Filters:
NameProjectTypeCompare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Compare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Uncompare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Compare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr, Geothermal District Heating Project PED Relevant Case Study Compare
Drammen, Jacobs Borchs Gate PED Relevant Case Study Compare
Freiburg im Breisgau, Dietenbach PED Relevant Case Study Compare
Lecce, SmartEnCity SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
Trento, STARDUST STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Malmö, Klimatkontrakt Hyllie PED Relevant Case Study Compare
Kaiserslautern, EnStadt:Pfaff PED Relevant Case Study / PED Lab Compare
Helsinki, mySMARTlife PED Relevant Case Study Compare
Firenze, Novoli-Cascine district on “le PIagge” buildings PED Relevant Case Study Compare
Bolzano, Sinfonia PED Relevant Case Study Compare
Zürich, Hunziker Areal PED Relevant Case Study Compare
Hammarby Sjöstad, Hammarby Sjöstad 2.0 PED Relevant Case Study Compare
Milano, Sharing Cities PED Relevant Case Study Uncompare
Mieres, District Heating Pozo Barredo PED Relevant Case Study Compare
Lund, Cityfied (demo Linero) PED Relevant Case Study
Espoo, Smart Otaniemi PED Relevant Case Study / PED Lab Compare
Vienna, Zukunftsquartier PED Case Study Compare
Trento, Santa Chiara Open Lab PED Case Study Compare
Paterna, Barrio La Pinada PED Case Study / PED Lab Compare
Bergen, Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru, +CityxChange PED Case Study Compare
Trondheim, NTNU Campus within the Knowledge Axis ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Oslo, Furuset project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Măgurele, Laser Valley – Land of Lights PED Case Study Compare
Elverum, Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bodø, Airport, NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bærum, Fornebu ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Carquefou, Fleuraye west PED Case Study Compare
Åland, Smart Energy PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Uncompare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Uncompare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Uncompare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleLund, Cityfied (demo Linero)
Uden, Loopkantstraat
Munich, Harthof district
Leipzig, Baumwollspinnerei district
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona
Milano, Sharing Cities
Borlänge, Rymdgatan’s Residential Portfolio
Graz, Reininghausgründe
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabLund, Cityfied (demo Linero)Uden, LoopkantstraatMunich, Harthof districtLeipzig, Baumwollspinnerei districtCerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de BarcelonaMilano, Sharing CitiesBorlänge, Rymdgatan’s Residential PortfolioGraz, Reininghausgründe
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynonoyesyesnononoyes
PED relevant case studyyesyesnononoyesyesno
PED Lab.nonononoyesnonono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesyesyesyesyesyes
Annual energy surplusnoyesyesnononoyesno
Energy communitynonoyesnononoyesno
Circularitynononononononono
Air quality and urban comfortnononoyesnononono
Electrificationnoyesnoyesnonoyesno
Net-zero energy costnononononononono
Net-zero emissionyesnonononononono
Self-sufficiency (energy autonomous)nononononononono
Maximise self-sufficiencynonononononoyesno
Otheryesnonoyesyesyesnono
Other (A1P004)Social aspects/affordabilityNet-zero emission; Annual energy surplus: PV generation/home consumption behaviour emulation at LABEnergy efficient; Sustainable neighbourhood; Social aspects/affordability
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabCompletedIn operationImplementation PhaseImplementation PhasePlanning PhaseCompletedPlanning PhaseImplementation Phase
A1P006: Start Date
A1P006: Start date01/1406/1701/2309/2501/162019
A1P007: End Date
A1P007: End date12/1905/2312/2712/2612/202025
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • General statistical datasets,
  • GIS open datasets
  • Open data city platform – different dashboards
  • GIS open datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • Inger Andresen, Tonje Healey Trulsrud, Luca Finocchiaro, Alessandro Nocente, Meril Tamm, Joana Ortiz, Jaume Salom, Abel Magyari, Linda Hoes-van Oeffelen, Wouter Borsboom, Wim Kornaat, Niki Gaitani, Design and performance predictions of plus energy neighbourhoods – Case studies of demonstration projects in four different European climates, Energy and Buildings, Volume 274, 2022, 112447, ISSN 0378-7788, https://doi.org/10.1016/j.enbuild.2022.112447. (https://www.sciencedirect.com/science/article/pii/S0378778822006181),
  • Deliverable, Report: Integrated Energy Design for Sustainable Plus Energy Neighbourhoods (syn.ikia),
  • Deliverable, Report: DEMONSTRATION CASE OF SUSTAINABLE PLUS ENERGY NEIGHBOURHOODS IN MARINE CLIMATE (syn.ikia),
  • https://www.synikia.eu/no/bibliotek/
        • E. Rainer, H. Schnitzer, T. Mach, T. Wieland, M. Reiter, L. Fickert, E. Schmautzer, A. Passer, H. Oblak, H. Kreiner, R. Lazar, M. Duschek, et al. (2015): Rahmenplan Energy City Graz-Reininghaus – Subprojekt 2 des Leitprojektes „ECR Energy City Graz – Reininghaus Online: Rahmenplan Energy City Graz-Reininghaus - Haus der Zukunft (nachhaltigwirtschaften.at),
        • H.Schnitzer et al. (2016): Arbeiten und Wohnen in der Smart City Reininghaus, Online: Arbeiten und Wohnen in Graz Reininghaus - Smartcities
        A1P011: Geographic coordinates
        X Coordinate (longitude):13.2433755.619111.56962505994760412.3184582.1121455244360969.20252715.39449515.407440
        Y Coordinate (latitude):55.69922351.660648.2043626127515251.32649241.5003086008059245.45220360.48660947.0607
        A1P012: Country
        A1P012: CountrySwedenNetherlandsGermanyGermanySpainItalySwedenAustria
        A1P013: City
        A1P013: CityLundUdenMunichLeipzigCerdanyola del VallesMilanoBorlängeGraz
        A1P014: Climate Zone (Köppen Geiger classification)
        A1P014: Climate Zone (Köppen Geiger classification).CfbCfbCfbDfbCsaCfaDsbDfb
        A1P015: District boundary
        A1P015: District boundaryGeographicGeographicFunctionalFunctionalGeographicGeographic
        OtherGeographic
        A1P016: Ownership of the case study/PED Lab
        A1P016: Ownership of the case study/PED Lab:MixedPrivateMixedPublicPrivateMixedMixed
        A1P017: Ownership of the land / physical infrastructure
        A1P017: Ownership of the land / physical infrastructure:Multiple OwnersSingle OwnerMultiple OwnersSingle OwnerMultiple OwnersSingle OwnerMultiple Owners
        A1P018: Number of buildings in PED
        A1P018: Number of buildings in PED1126210100
        A1P019: Conditioned space
        A1P019: Conditioned space [m²]2360206170003700
        A1P020: Total ground area
        A1P020: Total ground area [m²]8000038605603000028.00099451000000
        A1P021: Floor area ratio: Conditioned space / total ground area
        A1P021: Floor area ratio: Conditioned space / total ground area01010000
        A1P022: Financial schemes
        A1P022a: Financing - PRIVATE - Real estatenoyesnononononoyes
        A1P022a: Add the value in EUR if available [EUR]7804440
        A1P022b: Financing - PRIVATE - ESCO schemenononononononono
        A1P022b: Add the value in EUR if available [EUR]
        A1P022c: Financing - PRIVATE - Othernononononononono
        A1P022c: Add the value in EUR if available [EUR]
        A1P022d: Financing - PUBLIC - EU structural fundingnononononoyesnono
        A1P022d: Add the value in EUR if available [EUR]
        A1P022e: Financing - PUBLIC - National fundingnononononononoyes
        A1P022e: Add the value in EUR if available [EUR]
        A1P022f: Financing - PUBLIC - Regional fundingnononononononono
        A1P022f: Add the value in EUR if available [EUR]
        A1P022g: Financing - PUBLIC - Municipal fundingnonoyesnonoyesnoyes
        A1P022g: Add the value in EUR if available [EUR]
        A1P022h: Financing - PUBLIC - Otheryesnononoyesnonono
        A1P022h: Add the value in EUR if available [EUR]
        A1P022i: Financing - RESEARCH FUNDING - EUnonoyesnonononono
        A1P022i: Add the value in EUR if available [EUR]
        A1P022j: Financing - RESEARCH FUNDING - Nationalnononononononono
        A1P022j: Add the value in EUR if available [EUR]
        A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononononono
        A1P022k: Add the value in EUR if available [EUR]
        A1P022l: Financing - RESEARCH FUNDING - Otheryesnonononononono
        A1P022l: Add the value in EUR if available [EUR]
        A1P022: Other
        A1P023: Economic Targets
        A1P023: Economic Targets
        • Positive externalities,
        • Boosting local businesses,
        • Boosting consumption of local and sustainable products
        • Job creation,
        • Boosting local businesses,
        • Boosting consumption of local and sustainable products
        A1P023: OtherSustainable and replicable business models regarding renewable energy systems
        A1P024: More comments:
        A1P024: More comments:The project is a follow-up from the “Social Beautiful” concept which was developed in collaboration between Labyrint (Support in sheltered housing), Area (housing company), the municipality of Uden, and Hendriks Coppelmans (developer). The concept aims to provide an answer to changes in various policy areas and the changing demands of society. The Social Beautiful concept consists of the following elements: 1. Living, working, and community services are brought together in one location. A multifunctional residential and service centre is being realized at the location. 2. Housing is shaped by the realization of financially accessible homes suitable for the target group. The housing design is tailored to the target group. it may also include sheltered / protected living. 3. Work takes place at the location or from the same location. The work has a social function within the neighbourhood. Wage-related work must contribute to providing structure in the daily activities of the residents. 4. Neighbourhood management is organized from the location in the surrounding neighbourhood. A service package is provided from the residential and service centre that contributes to the ability of neighbourhood residents to live independently for longer, to strengthen the social network, and to improve the quality of life and safety in the neighbourhood. 5. The houses are suitable for use at all times for regular rental. Communal facilities must be realized within the contours of a regular apartment. The objective is to offer a suitable living and working situation to a group of vulnerable citizens. In this way they become a fully-fledged part of society. They not only make use of the facilities themselves, but also give substance to the level of facilities in the municipality. Due to the integrated approach, they experience a greater sense of well-being and security.The “Reininghausgründe” are a new quarter near the centre of the City of Graz. In the area of a former brewery, close to more, still working industries, a new town centre is being established. It will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the city centre by bike paths, busses and a tram. Car sharing is provided as well. Some key-energy aspects: • characteristic 1: For the heat supply in the innovative Reininghaus energy model, low-temperature waste heat from a nearby steel plant is harnessed through the use of heat pumps. • characteristic 2: The district heating system operates at low temperatures. • characteristic 3: Generated heat that is not used immediately is stored in the power tower and supplied on demand. Other important aspects of the project are the following: • characteristic 1: Most houses are low-energy houses, some of the certified with the “Klima Aktiv” label • characteristic 2: There are extremely few parking possibilities for residents and visitors; this will foster the use of public transport and bikes • characteristic 3: All the necessary infrastructure for the “daily need” can be reached within walking distance The area of the project is going to be very “green” when finished. Featuring a big district parc, lots of other green spaces are in planning.
        A1P025: Estimated PED case study / PED LAB costs
        A1P025: Estimated PED case study / PED LAB costs [mil. EUR]7804440
        Contact person for general enquiries
        A1P026: NameChristoph GollnerTonje Healey TrulsrudStefan SynekSimon BaumJose Lopez VicarioChristoph GollnerJingchun ShenKatharina Schwarz
        A1P027: OrganizationFFGNorwegian University of Science and Technology (NTNU)City of MunichCENERO Energy GmbHUniversitat Autonoma Barcelona (UAB)FFGHögskolan DalarnaStadtLABOR, Innovationen für urbane Lebensqualität GmbH
        A1P028: AffiliationOtherResearch Center / UniversityMunicipality / Public BodiesOtherResearch Center / UniversityOtherResearch Center / UniversitySME / Industry
        A1P028: OtherAndreas BärnreutherCENERO Energy GmbH
        A1P029: Emailchristoph.gollner@ffg.attonje.h.trulsrud@ntnu.nostefan.synek@muenchen.desib@cenero.dejose.vicario@uab.catchristoph.gollner@ffg.atjih@du.sekatharina.schwarz@stadtlaborgraz.at
        Contact person for other special topics
        A1P030: NameStefan SynekSimon BaumXingxing ZhangHans Schnitzer
        A1P031: Emailstefan.synek@muenchen.desib@cenero.dexza@du.sehans.schnitzer@stadtlaborgraz.at
        Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYes
        A2P001: Fields of application
        A2P001: Fields of application
        • Energy efficiency,
        • Energy production
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • Waste management,
        • Indoor air quality,
        • Construction materials
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies,
        • Construction materials
        • Energy efficiency,
        • Energy flexibility,
        • Energy production
        • Energy efficiency,
        • Energy flexibility,
        • Digital technologies
        • Energy efficiency,
        • E-mobility,
        • Digital technologies
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Construction materials
        • Energy efficiency,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Water use,
        • Indoor air quality,
        • Other
        A2P001: OtherUrban Management; Air Quality
        A2P002: Tools/strategies/methods applied for each of the above-selected fields
        A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: Energy efficient envelope, with good insulation, triple glazing windows and airtight envelope. (EPC = 0) Energy Flexibility: MCP controls for the heat pump in the apartments. Energy production: PV panels on the roof, Ground source heat pumps Waste management: construction waste was kept to a minimum and sorted and collected separately as much as possible. Indoor air quality: Exhaust ventilation and opening of windows Construction materials: low carbon emission building materialsLoad calculation and system optimisation: City Energy Analyst Identification of stranded assets for asset owners and investors to understand the carbon risks: CRREMEnergy efficiency: o Several activities: Workshops, Webinars to deepen the knowledge and raise awareness renewable energies o for example rooftop Photovoltaics green & blue infrastructures o Parks, Rooftop Gardens, Quarter Parks, Water elements included in the parks rooftop farming o To produce vegetables in the quarter stormwater management mobility o less parking and less cars in the district. Solutions for boosting public transport with sponsored public transport tickets; building of better bike and pedestrian infrastructure social aspects o district management was established in the district local supply of goods of daily need o Schools within 15 minutes walking distance Supermarkets and other shops within the district
        A2P003: Application of ISO52000
        A2P003: Application of ISO52000YesNoNo
        A2P004: Appliances included in the calculation of the energy balance
        A2P004: Appliances included in the calculation of the energy balanceNoYesYesYes
        A2P005: Mobility included in the calculation of the energy balance
        A2P005: Mobility included in the calculation of the energy balanceNoNoNoYes
        A2P006: Description of how mobility is included (or not included) in the calculation
        A2P006: Description of how mobility is included (or not included) in the calculationnot included- Number of cars per household - Fraction of electric cars - Number of public transport tickets (week/ annual tickets)
        A2P007: Annual energy demand in buildings / Thermal demand
        A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]0.1481.650.6777
        A2P008: Annual energy demand in buildings / Electric Demand
        A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.1090.03656
        A2P009: Annual energy demand for e-mobility
        A2P009: Annual energy demand for e-mobility [GWh/annum]00
        A2P010: Annual energy demand for urban infrastructure
        A2P010: Annual energy demand for urban infrastructure [GWh/annum]0
        A2P011: Annual renewable electricity production on-site during target year
        A2P011: PVnoyesyesyesnononoyes
        A2P011: PV - specify production in GWh/annum [GWh/annum]0.058
        A2P011: Windnononononononono
        A2P011: Wind - specify production in GWh/annum [GWh/annum]
        A2P011: Hydronononononononono
        A2P011: Hydro - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_elnononononononono
        A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_peat_elnononononononono
        A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
        A2P011: PVT_elnonononononoyesno
        A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.01818
        A2P011: Othernononononononono
        A2P011: Other - specify production in GWh/annum [GWh/annum]
        A2P012: Annual renewable thermal production on-site during target year
        A2P012: Geothermalnoyesnononononoyes
        A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Solar Thermalnonoyesnonononoyes
        A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_heatnononononononono
        A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: Waste heat+HPnononononononoyes
        A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_peat_heatnononononononono
        A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: PVT_thnonononononoyesno
        A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]0.0825
        A2P012: Biomass_firewood_thnononononononono
        A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Othernononononononono
        A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
        A2P013: Renewable resources on-site - Additional notes
        A2P013: Renewable resources on-site - Additional notes*Annual energy use below is presentedin primary energy consumptionGroundwater (used for heat pumps)
        A2P014: Annual energy use
        A2P014: Annual energy use [GWh/annum]0.1942.4210.318
        A2P015: Annual energy delivered
        A2P015: Annual energy delivered [GWh/annum]0.03680.2055
        A2P016: Annual non-renewable electricity production on-site during target year
        A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]0
        A2P017: Annual non-renewable thermal production on-site during target year
        A2P017: Gasnonoyesnonononono
        A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Coalnononononononono
        A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Oilnonoyesnonononono
        A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Othernonononononoyesno
        A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]0
        A2P018: Annual renewable electricity imports from outside the boundary during target year
        A2P018: PVnonoyesnonononoyes
        A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
        A2P018: Windnonoyesnonononoyes
        A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
        A2P018: Hydronononononononoyes
        A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_elnonoyesnonononono
        A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_peat_elnonoyesnonononono
        A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: PVT_elnonoyesnonononono
        A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Othernonononononoyesno
        A2P018 - Other: specify production in GWh/annum if available [GWh/annum]0.187
        A2P019: Annual renewable thermal imports from outside the boundary during target year
        A2P019: Geothermalnonoyesnonononono
        A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Solar Thermalnononononononoyes
        A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_heatnonoyesnonononoyes
        A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Waste heat+HPnonoyesnonononoyes
        A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_peat_heatnononononononono
        A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: PVT_thnononononononono
        A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_firewood_thnononononononono
        A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Othernonononononoyesno
        A2P019 Other: Please specify imports in GWh/annum [GWh/annum]0
        A2P020: Share of RES on-site / RES outside the boundary
        A2P020: Share of RES on-site / RES outside the boundary0000000.538395721925130
        A2P021: GHG-balance calculated for the PED
        A2P021: GHG-balance calculated for the PED [tCO2/annum]-0.000436.930.036
        A2P022: KPIs related to the PED case study / PED Lab
        A2P022: Safety & SecurityPersonal Safetynone
        A2P022: HealthHealthy communitythermal comfort diagram
        A2P022: Educationnone
        A2P022: MobilitySustainable mobilitynonex
        A2P022: EnergyNOn-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/self-consumption, net energy/net power, peak delivered/peak expoted, total greenhouse gas emissionEnergyapplyYesnormalized CO2/GHG & Energy intensityx
        A2P022: Waterx
        A2P022: Economic developmentcapital costs, operational cots, overall economic performance (5 KPIs)cost of excess emissionsx
        A2P022: Housing and Communitydemographic composition, diverse community, social cohesionx
        A2P022: Waste
        A2P022: OtherSmartness and flecibility, Indoor Environmental Quality, Social performance - Equity (affordable housing, access to servicees and amenitioes, afforability of energy, living conditions, sustinable mobility, universal design)
        A2P023: Technological Solutions / Innovations - Energy Generation
        A2P023: Photovoltaicsyesyesyesnoyesyesyesyes
        A2P023: Solar thermal collectorsyesnonoyesnoyesyesno
        A2P023: Wind Turbinesnononononononono
        A2P023: Geothermal energy systemnoyesyesnonoyesyesno
        A2P023: Waste heat recoverynonononononoyesyes
        A2P023: Waste to energynononononononono
        A2P023: Polygenerationnononononononono
        A2P023: Co-generationnononononononono
        A2P023: Heat Pumpyesyesyesyesnoyesyesyes
        A2P023: Hydrogennononononononono
        A2P023: Hydropower plantnononononononono
        A2P023: Biomassnononononononono
        A2P023: Biogasnononononononono
        A2P023: Other
        A2P024: Technological Solutions / Innovations - Energy Flexibility
        A2P024: A2P024: Information and Communication Technologies (ICT)nonoyesnoyesnoyesyes
        A2P024: Energy management systemnoyesyesnoyesyesnono
        A2P024: Demand-side managementnoyesnonoyesnonono
        A2P024: Smart electricity gridnononononononono
        A2P024: Thermal Storagenonoyesnononoyesyes
        A2P024: Electric Storagenonoyesnonononono
        A2P024: District Heating and Coolingyesnoyesnonoyesyesyes
        A2P024: Smart metering and demand-responsive control systemsnoyesyesnonononono
        A2P024: P2P – buildingsnononononononono
        A2P024: Other
        A2P025: Technological Solutions / Innovations - Energy Efficiency
        A2P025: Deep Retrofittingyesnoyesnoyesyesyesno
        A2P025: Energy efficiency measures in historic buildingsnononononononono
        A2P025: High-performance new buildingsnoyesnononononoyes
        A2P025: Smart Public infrastructure (e.g. smart lighting)nononononoyesnoyes
        A2P025: Urban data platformsnonoyesnonononono
        A2P025: Mobile applications for citizensnononononoyesnoyes
        A2P025: Building services (HVAC & Lighting)noyesnonononoyesno
        A2P025: Smart irrigationnononononononoyes
        A2P025: Digital tracking for waste disposalnononononononono
        A2P025: Smart surveillancenononoyesnononono
        A2P025: Other
        A2P026: Technological Solutions / Innovations - Mobility
        A2P026: Efficiency of vehicles (public and/or private)nononononoyesnoyes
        A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nononoyesnononoyes
        A2P026: e-Mobilitynonoyesyesnoyesnoyes
        A2P026: Soft mobility infrastructures and last mile solutionsnonoyesnonoyesnoyes
        A2P026: Car-free areanononononononoyes
        A2P026: Other
        A2P027: Mobility strategies - Additional notes
        A2P027: Mobility strategies - Additional notesTest-Concept for bidirectional charging.- Multimodal mobility nodes - Support of public transport tickets - Mobility consulting - District management
        A2P028: Energy efficiency certificates
        A2P028: Energy efficiency certificatesYesYesNoYes
        A2P028: If yes, please specify and/or enter notesEPC = 0, energy neutral buildingEnergieausweis mandatory if buildings/ flats/ apartments are sold
        A2P029: Any other building / district certificates
        A2P029: Any other building / district certificatesNoNoYes
        A2P029: If yes, please specify and/or enter notesKlimaaktiv standard  Voluntary! Certification can be for buildings and/or quarters. The different quarters are built in different standards. Ranging from bronze/silver/gold
        A3P001: Relevant city /national strategy
        A3P001: Relevant city /national strategy
        • Smart cities strategies
        • Smart cities strategies,
        • Urban Renewal Strategies
        • Promotion of energy communities (REC/CEC),
        • Climate change adaption plan/strategy (e.g. Climate City contract)
        • Smart cities strategies,
        • Energy master planning (SECAP, etc.),
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        A3P002: Quantitative targets included in the city / national strategy
        A3P002: Quantitative targets included in the city / national strategyCity wide climate neutrality by 2035, city administration climate neutrality by 2030The study aligns closely with the decarbonisation and energy reduction pathways of residential multi family buildings with 1.5°C global warming target in Sweden. This study will also contribute to the achievement of the carbon neturality of whole Borlänge city by 2030.City level targets Klimaschutzplan Graz - 2022 | Targets: - Climate neutrality until 2040 - Social justice and high quality of life - High innovation levels Mobilitätsplan Graz 2040 – under development | Targets: - Modal Split 80:20 until 2040 80% Public transport, bike, walking | 20% cars Kommunales Energiekonzept (2017) | Targets: - Increase of district heating Energiemasterplan Graz (2018) | Targets: - Energy efficiency of urban dwellings and infrastructures - District heating and solar energy - Energy efficiency of private dwellings - Climate conscious mobility National level targets Klimaschutzplan Österreich -draft, expected by 2024 | Targets: - Decarbonisation (reduction of GHG, renewable energies, - Climate neutrality until 2040 - Energy efficiency - Security of energy supply
        A3P003: Strategies towards decarbonization of the gas grid
        A3P003: Strategies towards decarbonization of the gas grid
        • Electrification of Heating System based on Heat Pumps
        • Biogas
        • Electrification of Heating System based on Heat Pumps,
        • Electrification of Cooking Methods,
        • Biogas
        A3P003: Other
        A3P004: Identification of needs and priorities
        A3P004: Identification of needs and prioritiesIn our project, we carried out a comprehensive exploration of strategies to achieve positive energy districts in a Swedish residential portfolio. The focus on urban energy transitions necessitates a holistic approach that integrates building retrofit, solar technology exploration, and heating supply optimisation. Exploration of Local Solar Sources: The analysis reveals varying solar irradiance resources throughout the year, emphasizing the importance of strategic placement. Integration of combined photovoltaic and thermal panels into building envelopes demonstrates the potential to cover a significant portion of the energy demand even in Sweden. Heating Supply Optimisation with Solar Technologies: Despite the surplus energy production from on-site solar technology, challenges arise due to temporal energy asymmetry. The introduction of heat pumps emerges as a feasible solution to balance energy gaps, utilising both rejected and free heat. Optimisation scenarios, utilising a combination of geothermal heat pumps, water source heat pumps, and PVT, showcase remarkable reductions in emissions and primary energy consumption. Urban Form and Energy Infrastructure Design: We realised the importance of returning to urban form and energy infrastructure design to optimise future residential portfolio potential. Building layout design, influenced by zoning regulations and innovative typologies, plays a crucial role in achieving district level energy efficiency. Future challenges, including demographic shifts, e-mobility, and climate change, necessitate a more holistic approach to energy infrastructure design, addressing not only heating and electricity demands but also cooling requirements.Reininghaus needs green spaces and places Sector coupling of water, waste water, electricity ICT and demand side management Mobility - Reininghaus needs better infrastructure for bikes and pedestrians - Public transportation should be more affordable and Sharing should be implemented in the district Infrastructure should cover daily needs within walking distance Infrastructure for local jobs and shared offices
        A3P005: Sustainable behaviour
        A3P005: Sustainable behaviourWhile our investigation primarily centres on technical optimisation within Positive Energy District (PED) development, it is essential to acknowledge the broader scope encompassing social and governance dimensions. Specifically, understanding stakeholders' willingness to embrace technical recommendations upon project completion is important. Several potential influencing factors merit exploration, including economic considerations, technical optimisation-associated embodied carbon balance, the general public's technical perceptions, and operational feasibility. Evaluating these aspects holistically not only enhances the efficacy of PED initiatives but also fosters greater acceptance and participation within the communities they serve.- citizen participation and promotion of functioning neighbourhoods (e.g., through city district management) As of today, solutions for the energy transition in the residential sector have focused on the construction of energy-efficient buildings and on the energy-efficient refurbishment of existing buildings. Measures to influence user behaviour and to directly address residents and neighbourhoods as actors of the energy transition play a minor role and are also not formalized. At the same time, moving into a new apartment offers a ‘window of opportunity’ to establish new everyday practices and behaviour. In already inhabited housing developments, well-functioning neighbourhoods or existing, ‘sustainability pioneers’ are key to motivating people to adopt more resource-efficient lifestyles. In order to prepare such agents of change towards more climate protection and sustainability in the context of housing, Austria launched the BAREWO project. The aim is to develop a kit of formats, methods, and interventions for resource-efficient housing. This toolkit will be tested in six testbeds, among which quarter 12 (Q12) of Graz- Reininghaus, as soon as first residents move in (approx. 2024). Austrian TRANS-PED partner StadtLABOR, which is also a partner in the BAREWO project, will support Q12 in this process. In parallel, a monitoring system will be developed to make the (climate) effects of the kit measurable. In addition, a guideline for property managers will be developed, which will serve as an orientation for them on how their residents can be coached in matters of climate protection and sustainability in everyday (residential) life. From the very beginning, (communication) measures are implemented and relevant stakeholders are involved in the project (project advisory board) to ensure the multiplicability, financing and broad application of the toolkit. If successful, the toolkit could also be scaled up to other quarters in Reininghaus.
        A3P006: Economic strategies
        A3P006: Economic strategies
        • Open data business models
        • Innovative business models,
        • Other
        • Innovative business models
        • Open data business models,
        • Life Cycle Cost,
        • Circular economy models,
        • Local trading
        • PPP models,
        • Local trading
        A3P006: Otheroperational savings through efficiency measures
        A3P007: Social models
        A3P007: Social models
        • Co-creation / Citizen engagement strategies,
        • Social incentives,
        • Quality of Life
        • Strategies towards (local) community-building,
        • Behavioural Change / End-users engagement,
        • Citizen/owner involvement in planning and maintenance,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Behavioural Change / End-users engagement
        • Digital Inclusion,
        • Citizen/owner involvement in planning and maintenance,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Co-creation / Citizen engagement strategies,
        • Citizen/owner involvement in planning and maintenance
        • Strategies towards (local) community-building,
        • Behavioural Change / End-users engagement,
        • Social incentives,
        • Affordability,
        • Digital Inclusion
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Social incentives,
        • Quality of Life,
        • Affordability,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        A3P007: Other
        A3P008: Integrated urban strategies
        A3P008: Integrated urban strategies
        • District Energy plans
        • Strategic urban planning,
        • Digital twinning and visual 3D models,
        • District Energy plans,
        • Building / district Certification
        • Strategic urban planning,
        • City Vision 2050,
        • Building / district Certification
        A3P008: Other
        A3P009: Environmental strategies
        A3P009: Environmental strategies
        • Other
        • Low Emission Zone,
        • Net zero carbon footprint,
        • Life Cycle approach,
        • Sustainable Urban drainage systems (SUDS)
        • Pollutants Reduction,
        • Greening strategies,
        • Sustainable Urban drainage systems (SUDS),
        • Nature Based Solutions (NBS)
        A3P009: OtherPositive Energy Balance for the demo site
        A3P010: Legal / Regulatory aspects
        A3P010: Legal / Regulatory aspectsdecision by the Munich City Council in 2019 to become climate neutral by 2030 / 2035Mobility contracts: A mobility contract is concluded between the City of Graz and the property developers in the course of development plans and serves to reduce the motor vehicle traffic to be expected as a result of the construction project. Push & pull measures are agreed: With a lower car parking space key, which is significantly lower than today's usual requirements, offers and information for easier use of public transport, walking and cycling, as well as car sharing and e-mobility are simultaneously created by the property developers, leading to a win-win-win situation for all parties involved. Basic principles - Possibility of combining effective "push & pull" measures => control option (e.g. reduction of car parking spaces, but optimisation of accessibility to public transport and walking and cycling networks, public transport tickets, mobility information, ... etc.) - Changing mobility behaviour in favour of sustainable forms of transport from the moment the flat is handed over ("upheaval" in personal mobility behaviour when changing the residential location) - Reduction in construction and maintenance costs (underground car parks, public road infrastructure) - Easier realisation of larger construction projects in the inner city area with lower generation of vehicle demand Städtebauliche Verträge in Graz / Urban development contracts in Graz Qualitative urban (neighbourhood) development with added value for all stakeholders: urban development contracts are modern instruments in the development of cities and neighbourhoods. As one of the pioneers in this field, the City of Graz also increasingly favours this form of quality assurance. Urban development contracts are a contractual form of regulation between the City of Graz and landowners, which enables flexible control of urban (sub)development in the interests of the common interests while at the same time relieving the public authorities. The contracts make property-related stipulations in accordance with urban planning requirements (e.g. urban development concept, development concept, framework plan, zoning plan) and the specialist planning requirements in particular infrastructure, development, design and mobility. This is intended to infrastructure, services of general interest, building land quality and settlement development required for the (parts of the) city.
        B1P001: PED/PED relevant concept definition
        B1P001: PED/PED relevant concept definitionThe demonstration projects is a new residential development, which consists of an apartment complex which includes 39 apartments spread over 3 floors. It is a sustainble plus energy neighbouhood, and has reached a plus energy balance on its first year in operation. It has MPC controls on the individual heat pumps to improve the energy flexibility of the apartments. It includes the "social beatiful" concepts with a strong emphasis on the social sustainability of the project.Munich as demonstrator together with Lyon in ASCEND projectThe Rymdgatan's Residential Portfolio in Sweden presents a compelling case study for its classification as a PED-related research, given its alignment with sustainable behaviours and overarching PED development principles as follows: Inclusivity and Social Equity: The residential portfolio situated in Rymdgatan caters primarily to a low-income community. By focusing on this demographic, the project addresses critical aspects of social equity within sustainable urban development. Ensuring access to energy-efficient housing and amenities for economically disadvantaged populations not only fosters social cohesion but also mitigates energy poverty, a pressing concern in many urban contexts. Multifamily Residential Building: The inclusion of multifamily residential buildings within the portfolio underscores a commitment to density and efficient land use, both essential components of sustainable urban design. Such developments promote resource optimisation by consolidating housing units, thereby reducing per capita energy consumption and infrastructure demands. Moreover, multifamily dwellings often facilitate community engagement and shared resource management, fostering a culture of sustainability among residents. Low Carbon Retrofitting and Transition: The overarching initiative to transition the entire Jakobsgårdarna district. The included Rymdgatan portfolio, towards low carbon retrofitting, represents a significant example of decarbonization and climate resilience. By integrating energy-efficient technologies and renewable energy solutions into existing infrastructure, the project not only reduces carbon emissions but also serves as a blueprint for revitalising old urban environments sustainably. This holistic approach to retrofitting demonstrates a systemic commitment to environmental stewardship and long-term sustainability. Climate Adaptation and Renewable Energy Integration: Despite Sweden's climatic challenges, including lower solar resources during winter months, the Rymdgatan project leverages its geographical context to optimize renewable energy utilization. Sweden's greater solar resource availability during summer and geothermal potentials complement the design's emphasis on seasonal energy planning, where surplus energy generated during peak periods can be stored or redistributed efficiently. By embracing climate-responsive design strategies, the project demonstrates resilience in the face of climate variability while harnessing renewable energy potential effectively.Reininghaus addresses some relevant key aspects listed in the JPI UE PED Framework Definition such as: - high level of aspiration in terms of energy efficiency, energy flexibility and energy production; - integration of different systems and infrastructures; - inclusion of aspects not only related to energy sector, but also connected with social, economic and environmental sustainability.
        B1P002: Motivation behind PED/PED relevant project development
        B1P002: Motivation behind PED/PED relevant project developmentThe need for social housing and the ambition to create a great living environment with a high-performance apartment complex, supplied with renewable energy. It results in lower energy bills for the tenants and high-quality homes.speed and scale of PEDsBorlänge city has committed to become the carbon-neutral city by 2030.The Reininghausgründe is a new quarter near the centre of the City of Graz. On the area of a former brewery, close to more, still working industries, a new town centre is being established. The quarter will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the historical city centre by bike paths, busses and a tram. Car sharing is provided as well.
        B1P003: Environment of the case study area
        B2P003: Environment of the case study areaUrban areaSuburban areaUrban areaUrban areaUrban areaUrban area
        B1P004: Type of district
        B2P004: Type of district
        • Renovation
        • New construction
        • Renovation
        • Renovation
        • Renovation
        • New construction
        B1P005: Case Study Context
        B1P005: Case Study Context
        • Retrofitting Area
        • New Development
        • Retrofitting Area
        • Preservation Area
        • Retrofitting Area
        • Re-use / Transformation Area,
        • Retrofitting Area
        • New Development
        B1P006: Year of construction
        B1P006: Year of construction19902025
        B1P007: District population before intervention - Residential
        B1P007: District population before intervention - Residential61000
        B1P008: District population after intervention - Residential
        B1P008: District population after intervention - Residential610010000
        B1P009: District population before intervention - Non-residential
        B1P009: District population before intervention - Non-residential60
        B1P010: District population after intervention - Non-residential
        B1P010: District population after intervention - Non-residential6
        B1P011: Population density before intervention
        B1P011: Population density before intervention0000000
        B1P012: Population density after intervention
        B1P012: Population density after intervention000.010714285714286000.0106586224233280.01
        B1P013: Building and Land Use before intervention
        B1P013: Residentialyesnoyesnonoyesyesno
        B1P013 - Residential: Specify the sqm [m²]4360
        B1P013: Officenononononononono
        B1P013 - Office: Specify the sqm [m²]
        B1P013: Industry and Utilitynononononononoyes
        B1P013 - Industry and Utility: Specify the sqm [m²]
        B1P013: Commercialnononononononono
        B1P013 - Commercial: Specify the sqm [m²]
        B1P013: Institutionalnononononononono
        B1P013 - Institutional: Specify the sqm [m²]
        B1P013: Natural areasnononononononoyes
        B1P013 - Natural areas: Specify the sqm [m²]
        B1P013: Recreationalnononononononono
        B1P013 - Recreational: Specify the sqm [m²]
        B1P013: Dismissed areasnononononononono
        B1P013 - Dismissed areas: Specify the sqm [m²]
        B1P013: Othernonononononoyesno
        B1P013 - Other: Specify the sqm [m²]706
        B1P014: Building and Land Use after intervention
        B1P014: Residentialyesyesyesnonoyesyesyes
        B1P014 - Residential: Specify the sqm [m²]23944360
        B1P014: Officenononononononoyes
        B1P014 - Office: Specify the sqm [m²]
        B1P014: Industry and Utilitynononononononono
        B1P014 - Industry and Utility: Specify the sqm [m²]
        B1P014: Commercialnononononononoyes
        B1P014 - Commercial: Specify the sqm [m²]
        B1P014: Institutionalnononononononoyes
        B1P014 - Institutional: Specify the sqm [m²]
        B1P014: Natural areasnononononononoyes
        B1P014 - Natural areas: Specify the sqm [m²]
        B1P014: Recreationalnononononononoyes
        B1P014 - Recreational: Specify the sqm [m²]
        B1P014: Dismissed areasnononononononono
        B1P014 - Dismissed areas: Specify the sqm [m²]
        B1P014: Othernonononononoyesno
        B1P014 - Other: Specify the sqm [m²]706
        B2P001: PED Lab concept definition
        B2P001: PED Lab concept definition
        B2P002: Installation life time
        B2P002: Installation life time
        B2P003: Scale of action
        B2P003: ScaleDistrictDistrict
        B2P004: Operator of the installation
        B2P004: Operator of the installation
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P006: Circular Economy Approach
        B2P006: Do you apply any strategy to reuse and recycling the materials?
        B2P006: Other
        B2P007: Motivation for developing the PED Lab
        B2P007: Motivation for developing the PED Lab
        B2P007: Other
        B2P008: Lead partner that manages the PED Lab
        B2P008: Lead partner that manages the PED Lab
        B2P008: Other
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Other
        B2P010: Synergies between the fields of activities
        B2P010: Synergies between the fields of activities
        B2P011: Available facilities to test urban configurations in PED Lab
        B2P011: Available facilities to test urban configurations in PED Lab
        B2P011: Other
        B2P012: Incubation capacities of PED Lab
        B2P012: Incubation capacities of PED Lab
        B2P013: Availability of the facilities for external people
        B2P013: Availability of the facilities for external people
        B2P014: Monitoring measures
        B2P014: Monitoring measures
        B2P015: Key Performance indicators
        B2P015: Key Performance indicators
        B2P016: Execution of operations
        B2P016: Execution of operations
        B2P017: Capacities
        B2P017: Capacities
        B2P018: Relations with stakeholders
        B2P018: Relations with stakeholders
        B2P019: Available tools
        B2P019: Available tools
        B2P019: Available tools
        B2P020: External accessibility
        B2P020: External accessibility
        C1P001: Unlocking Factors
        C1P001: Recent technological improvements for on-site RES production1 - Unimportant3 - Moderately important3 - Moderately important4 - Important1 - Unimportant4 - Important3 - Moderately important
        C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important
        C1P001: Energy Communities, P2P, Prosumers concepts1 - Unimportant3 - Moderately important4 - Important4 - Important1 - Unimportant3 - Moderately important4 - Important
        C1P001: Storage systems and E-mobility market penetration1 - Unimportant4 - Important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important
        C1P001: Decreasing costs of innovative materials1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important
        C1P001: Financial mechanisms to reduce costs and maximize benefits1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important
        C1P001: The ability to predict Multiple Benefits1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant4 - Important4 - Important
        C1P001: The ability to predict the distribution of benefits and impacts1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important4 - Important
        C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)1 - Unimportant3 - Moderately important4 - Important3 - Moderately important1 - Unimportant5 - Very important5 - Very important
        C1P001: Social acceptance (top-down)1 - Unimportant5 - Very important4 - Important4 - Important1 - Unimportant5 - Very important4 - Important
        C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)1 - Unimportant4 - Important5 - Very important4 - Important1 - Unimportant4 - Important5 - Very important
        C1P001: Presence of integrated urban strategies and plans1 - Unimportant3 - Moderately important4 - Important3 - Moderately important1 - Unimportant5 - Very important5 - Very important
        C1P001: Multidisciplinary approaches available for systemic integration1 - Unimportant5 - Very important3 - Moderately important4 - Important1 - Unimportant5 - Very important5 - Very important
        C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant4 - Important4 - Important
        C1P001: Availability of RES on site (Local RES)1 - Unimportant5 - Very important4 - Important5 - Very important1 - Unimportant5 - Very important3 - Moderately important
        C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders1 - Unimportant4 - Important4 - Important4 - Important1 - Unimportant2 - Slightly important5 - Very important
        C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P001: Any other UNLOCKING FACTORS (if any)
        C1P002: Driving Factors
        C1P002: Climate Change adaptation need1 - Unimportant5 - Very important4 - Important4 - Important1 - Unimportant5 - Very important5 - Very important
        C1P002: Climate Change mitigation need (local RES production and efficiency)1 - Unimportant5 - Very important4 - Important4 - Important1 - Unimportant5 - Very important5 - Very important
        C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
        C1P002: Urban re-development of existing built environment1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant4 - Important5 - Very important
        C1P002: Economic growth need1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant4 - Important3 - Moderately important
        C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)1 - Unimportant5 - Very important4 - Important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P002: Territorial and market attractiveness1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P002: Energy autonomy/independence1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important3 - Moderately important
        C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P002: Any other DRIVING FACTOR (if any)
        C1P003: Administrative barriers
        C1P003: Difficulty in the coordination of high number of partners and authorities1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant4 - Important5 - Very important
        C1P003: Lack of good cooperation and acceptance among partners1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant4 - Important2 - Slightly important
        C1P003: Lack of public participation1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant3 - Moderately important4 - Important
        C1P003: Lack of institutions/mechanisms to disseminate information1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant4 - Important2 - Slightly important
        C1P003:Long and complex procedures for authorization of project activities1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important5 - Very important
        C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant4 - Important3 - Moderately important
        C1P003: Complicated and non-comprehensive public procurement1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant5 - Very important2 - Slightly important
        C1P003: Fragmented and or complex ownership structure1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant4 - Important5 - Very important
        C1P003: City administration & cross-sectoral attitude/approaches (silos)1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important4 - Important
        C1P003: Lack of internal capacities to support energy transition1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important
        C1P003: Any other Administrative BARRIER1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P003: Any other Administrative BARRIER (if any)Delay in the Environmental Dialogue processing in the municipality
        C1P004: Policy barriers
        C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important
        C1P004: Lacking or fragmented local political commitment and support on the long term1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important
        C1P004: Lack of Cooperation & support between national-regional-local entities1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important
        C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P004: Any other Political BARRIER (if any)
        C1P005: Legal and Regulatory barriers
        C1P005: Inadequate regulations for new technologies1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant
        C1P005: Regulatory instability1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant
        C1P005: Non-effective regulations1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important3 - Moderately important
        C1P005: Unfavorable local regulations for innovative technologies1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant4 - Important4 - Important
        C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important2 - Slightly important
        C1P005: Insufficient or insecure financial incentives1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant3 - Moderately important4 - Important
        C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important2 - Slightly important
        C1P005: Shortage of proven and tested solutions and examples1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant4 - Important2 - Slightly important
        C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER (if any)
        C1P006: Environmental barriers
        C1P006: Environmental barriers2 - Slightly important
        C1P007: Technical barriers
        C1P007: Lack of skilled and trained personnel1 - Unimportant1 - Unimportant4 - Important2 - Slightly important1 - Unimportant4 - Important2 - Slightly important
        C1P007: Deficient planning1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant4 - Important2 - Slightly important
        C1P007: Retrofitting work in dwellings in occupied state1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant
        C1P007: Lack of well-defined process1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant2 - Slightly important4 - Important
        C1P007: Inaccuracy in energy modelling and simulation1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important2 - Slightly important
        C1P007: Lack/cost of computational scalability1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant3 - Moderately important2 - Slightly important
        C1P007: Grid congestion, grid instability1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant
        C1P007: Negative effects of project intervention on the natural environment1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important2 - Slightly important
        C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Difficult definition of system boundaries1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Any other Thecnical BARRIER (if any)
        C1P008: Social and Cultural barriers
        C1P008: Inertia1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important
        C1P008: Lack of values and interest in energy optimization measurements1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant5 - Very important4 - Important
        C1P008: Low acceptance of new projects and technologies1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important
        C1P008: Difficulty of finding and engaging relevant actors1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant4 - Important4 - Important
        C1P008: Lack of trust beyond social network1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important3 - Moderately important
        C1P008: Rebound effect1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant4 - Important2 - Slightly important
        C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
        C1P008: Exclusion of socially disadvantaged groups1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
        C1P008: Non-energy issues are more important and urgent for actors1 - Unimportant1 - Unimportant4 - Important2 - Slightly important1 - Unimportant3 - Moderately important4 - Important
        C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant1 - Unimportant4 - Important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
        C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Any other Social BARRIER (if any)
        C1P009: Information and Awareness barriers
        C1P009: Insufficient information on the part of potential users and consumers1 - Unimportant1 - Unimportant4 - Important2 - Slightly important1 - Unimportant3 - Moderately important2 - Slightly important
        C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important
        C1P009: Lack of awareness among authorities1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant5 - Very important2 - Slightly important
        C1P009: Information asymmetry causing power asymmetry of established actors1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important4 - Important
        C1P009: High costs of design, material, construction, and installation1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant5 - Very important4 - Important
        C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P009: Any other Information and Awareness BARRIER (if any)
        C1P010: Financial barriers
        C1P010: Hidden costs1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important3 - Moderately important
        C1P010: Insufficient external financial support and funding for project activities1 - Unimportant1 - Unimportant4 - Important2 - Slightly important1 - Unimportant5 - Very important2 - Slightly important
        C1P010: Economic crisis1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important4 - Important
        C1P010: Risk and uncertainty1 - Unimportant5 - Very important4 - Important4 - Important1 - Unimportant5 - Very important2 - Slightly important
        C1P010: Lack of consolidated and tested business models1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant5 - Very important2 - Slightly important
        C1P010: Limited access to capital and cost disincentives1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important
        C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P010: Any other Financial BARRIER (if any)
        C1P011: Market barriers
        C1P011: Split incentives1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant4 - Important2 - Slightly important
        C1P011: Energy price distortion1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant4 - Important4 - Important
        C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important
        C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P011: Any other Market BARRIER (if any)
        C1P012: Stakeholders involved
        C1P012: Government/Public Authorities
        • Planning/leading,
        • Design/demand aggregation
        • None
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Research & Innovation
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • None
        • Planning/leading
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Financial/Funding
        • None
        • None
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Analyst, ICT and Big Data
        • Monitoring/operation/management
        • None
        • Planning/leading,
        • Monitoring/operation/management
        C1P012: Business process management
        • Design/demand aggregation
        • None
        • None
        C1P012: Urban Services providers
        • Planning/leading
        • None
        • Planning/leading,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Real Estate developers
        • Planning/leading,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading
        • Design/demand aggregation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Design/Construction companies
        • Planning/leading,
        • Design/demand aggregation
        • Design/demand aggregation
        • None
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        C1P012: End‐users/Occupants/Energy Citizens
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • None
        • Monitoring/operation/management
        • Design/demand aggregation
        C1P012: Social/Civil Society/NGOs
        • Monitoring/operation/management
        • Monitoring/operation/management
        • Design/demand aggregation,
        • Monitoring/operation/management
        C1P012: Industry/SME/eCommerce
        • Planning/leading
        • None
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Other
        • None
        C1P012: Other (if any)
        Summary

        Authors (framework concept)

        Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

        Contributors (to the content)

        Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

        Implemented by

        Boutik.pt: Filipe Martins, Jamal Khan
        Marek Suchánek (Czech Technical University in Prague)