare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Uncompare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleCityfied (demo Linero), Lund
Romania, Alba Iulia PED
Freiburg, Waldsee
Groningen, PED South
Salzburg, Gneis district
Jacobs Borchs Gate, Drammen
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabCityfied (demo Linero), LundRomania, Alba Iulia PEDFreiburg, WaldseeGroningen, PED SouthSalzburg, Gneis districtJacobs Borchs Gate, Drammen
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesyesnoyesno
PED relevant case studyyesnonononoyes
PED Lab.nononoyesnono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesyesyesyes
Annual energy surplusnononoyesyesno
Energy communitynoyesyesyesyesno
Circularitynononoyesnono
Air quality and urban comfortnoyesnonoyesno
Electrificationnoyesyesnonono
Net-zero energy costnononononono
Net-zero emissionyesnoyesyesnoyes
Self-sufficiency (energy autonomous)noyesnononono
Maximise self-sufficiencynoyesnononono
Otheryesnonononoyes
Other (A1P004)Social aspects/affordabilityEnergy efficient; Carbon-free; A drive for both non fossil fuel and non-greenhouse gas working fluids plus maximum efficiency led to deploying ammonia fjord source heat pumps
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabCompletedImplementation PhasePlanning PhaseImplementation PhaseCompletedCompleted
A1P006: Start Date
A1P006: Start date01/1401/2311/2112/1801/2001/09
A1P007: End Date
A1P007: End date12/1912/2711/2412/2301/2412/12
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
  • Monitoring data available within the districts
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • Historical sources,
  • GIS of the municipality,
  • Basic BEMs
  • Data from the local energy provider available (restricted usage for some data points because of data security reasons,
  • renewable energy potential,
  • own calculations based on publicly available data,
  • Some data can be found in https://geoportal.freiburg.de/freigis/
  • TNO, Hanze, RUG,
  • Ped noord book
A1P011: Geographic coordinates
X Coordinate (longitude):13.24337523.5801120980232357.8858571358429176.59065513.04121610.230603
Y Coordinate (latitude):55.69922346.07701527868011547.98653520708004553.20408747.77101959.741334
A1P012: Country
A1P012: CountrySwedenRomaniaGermanyNetherlandsAustriaNorway
A1P013: City
A1P013: CityLundAlba IuliaFreiburg im BreisgauGroningenSalzburgDrammen
A1P014: Climate Zone (Köppen Geiger classification)
A1P014: Climate Zone (Köppen Geiger classification).CfbDfbCfbCfaDfbDfb
A1P015: District boundary
A1P015: District boundaryFunctionalVirtualFunctionalGeographic
OtherGeographic
A1P016: Ownership of the case study/PED Lab
A1P016: Ownership of the case study/PED Lab:MixedPublicMixedMixedMixedPrivate
A1P017: Ownership of the land / physical infrastructure
A1P017: Ownership of the land / physical infrastructure:Multiple OwnersSingle OwnerMultiple OwnersMultiple OwnersSingle OwnerSingle Owner
A1P018: Number of buildings in PED
A1P018: Number of buildings in PED2941417
A1P019: Conditioned space
A1P019: Conditioned space [m²]2840707.86199762
A1P020: Total ground area
A1P020: Total ground area [m²]80000492000045.0931000
A1P021: Floor area ratio: Conditioned space / total ground area
A1P021: Floor area ratio: Conditioned space / total ground area000000
A1P022: Financial schemes
A1P022a: Financing - PRIVATE - Real estatenononoyesnono
A1P022a: Add the value in EUR if available [EUR]
A1P022b: Financing - PRIVATE - ESCO schemenononononono
A1P022b: Add the value in EUR if available [EUR]
A1P022c: Financing - PRIVATE - Othernononoyesnoyes
A1P022c: Add the value in EUR if available [EUR]
A1P022d: Financing - PUBLIC - EU structural fundingnononononono
A1P022d: Add the value in EUR if available [EUR]
A1P022e: Financing - PUBLIC - National fundingnoyesnoyesnono
A1P022e: Add the value in EUR if available [EUR]
A1P022f: Financing - PUBLIC - Regional fundingnoyesnononono
A1P022f: Add the value in EUR if available [EUR]
A1P022g: Financing - PUBLIC - Municipal fundingnoyesyesyesnono
A1P022g: Add the value in EUR if available [EUR]
A1P022h: Financing - PUBLIC - Otheryesnonononono
A1P022h: Add the value in EUR if available [EUR]
A1P022i: Financing - RESEARCH FUNDING - EUnoyesyesyesyesno
A1P022i: Add the value in EUR if available [EUR]
A1P022j: Financing - RESEARCH FUNDING - Nationalnonoyesnonono
A1P022j: Add the value in EUR if available [EUR]
A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononono
A1P022k: Add the value in EUR if available [EUR]
A1P022l: Financing - RESEARCH FUNDING - Otheryesnonononono
A1P022l: Add the value in EUR if available [EUR]
A1P022: Other
A1P023: Economic Targets
A1P023: Economic Targets
  • Job creation,
  • Positive externalities
  • Boosting local businesses,
  • Boosting local and sustainable production
  • Positive externalities,
  • Other
A1P023: OtherBoosting sustainability for public schoolsBoosting social cooperation and social aid
A1P024: More comments:
A1P024: More comments:
A1P025: Estimated PED case study / PED LAB costs
A1P025: Estimated PED case study / PED LAB costs [mil. EUR]3.5
Contact person for general enquiries
A1P026: NameChristoph GollnerTudor DrâmbăreanDr. Annette SteingrubeJasper Tonen, Elisabeth KoopsAbel MagyariChristoph Gollner
A1P027: OrganizationFFGMunicipality of Alba IuliaFraunhofer Institute for solar energy systemsMunicipality of GroningenABUDFFG
A1P028: AffiliationOtherMunicipality / Public BodiesResearch Center / UniversityMunicipality / Public BodiesResearch Center / UniversityOther
A1P028: OtherMaria Elena Seemann
A1P029: Emailchristoph.gollner@ffg.attudor.drambarean@apulum.roAnnette.Steingrube@ise.fraunhofer.deJasper.tonen@groningen.nlmagyari.abel@abud.huchristoph.gollner@ffg.at
Contact person for other special topics
A1P030: NameMaria-Elena SeemannStrassl Ingeborg
A1P031: Emailmaria.seemann@apulum.roinge.strassl@salzburg.gv.at
Pursuant to the General Data Protection RegulationYesYesYesYesYesYes
A2P001: Fields of application
A2P001: Fields of application
  • Energy efficiency,
  • Energy production
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Urban comfort (pollution, heat island, noise level etc.),
  • Digital technologies,
  • Water use,
  • Construction materials
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Waste management
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Urban comfort (pollution, heat island, noise level etc.),
  • Waste management
  • Energy efficiency,
  • Energy flexibility,
  • Energy production
  • Energy efficiency
A2P001: Other
A2P002: Tools/strategies/methods applied for each of the above-selected fields
A2P002: Tools/strategies/methods applied for each of the above-selected fieldsThermal rehabilitation of the main building, and investments in the energy efficiency and consumption fields.Energy system modelingEnergy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streams- Dynamic district, and building scale energy modelling - Microclimate modelling - Klimaaktiv certification system - Energy community - Flexibility with shared heating and electricity systems
A2P003: Application of ISO52000
A2P003: Application of ISO52000YesYesNoYes
A2P004: Appliances included in the calculation of the energy balance
A2P004: Appliances included in the calculation of the energy balanceYesYesNoNo
A2P005: Mobility included in the calculation of the energy balance
A2P005: Mobility included in the calculation of the energy balanceNoYesNoNo
A2P006: Description of how mobility is included (or not included) in the calculation
A2P006: Description of how mobility is included (or not included) in the calculationThere will be 1 EV station placed nearby the main building. This would be the link to the mobility field.All energy demands are included in energy balance, either fuel demands or electrical demand of transport sector; Projection is made of future share of electric mobilty, rest is covered with synthetic fuels to achieve climate neutralityMobility, till now, is not included in the energy model.
A2P007: Annual energy demand in buildings / Thermal demand
A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]135.7151.86
A2P008: Annual energy demand in buildings / Electric Demand
A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]31.761.45
A2P009: Annual energy demand for e-mobility
A2P009: Annual energy demand for e-mobility [GWh/annum]
A2P010: Annual energy demand for urban infrastructure
A2P010: Annual energy demand for urban infrastructure [GWh/annum]
A2P011: Annual renewable electricity production on-site during target year
A2P011: PVnoyesnonoyesno
A2P011: PV - specify production in GWh/annum [GWh/annum]0.7770664
A2P011: Windnononononono
A2P011: Wind - specify production in GWh/annum [GWh/annum]
A2P011: Hydronononononono
A2P011: Hydro - specify production in GWh/annum [GWh/annum]
A2P011: Biomass_elnononononono
A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
A2P011: Biomass_peat_elnononononono
A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
A2P011: PVT_elnononononono
A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
A2P011: Othernononononono
A2P011: Other - specify production in GWh/annum [GWh/annum]
A2P012: Annual renewable thermal production on-site during target year
A2P012: Geothermalnononoyesyesno
A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
A2P012: Solar Thermalnononoyesnono
A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
A2P012: Biomass_heatnononoyesnono
A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
A2P012: Waste heat+HPnononoyesnono
A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
A2P012: Biomass_peat_heatnononononono
A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
A2P012: PVT_thnononoyesnono
A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
A2P012: Biomass_firewood_thnononononono
A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
A2P012: Othernoyesnononono
A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
A2P013: Renewable resources on-site - Additional notes
A2P013: Renewable resources on-site - Additional notes53 MW PV potential in all three quarters; no other internal renewable energy potentials knownGeothermal heatpump systems, Waste heat from data centers
A2P014: Annual energy use
A2P014: Annual energy use [GWh/annum]132.50.819016
A2P015: Annual energy delivered
A2P015: Annual energy delivered [GWh/annum]
A2P016: Annual non-renewable electricity production on-site during target year
A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]-1
A2P017: Annual non-renewable thermal production on-site during target year
A2P017: Gasnononononono
A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Coalnononononono
A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Oilnononononono
A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Othernononononono
A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P018: Annual renewable electricity imports from outside the boundary during target year
A2P018: PVnononononono
A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
A2P018: Windnononononono
A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
A2P018: Hydronononononono
A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
A2P018: Biomass_elnononononono
A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
A2P018: Biomass_peat_elnononononono
A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
A2P018: PVT_elnononononono
A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
A2P018: Othernoyesnononono
A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
A2P019: Annual renewable thermal imports from outside the boundary during target year
A2P019: Geothermalnononononono
A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
A2P019: Solar Thermalnononononono
A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_heatnononononono
A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
A2P019: Waste heat+HPnononononono
A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_peat_heatnononononono
A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
A2P019: PVT_thnononononono
A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_firewood_thnononononono
A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
A2P019: Othernoyesnononono
A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
A2P020: Share of RES on-site / RES outside the boundary
A2P020: Share of RES on-site / RES outside the boundary000000
A2P021: GHG-balance calculated for the PED
A2P021: GHG-balance calculated for the PED [tCO2/annum]
A2P022: KPIs related to the PED case study / PED Lab
A2P022: Safety & Securityyes
A2P022: HealthyesCO2) levels, Predicted Mean Vote,Predicted Percentage of Dissatisfied, Temperature, Relative Humidity, Illuminance, Daylight factor, Sound pressure levels
A2P022: Educationyes
A2P022: Mobilityyesyes
A2P022: EnergyyesyesNon-renewable primary energy balance, Renewable energy ratio, Grid Purchase factor, Load cover factor/Self-generation, Supply cover factor/Self-consumption, Net energy/Net power, Peak delivered/exported power, Connection capacity credit, Total greenhouse gas emissions
A2P022: Wateryes
A2P022: Economic developmentyesInvestment costs, Share of investments covered by grants, Maintenance-related costs, Requirement-related costs, Operation-related costs, Other costs, Net Present Value, Internal Rate of Return, Economic Value Added, Payback Period, nZEB Cost Comparison
A2P022: Housing and CommunityyesAccess to services, Affordability of energy, Affordability of housing, Democratic legitimacy, Living conditions, Social cohesion, Personal safety, Energy consciousness
A2P022: Waste
A2P022: Other
A2P023: Technological Solutions / Innovations - Energy Generation
A2P023: Photovoltaicsyesyesyesyesyesno
A2P023: Solar thermal collectorsyesyesyesyesnono
A2P023: Wind Turbinesnononononono
A2P023: Geothermal energy systemnonoyesyesyesno
A2P023: Waste heat recoverynonoyesyesnono
A2P023: Waste to energynonoyesyesnono
A2P023: Polygenerationnoyesnononono
A2P023: Co-generationnoyesyesnonono
A2P023: Heat Pumpyesyesyesyesnoyes
A2P023: Hydrogennonoyesnonono
A2P023: Hydropower plantnonoyesnonono
A2P023: Biomassnonoyesnonono
A2P023: Biogasnonoyesnonono
A2P023: Other
A2P024: Technological Solutions / Innovations - Energy Flexibility
A2P024: A2P024: Information and Communication Technologies (ICT)noyesyesyesnono
A2P024: Energy management systemnoyesyesyesyesno
A2P024: Demand-side managementnoyesyesnoyesno
A2P024: Smart electricity gridnoyesyesnoyesno
A2P024: Thermal Storagenonoyesyesnono
A2P024: Electric Storagenoyesyesyesnono
A2P024: District Heating and Coolingyesnoyesyesnoyes
A2P024: Smart metering and demand-responsive control systemsnoyesyesyesnono
A2P024: P2P – buildingsnoyesyesnoyesno
A2P024: Other
A2P025: Technological Solutions / Innovations - Energy Efficiency
A2P025: Deep Retrofittingyesyesyesnonono
A2P025: Energy efficiency measures in historic buildingsnonoyesyesnono
A2P025: High-performance new buildingsnononoyesyesno
A2P025: Smart Public infrastructure (e.g. smart lighting)noyesnoyesnono
A2P025: Urban data platformsnoyesyesyesnono
A2P025: Mobile applications for citizensnononononono
A2P025: Building services (HVAC & Lighting)noyesnonoyesno
A2P025: Smart irrigationnononononono
A2P025: Digital tracking for waste disposalnononononono
A2P025: Smart surveillancenononononono
A2P025: Other
A2P026: Technological Solutions / Innovations - Mobility
A2P026: Efficiency of vehicles (public and/or private)noyesyesnonono
A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)noyesyesnoyesno
A2P026: e-Mobilitynoyesyesyesyesno
A2P026: Soft mobility infrastructures and last mile solutionsnonoyesnonono
A2P026: Car-free areanononononono
A2P026: Other
A2P027: Mobility strategies - Additional notes
A2P027: Mobility strategies - Additional notesThe new mobility plan integrates the PED areaShared mobility: a mobility point will be implemented and ensure the flexible use of different mobility services.
A2P028: Energy efficiency certificates
A2P028: Energy efficiency certificatesYesNoYesYes
A2P028: If yes, please specify and/or enter notesEnergy Performance CertificateEnergy Performance Certificate
A2P029: Any other building / district certificates
A2P029: Any other building / district certificatesYesNoYes
A2P029: If yes, please specify and/or enter notesKlimaaktiv certificate, Greenpass certificate
A3P001: Relevant city /national strategy
A3P001: Relevant city /national strategy
  • Smart cities strategies
  • Smart cities strategies,
  • Urban Renewal Strategies,
  • Energy master planning (SECAP, etc.),
  • New development strategies,
  • Promotion of energy communities (REC/CEC),
  • Climate change adaption plan/strategy (e.g. Climate City contract),
  • National / international city networks addressing sustainable urban development and climate neutrality
  • Smart cities strategies
  • Energy master planning (SECAP, etc.),
  • New development strategies,
  • National / international city networks addressing sustainable urban development and climate neutrality
A3P002: Quantitative targets included in the city / national strategy
A3P002: Quantitative targets included in the city / national strategy40% reduction in emissions by 2030 according to the Convenant of MayorsClimate neutrality by 2035
A3P003: Strategies towards decarbonization of the gas grid
A3P003: Strategies towards decarbonization of the gas grid
  • Electrification of Heating System based on Heat Pumps
  • Electrification of Heating System based on Heat Pumps,
  • Biogas,
  • Hydrogen
  • Electrification of Heating System based on Heat Pumps,
  • Electrification of Cooking Methods,
  • Biogas
  • Electrification of Heating System based on Heat Pumps
  • Electrification of Heating System based on Heat Pumps
A3P003: Other
A3P004: Identification of needs and priorities
A3P004: Identification of needs and prioritiesThermal rehabilitation Heat pumps Smart system capable o various connections and data export Usage of the energy produced by PVs placed on 3 buildings within the PEDFreiburg has ambitious goals and wants to achieve climate neutrality until 2035, the PED concept could help to develop suitable strategies on district level
A3P005: Sustainable behaviour
A3P005: Sustainable behaviourEducation Replacement of the non-performant PVs Professional maintenance of the PV system Reduce of consumptions Intelligent systems to recover heat Intelligent system to permit the usage of domestic water from the heating systemEnergy efficiency by renovation measures for buildings and measures for saving electricity; electrification by installation of heat pumps and photovoltaics and switching to electric cars, additional measures not directly related to PED like sustainable diet and sharing economyIn Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.
A3P006: Economic strategies
A3P006: Economic strategies
  • Open data business models,
  • Innovative business models,
  • Life Cycle Cost,
  • Circular economy models,
  • Demand management Living Lab
  • Demand management Living Lab,
  • Local trading,
  • Existing incentives
  • Innovative business models,
  • Blockchain
  • Innovative business models,
  • Local trading
A3P006: Other
A3P007: Social models
A3P007: Social models
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies,
  • Behavioural Change / End-users engagement,
  • Citizen Social Research,
  • Policy Forums,
  • Social incentives,
  • Quality of Life,
  • Strategies towards social mix,
  • Affordability,
  • Prevention of energy poverty,
  • Digital Inclusion,
  • Citizen/owner involvement in planning and maintenance,
  • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies,
  • Behavioural Change / End-users engagement,
  • Citizen/owner involvement in planning and maintenance,
  • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies,
  • Citizen Social Research,
  • Prevention of energy poverty,
  • Citizen/owner involvement in planning and maintenance
  • Strategies towards (local) community-building,
  • Behavioural Change / End-users engagement,
  • Social incentives,
  • Quality of Life,
  • Strategies towards social mix,
  • Affordability,
  • Citizen/owner involvement in planning and maintenance
A3P007: Other
A3P008: Integrated urban strategies
A3P008: Integrated urban strategies
  • Strategic urban planning,
  • District Energy plans,
  • City Vision 2050,
  • SECAP Updates,
  • Building / district Certification
  • Strategic urban planning,
  • Digital twinning and visual 3D models,
  • District Energy plans
  • Strategic urban planning,
  • District Energy plans,
  • City Vision 2050,
  • SECAP Updates
  • Building / district Certification
A3P008: Other
A3P009: Environmental strategies
A3P009: Environmental strategies
  • Energy Neutral,
  • Low Emission Zone,
  • Net zero carbon footprint,
  • Carbon-free,
  • Life Cycle approach,
  • Pollutants Reduction,
  • Greening strategies,
  • Sustainable Urban drainage systems (SUDS),
  • Cool Materials,
  • Nature Based Solutions (NBS)
  • Energy Neutral
  • Energy Neutral,
  • Low Emission Zone
  • Energy Neutral,
  • Carbon-free
A3P009: Other
A3P010: Legal / Regulatory aspects
A3P010: Legal / Regulatory aspectsAt national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricity
B1P001: PED/PED relevant concept definition
B1P001: PED/PED relevant concept definitionPositive energy districtAssessment methods for this ped (and for germany) is defined in this project at the moment and will be tested at that case study
B1P002: Motivation behind PED/PED relevant project development
B1P002: Motivation behind PED/PED relevant project developmentCreation of an area which aims to be sustainable in terms of energy sufficiency and efficiency.City is interested in transforming the quarter, as many buildings are old, have private owner structures and have decentralised heating systems. As the city wants to become climate neutral by 2035 action is needed now. In the research project PED urban the idea is to focus on the future energy system of the quarter and use it as a case study to develop a common assessment method for PEDs in alignment with european efforts in that regard
B1P003: Environment of the case study area
B2P003: Environment of the case study areaUrban areaUrban areaSuburban areaSuburban areaSuburban area
B1P004: Type of district
B2P004: Type of district
  • Renovation
  • Renovation
  • Renovation
  • New construction
  • Renovation
B1P005: Case Study Context
B1P005: Case Study Context
  • Retrofitting Area
  • Retrofitting Area
  • Retrofitting Area
  • New Development
  • Retrofitting Area
B1P006: Year of construction
B1P006: Year of construction2024
B1P007: District population before intervention - Residential
B1P007: District population before intervention - Residential5898
B1P008: District population after intervention - Residential
B1P008: District population after intervention - Residential5898
B1P009: District population before intervention - Non-residential
B1P009: District population before intervention - Non-residential
B1P010: District population after intervention - Non-residential
B1P010: District population after intervention - Non-residential
B1P011: Population density before intervention
B1P011: Population density before intervention000000
B1P012: Population density after intervention
B1P012: Population density after intervention000.0011987804878049000
B1P013: Building and Land Use before intervention
B1P013: Residentialyesnoyesnonono
B1P013 - Residential: Specify the sqm [m²]
B1P013: Officenonoyesnonono
B1P013 - Office: Specify the sqm [m²]
B1P013: Industry and Utilitynonoyesnonono
B1P013 - Industry and Utility: Specify the sqm [m²]
B1P013: Commercialnonoyesnonono
B1P013 - Commercial: Specify the sqm [m²]
B1P013: Institutionalnoyesyesnonono
B1P013 - Institutional: Specify the sqm [m²]
B1P013: Natural areasnonoyesnoyesno
B1P013 - Natural areas: Specify the sqm [m²]
B1P013: Recreationalnonoyesnonono
B1P013 - Recreational: Specify the sqm [m²]
B1P013: Dismissed areasnononononono
B1P013 - Dismissed areas: Specify the sqm [m²]
B1P013: Othernononononono
B1P013 - Other: Specify the sqm [m²]
B1P014: Building and Land Use after intervention
B1P014: Residentialyesnoyesnoyesno
B1P014 - Residential: Specify the sqm [m²]
B1P014: Officenonoyesnonono
B1P014 - Office: Specify the sqm [m²]
B1P014: Industry and Utilitynonoyesnonono
B1P014 - Industry and Utility: Specify the sqm [m²]
B1P014: Commercialnonoyesnonono
B1P014 - Commercial: Specify the sqm [m²]
B1P014: Institutionalnoyesyesnonono
B1P014 - Institutional: Specify the sqm [m²]
B1P014: Natural areasnonoyesnoyesno
B1P014 - Natural areas: Specify the sqm [m²]
B1P014: Recreationalnonoyesnonono
B1P014 - Recreational: Specify the sqm [m²]
B1P014: Dismissed areasnononononono
B1P014 - Dismissed areas: Specify the sqm [m²]
B1P014: Othernononononono
B1P014 - Other: Specify the sqm [m²]
B2P001: PED Lab concept definition
B2P001: PED Lab concept definitionGroningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.
B2P002: Installation life time
B2P002: Installation life timeThe MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.
B2P003: Scale of action
B2P003: ScaleDistrictDistrictDistrict
B2P004: Operator of the installation
B2P004: Operator of the installationThe Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.
B2P005: Replication framework: Applied strategy to reuse and recycling the materials
B2P005: Replication framework: Applied strategy to reuse and recycling the materialsGroningen does not have a strategy to reuse and recyle materials
B2P006: Circular Economy Approach
B2P006: Do you apply any strategy to reuse and recycling the materials?No
B2P006: Other
B2P007: Motivation for developing the PED Lab
B2P007: Motivation for developing the PED Lab
  • Civic
B2P007: Other
B2P008: Lead partner that manages the PED Lab
B2P008: Lead partner that manages the PED LabMunicipality
B2P008: Other
B2P009: Collaborative partners that participate in the PED Lab
B2P009: Collaborative partners that participate in the PED Lab
  • Academia,
  • Private,
  • Industrial,
  • Other
B2P009: Otherresearch companies, monitoring company, ict company
B2P010: Synergies between the fields of activities
B2P010: Synergies between the fields of activities
B2P011: Available facilities to test urban configurations in PED Lab
B2P011: Available facilities to test urban configurations in PED Lab
  • Buildings,
  • Demand-side management,
  • Energy storage,
  • Energy networks,
  • Waste management,
  • Lighting,
  • E-mobility,
  • Information and Communication Technologies (ICT),
  • Social interactions,
  • Business models
B2P011: Other
B2P012: Incubation capacities of PED Lab
B2P012: Incubation capacities of PED Lab
  • Tools for prototyping and modelling
B2P013: Availability of the facilities for external people
B2P013: Availability of the facilities for external people
B2P014: Monitoring measures
B2P014: Monitoring measures
  • Execution plan,
  • Available data,
  • Type of measured data,
  • Equipment,
  • Level of access
B2P015: Key Performance indicators
B2P015: Key Performance indicators
  • Energy,
  • Social,
  • Economical / Financial
B2P016: Execution of operations
B2P016: Execution of operations
B2P017: Capacities
B2P017: Capacities
B2P018: Relations with stakeholders
B2P018: Relations with stakeholders
B2P019: Available tools
B2P019: Available tools
  • Energy modelling,
  • Social models,
  • Business and financial models
B2P019: Available tools
B2P020: External accessibility
B2P020: External accessibility
C1P001: Unlocking Factors
C1P001: Recent technological improvements for on-site RES production1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
C1P001: Energy Communities, P2P, Prosumers concepts1 - Unimportant5 - Very important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
C1P001: Storage systems and E-mobility market penetration1 - Unimportant3 - Moderately important4 - Important4 - Important1 - Unimportant1 - Unimportant
C1P001: Decreasing costs of innovative materials1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant
C1P001: Financial mechanisms to reduce costs and maximize benefits1 - Unimportant3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant
C1P001: The ability to predict Multiple Benefits1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
C1P001: The ability to predict the distribution of benefits and impacts1 - Unimportant3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant
C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)1 - Unimportant3 - Moderately important4 - Important5 - Very important1 - Unimportant1 - Unimportant
C1P001: Social acceptance (top-down)1 - Unimportant3 - Moderately important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)1 - Unimportant2 - Slightly important4 - Important4 - Important1 - Unimportant1 - Unimportant
C1P001: Presence of integrated urban strategies and plans1 - Unimportant5 - Very important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
C1P001: Multidisciplinary approaches available for systemic integration1 - Unimportant2 - Slightly important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant
C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
C1P001: Availability of RES on site (Local RES)1 - Unimportant5 - Very important4 - Important4 - Important1 - Unimportant1 - Unimportant
C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders1 - Unimportant5 - Very important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant
C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P001: Any other UNLOCKING FACTORS (if any)
C1P002: Driving Factors
C1P002: Climate Change adaptation need1 - Unimportant5 - Very important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant
C1P002: Climate Change mitigation need (local RES production and efficiency)1 - Unimportant5 - Very important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P002: Urban re-development of existing built environment1 - Unimportant2 - Slightly important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant
C1P002: Economic growth need1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
C1P002: Territorial and market attractiveness1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
C1P002: Energy autonomy/independence1 - Unimportant5 - Very important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant
C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
C1P002: Any other DRIVING FACTOR (if any)Earthquakes due to gas extraction
C1P003: Administrative barriers
C1P003: Difficulty in the coordination of high number of partners and authorities1 - Unimportant3 - Moderately important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
C1P003: Lack of good cooperation and acceptance among partners1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
C1P003: Lack of public participation1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
C1P003: Lack of institutions/mechanisms to disseminate information1 - Unimportant4 - Important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant
C1P003:Long and complex procedures for authorization of project activities1 - Unimportant5 - Very important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
C1P003: Complicated and non-comprehensive public procurement1 - Unimportant4 - Important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant
C1P003: Fragmented and or complex ownership structure1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant
C1P003: City administration & cross-sectoral attitude/approaches (silos)1 - Unimportant2 - Slightly important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant
C1P003: Lack of internal capacities to support energy transition1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P003: Any other Administrative BARRIER (if any)
C1P004: Policy barriers
C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
C1P004: Lacking or fragmented local political commitment and support on the long term1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
C1P004: Lack of Cooperation & support between national-regional-local entities1 - Unimportant3 - Moderately important2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant
C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P004: Any other Political BARRIER (if any)
C1P005: Legal and Regulatory barriers
C1P005: Inadequate regulations for new technologies1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant
C1P005: Regulatory instability1 - Unimportant4 - Important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant
C1P005: Non-effective regulations1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
C1P005: Unfavorable local regulations for innovative technologies1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant
C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
C1P005: Insufficient or insecure financial incentives1 - Unimportant4 - Important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation1 - Unimportant4 - Important2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant
C1P005: Shortage of proven and tested solutions and examples1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant
C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P005: Any other Legal and Regulatory BARRIER (if any)
C1P006: Environmental barriers
C1P006: Environmental barriers
C1P007: Technical barriers
C1P007: Lack of skilled and trained personnel1 - Unimportant4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant
C1P007: Deficient planning1 - Unimportant3 - Moderately important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant
C1P007: Retrofitting work in dwellings in occupied state1 - Unimportant3 - Moderately important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant
C1P007: Lack of well-defined process1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
C1P007: Inaccuracy in energy modelling and simulation1 - Unimportant2 - Slightly important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant
C1P007: Lack/cost of computational scalability1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P007: Grid congestion, grid instability1 - Unimportant2 - Slightly important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
C1P007: Negative effects of project intervention on the natural environment1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant2 - Slightly important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
C1P007: Difficult definition of system boundaries1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P007: Any other Thecnical BARRIER (if any)
C1P008: Social and Cultural barriers
C1P008: Inertia1 - Unimportant4 - Important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant
C1P008: Lack of values and interest in energy optimization measurements1 - Unimportant4 - Important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
C1P008: Low acceptance of new projects and technologies1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant
C1P008: Difficulty of finding and engaging relevant actors1 - Unimportant3 - Moderately important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant
C1P008: Lack of trust beyond social network1 - Unimportant3 - Moderately important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
C1P008: Rebound effect1 - Unimportant2 - Slightly important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant
C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P008: Exclusion of socially disadvantaged groups1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
C1P008: Non-energy issues are more important and urgent for actors1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant
C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P008: Any other Social BARRIER (if any)
C1P009: Information and Awareness barriers
C1P009: Insufficient information on the part of potential users and consumers1 - Unimportant3 - Moderately important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts1 - Unimportant3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant
C1P009: Lack of awareness among authorities1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant
C1P009: Information asymmetry causing power asymmetry of established actors1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
C1P009: High costs of design, material, construction, and installation1 - Unimportant5 - Very important4 - Important4 - Important1 - Unimportant1 - Unimportant
C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P009: Any other Information and Awareness BARRIER (if any)
C1P010: Financial barriers
C1P010: Hidden costs1 - Unimportant4 - Important2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant
C1P010: Insufficient external financial support and funding for project activities1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
C1P010: Economic crisis1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
C1P010: Risk and uncertainty1 - Unimportant2 - Slightly important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
C1P010: Lack of consolidated and tested business models1 - Unimportant4 - Important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
C1P010: Limited access to capital and cost disincentives1 - Unimportant4 - Important2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant
C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P010: Any other Financial BARRIER (if any)
C1P011: Market barriers
C1P011: Split incentives1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant
C1P011: Energy price distortion1 - Unimportant3 - Moderately important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant3 - Moderately important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P011: Any other Market BARRIER (if any)
C1P012: Stakeholders involved
C1P012: Government/Public Authorities
  • Planning/leading
  • Planning/leading
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation
C1P012: Research & Innovation
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation,
  • Monitoring/operation/management
C1P012: Financial/Funding
  • None
  • Design/demand aggregation,
  • Construction/implementation
C1P012: Analyst, ICT and Big Data
  • None
  • Design/demand aggregation,
  • Monitoring/operation/management
C1P012: Business process management
  • None
  • Planning/leading
C1P012: Urban Services providers
  • None
  • Design/demand aggregation,
  • Monitoring/operation/management
C1P012: Real Estate developers
  • None
  • Construction/implementation
C1P012: Design/Construction companies
  • Construction/implementation
  • Construction/implementation
C1P012: End‐users/Occupants/Energy Citizens
  • Planning/leading,
  • Construction/implementation,
  • Monitoring/operation/management
  • None
C1P012: Social/Civil Society/NGOs
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation
C1P012: Industry/SME/eCommerce
  • None
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
C1P012: Other
C1P012: Other (if any)
Summary

Authors (framework concept)

Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

Contributors (to the content)

Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

Implemented by

Boutik.pt: Filipe Martins, Jamal Khan
Marek Suchánek (Czech Technical University in Prague)