Filters:
NameProjectTypeCompare
The city of Carcavelos, Municipality of Cascais, Portugal RESPED – Enabling Energy Resilience through new energy flexible and affordable PED concepts PED Case Study Compare
Thessaloniki, Residential buildings FLEdge PED Relevant Case Study Compare
Kavala, Offices in University premises FLEdge PED Relevant Case Study Compare
Sofia, Offices and Premises in university FLEdge PED Relevant Case Study Compare
The city of Carcavelos, Portugal CSP – Cascais Smart Pole PED Relevant Case Study Uncompare
Verdal Kommune, Trøndelag PERSIST PED Case Study Compare
Cluj-Napoca, UTCN Dormitories PERSIST PED Lab Compare
Alba Iulia, Social blocks, str. Marcus Aurelius PERSIST PED Lab Compare
Leeuwarden/de Zwette PED Lab Uncompare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Compare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Compare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Compare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Uncompare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr, Geothermal District Heating Project PED Relevant Case Study Compare
Drammen, Jacobs Borchs Gate PED Relevant Case Study Compare
Freiburg im Breisgau, Dietenbach PED Relevant Case Study Compare
Lecce, SmartEnCity SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
Trento, STARDUST STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Malmö, Klimatkontrakt Hyllie PED Relevant Case Study Compare
Kaiserslautern, EnStadt:Pfaff PED Relevant Case Study / PED Lab Compare
Helsinki, mySMARTlife PED Relevant Case Study Compare
Firenze, Novoli-Cascine district on “le PIagge” buildings PED Relevant Case Study Compare
Bolzano, Sinfonia PED Relevant Case Study Uncompare
Zürich, Hunziker Areal PED Relevant Case Study Compare
Hammarby Sjöstad, Hammarby Sjöstad 2.0 PED Relevant Case Study Compare
Milano, Sharing Cities PED Relevant Case Study Compare
Mieres, District Heating Pozo Barredo PED Relevant Case Study Compare
Lund, Cityfied (demo Linero) PED Relevant Case Study Compare
Espoo, Smart Otaniemi PED Relevant Case Study / PED Lab Compare
Vienna, Zukunftsquartier PED Case Study Compare
Trento, Santa Chiara Open Lab PED Case Study Compare
Paterna, Barrio La Pinada PED Case Study / PED Lab Compare
Bergen, Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru, +CityxChange PED Case Study Compare
Trondheim, NTNU Campus within the Knowledge Axis ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Oslo, Furuset project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Măgurele, Laser Valley – Land of Lights PED Case Study Compare
Elverum, Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bodø, Airport, NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bærum, Fornebu ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Carquefou, Fleuraye west PED Case Study
Åland, Smart Energy PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Uncompare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleCarquefou, Fleuraye west
Bolzano, Sinfonia
Findhorn, the Park
Savona, The University of Genova, Savona Campus
Borlänge, Rymdgatan’s Residential Portfolio
Leeuwarden/de Zwette
The city of Carcavelos, Portugal
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabCarquefou, Fleuraye westBolzano, SinfoniaFindhorn, the ParkSavona, The University of Genova, Savona CampusBorlänge, Rymdgatan’s Residential PortfolioLeeuwarden/de ZwetteThe city of Carcavelos, Portugal
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studyyesnoyesnononono
PED relevant case studynoyesnonoyesnoyes
PED Lab.nononoyesnoyesno
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesyesyesyesyes
Annual energy surplusnonoyesnoyesnono
Energy communitynonoyesyesyesnoyes
Circularitynonoyesnononoyes
Air quality and urban comfortnoyesnonononoyes
Electrificationnonoyesnoyesyesno
Net-zero energy costnonononononono
Net-zero emissionyesnoyesnononono
Self-sufficiency (energy autonomous)nonononononono
Maximise self-sufficiencynonoyesnoyesnono
Otheryesyesnoyesnoyesno
Other (A1P004)Energy neutral; Energy efficient; Social aspects/affordability; Sustainable neighbourhoodEnergy efficient; Sustainable neighbourhood; Social aspects/affordabilityThe case study can be representative as a small-scale district with multi-vector energy systemsGrid congestion: Analyse Grid congestion due to electrification and increase of renewable energy supply. Identify and analyse potential flexibility options
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabCompletedCompletedIn operationIn operationPlanning PhaseImplementation PhaseCompleted
A1P006: Start Date
A1P006: Start date01/1301/1401/6202/1404/20
A1P007: End Date
A1P007: End date31/2212/2004/24
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Meteorological open data
  • Open data city platform – different dashboards
  • Meteorological open data,
  • GIS open datasets
  • General statistical datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
        A1P011: Geographic coordinates
        X Coordinate (longitude):-1.51419711.343447-3.60998.45236071159282615.3944955.762215-9.323445
        Y Coordinate (latitude):47.29856446.48231057.653044.2990045129586160.48660953.19392438.684036
        A1P012: Country
        A1P012: CountryFranceItalyUnited KingdomItalySwedenNetherlandsPortugal
        A1P013: City
        A1P013: CityCarquefouBolzanoFindhornSavonaBorlängeLeeuwardenCarcavelos
        A1P014: Climate Zone (Köppen Geiger classification)
        A1P014: Climate Zone (Köppen Geiger classification).CfbCfaDwcCsaDsbCfbCsa
        A1P015: District boundary
        A1P015: District boundaryGeographicGeographicGeographicGeographicGeographic
        Other
        A1P016: Ownership of the case study/PED Lab
        A1P016: Ownership of the case study/PED Lab:PublicPrivateMixedMixedMixedMixedMixed
        A1P017: Ownership of the land / physical infrastructure
        A1P017: Ownership of the land / physical infrastructure:Single OwnerMultiple OwnersMultiple OwnersSingle OwnerSingle OwnerMultiple OwnersMultiple Owners
        A1P018: Number of buildings in PED
        A1P018: Number of buildings in PED1601060
        A1P019: Conditioned space
        A1P019: Conditioned space [m²]370080.000
        A1P020: Total ground area
        A1P020: Total ground area [m²]180000600009945330.000
        A1P021: Floor area ratio: Conditioned space / total ground area
        A1P021: Floor area ratio: Conditioned space / total ground area0000000
        A1P022: Financial schemes
        A1P022a: Financing - PRIVATE - Real estatenonoyesnononono
        A1P022a: Add the value in EUR if available [EUR]
        A1P022b: Financing - PRIVATE - ESCO schemenonononononono
        A1P022b: Add the value in EUR if available [EUR]
        A1P022c: Financing - PRIVATE - Othernonononononoyes
        A1P022c: Add the value in EUR if available [EUR]
        A1P022d: Financing - PUBLIC - EU structural fundingnonononononono
        A1P022d: Add the value in EUR if available [EUR]
        A1P022e: Financing - PUBLIC - National fundingnonoyesyesnonono
        A1P022e: Add the value in EUR if available [EUR]
        A1P022f: Financing - PUBLIC - Regional fundingyesnononononono
        A1P022f: Add the value in EUR if available [EUR]
        A1P022g: Financing - PUBLIC - Municipal fundingnonononononono
        A1P022g: Add the value in EUR if available [EUR]
        A1P022h: Financing - PUBLIC - Othernoyesnonononono
        A1P022h: Add the value in EUR if available [EUR]
        A1P022i: Financing - RESEARCH FUNDING - EUnonoyesnononono
        A1P022i: Add the value in EUR if available [EUR]
        A1P022j: Financing - RESEARCH FUNDING - Nationalnonononononono
        A1P022j: Add the value in EUR if available [EUR]
        A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononono
        A1P022k: Add the value in EUR if available [EUR]
        A1P022l: Financing - RESEARCH FUNDING - Othernoyesnonononono
        A1P022l: Add the value in EUR if available [EUR]
        A1P022: OtherGreen financing
        A1P023: Economic Targets
        A1P023: Economic Targets
        • Boosting local businesses
        • Positive externalities,
        • Boosting local businesses,
        • Boosting consumption of local and sustainable products
        • Job creation,
        • Boosting local businesses,
        • Boosting local and sustainable production,
        • Boosting consumption of local and sustainable products
        • Positive externalities,
        • Boosting local businesses,
        • Boosting local and sustainable production,
        • Boosting consumption of local and sustainable products,
        • Other
        A1P023: Other- Economic savings on water consumption and electricity - Promoting the circular economy and carbon neutrality in waste - Business oportunities resulting from less carbon-intensive practices created by the project - Financial benefits from using renewable energy sources –creation of Energy Communities
        A1P024: More comments:
        A1P024: More comments:The Cascais Smart Pole by NOVA SBE was implemented in a multifunctional area that integrates housing, commerce, facilities, and public spaces, acquiring a local identity through sociocultural interaction between residents, students, and visitors/tourists , also covering an area of 4.2ha of green spaces. Located in the Municipality of Cascais, a leading municipality in defining a Municipal Roadmap for Carbon Neutrality, the Cascais Smart Pole by NOVA SBE led the generation of change-makers, influencing people and all stakeholders on the path of innovation combined with carbon neutrality. The Cascais Smart Pole is a living lab pilot project that aims to create a carbon-neutral, sustainable urban environment by integrating innovative technological solutions and community engagement. The concept of the project is based on a physical space and a virtual space, providing testing ground for experimentation in domains of decarbonization, renewable energy, and climate resilience. Planned continuation of the project is establishing a Renewable Energy Community (REC) to promote local clean energy production and shared consumption. This initiative will support the Cascais 2030 Sustainable Energy Strategy and the Cascais 2050 Carbon Neutrality Roadmap, engaging residents and businesses in sustainable practices to drive collective impact. A Renewable Energy Community (CER) will be created from the Cascais Smart Pole, which will encourage residents, companies and NOVA SBE to jointly invest in the installation of photovoltaic panels, to share the consumption of the clean energy produced. The panels will be installed on the roof of NOVA SBE and surrounding residential buildings, and all interested parties will be able to participate in the CER by investing, purchasing energy or donating their roof or panels to the CER. The aim is for residents to not only save on their electricity bills, but also obtain social and financial returns and contribute to the decarbonization effort in that geographic area. Main objectives/activities and outcomes of the living lab include: 1. Roadmap for Carbon Neutrality: The project developed a comprehensive inventory of 2019 greenhouse gas emissions and modeled the path to carbon neutrality by 2050. Strategic options for decarbonization were outlined, with a focus on mobility and energy efficiency. The efforts resulted in a 65-ton CO₂ reduction during the project's duration. 2. Smart Pole Platform: A participatory digital platform was created, providing data on project activities and allowing public engagement through submissions of ideas. It also included tools like a carbon footprint calculator. The platform gained over 13,000 visits, fostering collaboration among stakeholders. 3. Smart Pole Community: Community-focused initiatives included renewable energy workshops and microgreen cultivation activities. Events engaged locals and students, with over 17 activities conducted, such as street fairs and environmental workshops. The Microgreen Community distributed kits to promote urban agriculture. 4. Urban Mobility: Sustainable transport behaviors were promoted via a mobile app (MobiCascais), tracking CO₂ emissions saved. Due to delays, some planned features were revised, but the app incorporated mobility KPIs and avoided emissions data. A campaign highlighted the importance of shared mobility. 5. Energy Efficiency: Smart energy management systems optimized HVAC and lighting, integrating occupancy data for predictive efficiency. Indoor air quality monitoring systems were deployed, and smart energy counters were installed in classrooms. The project saved energy while addressing privacy concerns. 6. Circular Economy in Waste: The initiative collected 19.4 tons of used cooking oil, surpassing the goal by 43%, producing biodiesel for municipal vehicles. A gamified "Pay-As-You-Throw" system incentivized recycling, reducing waste contamination rates. Smart bins monitored waste levels, improving collection efficiency. 7. Green Living: Urban green spaces were transformed with native plants and smart irrigation systems, reducing water consumption and enhancing biodiversity. Over 7,000 trees and shrubs were planted, and lawns were replaced with water-efficient meadows. Smart systems optimized water use and tracked conservation progress. 8. Smart Pole Market: Originally intended as a carbon credit marketplace, this activity shifted focus to creating a carbon footprint calculator for businesses. The tool provides actionable insights for companies to reduce their emissions. Workshops introduced the software to local entrepreneurs. 9. Smart Pole World: Communication efforts included public awareness campaigns, workshops, and art initiatives like "Sustent’Arte." Over 20 events engaged stakeholders, promoting the project's goals. The communication strategy emphasized local impact and scalability to inspire other municipalities. Main areas/axes of the living lab: Community, Water, Buildings, Energy, Green Spaces, Mobility, Circular Economy
        A1P025: Estimated PED case study / PED LAB costs
        A1P025: Estimated PED case study / PED LAB costs [mil. EUR]5.4
        Contact person for general enquiries
        A1P026: NameChristoph GollnerChristoph GollnerStefano NebioloMichela RobbaJingchun ShenA. Brandenburg with input from J. PootMariana Sardinha
        A1P027: OrganizationFFGFFGFindhorn Innovation Research and Education CICUniversity of GenovaHögskolan DalarnaHanze University of Applied Sciences and Municipality of LeeuwardenGet2C Climate change, Energy, Carbon markets, Climate finance, Sustainable development
        A1P028: AffiliationOtherOtherResearch Center / UniversityResearch Center / UniversityResearch Center / UniversityResearch Center / UniversitySME / Industry
        A1P028: OtherMariana Sardinha
        A1P029: Emailchristoph.gollner@ffg.atchristoph.gollner@ffg.atstefanonebiolo@gmail.comMichela.robba@unige.itjih@du.sea.m.brandenburg@pl.hanze.nlmariana.sardinha@get2c.com
        Contact person for other special topics
        A1P030: NameYassine EnnassiriXingxing ZhangJ. Poot (Municipality of Leeuwarden)Mariana SardinhaMariana Sardinha
        A1P031: EmailYassine.ennassiri@edu.unige.itxza@du.sejoep.poot@leeuwarden.nlmariana.sardinha@get2c.com
        Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYes
        A2P001: Fields of application
        A2P001: Fields of application
        • Energy efficiency,
        • Energy production,
        • Digital technologies,
        • Indoor air quality
        • Energy efficiency,
        • Energy production,
        • E-mobility,
        • Digital technologies,
        • Indoor air quality,
        • Construction materials
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Waste management
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Construction materials
        • Energy flexibility,
        • Other
        • Energy efficiency,
        • Energy production,
        • E-mobility,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies,
        • Water use,
        • Waste management,
        • Indoor air quality
        A2P001: OtherGrid congestion1. Roadmap for Carbon Neutrality • Tools: GHG emissions inventory tools and carbon modeling methodologies, with support from Get2C. • Methods: Data collection through surveys, energy use assessments, and direct engagement with stakeholders; scenario modeling for emissions reduction up to 2050. • Strategies: Alignment with the Cascais Municipal Roadmap for Carbon Neutrality and development of decarbonization pathways based on predictive modeling. 2. Smart Pole Platform • Tools: An interactive digital platform integrated with real-time data sharing and public participation features. Methods: Benchmarking similar IoT-enabled platforms and creating user-friendly UX/UI designs. • Methods: Benchmarking of similar platforms and custom UX/UI design to track project-specific KPIs like CO₂ emissions and participation rates. • Strategies: Enabling transparency and collaboration by integrating APIs for data collection and feedback loops for community input. 3. Smart Pole Community • Tools: Social media platforms and engagement tools for organizing events and activities. • Methods: Conducting workshops, technical visits, and environmental events to foster collaboration among residents, students, and stakeholders. • Strategies: Promoting sustainable habits through participatory activities such as microgreen cultivation and educational campaigns. 4. Urban Mobility • Tools: The Cascais Smart Pole platform mobility dashboard for monitoring metrics like avoided CO₂ emissions, trips taken, and kilometers traveled. • Methods: Integration of mobility data with platform analytics; promotion of shared transport options like bikes and scooters. • Strategies: Public awareness campaigns and gamification to encourage sustainable mobility behaviors and reduce reliance on private vehicles. 5. Energy Efficiency • Tools: Cisco CMX platform for zonal mapping, IAQ monitoring sensors for CO₂ and temperature tracking, intelligent energy systems, including occupancy-based HVAC and lighting controls managed via the Building Management System (BMS) by Veolia. • Methods: Integration of Wi-Fi-based occupancy data with HVAC and lighting systems for predictive energy adjustments. • Strategies: Real-time energy optimization algorithms and data-driven decision-making to improve efficiency and reduce emissions 6. Circular Economy in Waste • Tools: Smart waste bins with monitoring systems and a gamified "Pay-As-You-Throw" (PAYT) system using Citypoints by PRIO. • Methods: Collection of used cooking oils for biodiesel production, incentivized through gamification. • Strategies: Promoting recycling behaviors via smart monitoring and awareness campaigns while integrating circular economy practices 7. Water Use • Tools: Installation of water refill stations integrated with a digital mapping system for real-time updates on station locations. • Methods: Community campaigns promoting tap water use and workshops highlighting the environmental benefits of refill infrastructure. • Strategies: Educating residents and visitors about sustainable water use practices and providing accessible refill infrastructure. 8. Green Living • Tools: Smart irrigation systems, including various controllers, including Hunter's ACC2-75D-P controller and the MySOLEM app, with geolocation-based control and sensors for soil moisture, leaks, and water usage. Transformation of urban green spaces with native plants, planting trees. • Methods: Conversion of traditional lawns to rainfed meadows; installation of localized irrigation equipment to minimize water consumption. • Strategies: Expansion of smart irrigation systems to additional areas, enhancing biodiversity, and involving the community in sustainable practices 9. Smart Pole Market • Tools: A carbon footprint calculator – a software by Delta Soluções designed to assist businesses in assessing and reducing their emissions. • Methods: Workshops and municipal partnerships to encourage software adoption among local companies. • Strategies: Supporting businesses in carbon reporting and neutrality planning through accessible tools and guidance. 10. Smart Pole World • Tools: Cascais Smart Pole World website, multimedia campaigns, educational programs and Sustent’Arte artistic initiatives. • Methods: Stakeholder engagement through events like GreenFest and knowledge transfer via workshops and summer schools. • Strategies: Leveraging digital communication and interactive events to raise awareness and inspire community-driven sustainability efforts.
        A2P002: Tools/strategies/methods applied for each of the above-selected fields
        A2P002: Tools/strategies/methods applied for each of the above-selected fieldsLoad calculation and system optimisation: City Energy Analyst Identification of stranded assets for asset owners and investors to understand the carbon risks: CRREMBuurtpaspoort, Pandapower, Powernodes, stakeholder engagement analysis, interviews
        A2P003: Application of ISO52000
        A2P003: Application of ISO52000NoNo
        A2P004: Appliances included in the calculation of the energy balance
        A2P004: Appliances included in the calculation of the energy balanceYesYes
        A2P005: Mobility included in the calculation of the energy balance
        A2P005: Mobility included in the calculation of the energy balanceNoYesYes
        A2P006: Description of how mobility is included (or not included) in the calculation
        A2P006: Description of how mobility is included (or not included) in the calculationPrognosis of autonomous growth of BEV for domestic use is incorporated and its impact on the gridMobility was an integral part of the CO₂ inventory for the Cascais Smart Pole project, assessed through surveys capturing commuting behaviors among the NOVA SBE community. Emission factors for various transport modes, including private cars, public transport, and active mobility, were calculated to quantify contributions to greenhouse gas emissions. Additionally, the MobiCascais app tracked avoided CO₂ emissions from shifts to sustainable mobility options like shared bicycles and public transport. This data was integrated into the project’s digital platform, providing key metrics such as trips taken, kilometers traveled, and tons of CO₂ avoided, supporting the roadmap toward carbon neutrality.
        A2P007: Annual energy demand in buildings / Thermal demand
        A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]1.4260.6777515
        A2P008: Annual energy demand in buildings / Electric Demand
        A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]1.20.9620.03656152
        A2P009: Annual energy demand for e-mobility
        A2P009: Annual energy demand for e-mobility [GWh/annum]0142
        A2P010: Annual energy demand for urban infrastructure
        A2P010: Annual energy demand for urban infrastructure [GWh/annum]0
        A2P011: Annual renewable electricity production on-site during target year
        A2P011: PVnonoyesnonoyesyes
        A2P011: PV - specify production in GWh/annum [GWh/annum]35
        A2P011: Windnonoyesnonoyesno
        A2P011: Wind - specify production in GWh/annum [GWh/annum]4.6
        A2P011: Hydrononononononono
        A2P011: Hydro - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_elnonononononono
        A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_peat_elnonononononono
        A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
        A2P011: PVT_elnonononoyesnono
        A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.01818
        A2P011: Othernonononononono
        A2P011: Other - specify production in GWh/annum [GWh/annum]
        A2P012: Annual renewable thermal production on-site during target year
        A2P012: Geothermalnonononononono
        A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Solar Thermalnonoyesnononoyes
        A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_heatnonoyesnononono
        A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: Waste heat+HPnonoyesnononono
        A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_peat_heatnonononononono
        A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: PVT_thnonononoyesnono
        A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]0.0825
        A2P012: Biomass_firewood_thnonoyesnononono
        A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Othernonononononono
        A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
        A2P013: Renewable resources on-site - Additional notes
        A2P013: Renewable resources on-site - Additional notes3x225 kW wind turbines + 100 kW PVThe photovoltaic panels installed as part of the Cascais Smart Pole project are currently set up within a self-consumption production unit (UPAC). While a contract was signed to allow sharing surplus production with nearby facilities, such as a school and a paddle tennis court, this setup remains in preliminary stages and has not yet been fully implemented. This arrangement is intended to eventually support shared energy use as part of the ongoing Renewable Energy Community (REC) initiative. Additionally, the project incorporates the production of biodiesel from collected used cooking oil (UCO), which is processed and utilized in municipal vehicles.
        A2P014: Annual energy use
        A2P014: Annual energy use [GWh/annum]1.20.318861
        A2P015: Annual energy delivered
        A2P015: Annual energy delivered [GWh/annum]1.20.2055821
        A2P016: Annual non-renewable electricity production on-site during target year
        A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]00
        A2P017: Annual non-renewable thermal production on-site during target year
        A2P017: Gasnononononoyesno
        A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]567
        A2P017: Coalnonononononono
        A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Oilnonononononono
        A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Othernonononoyesnono
        A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]0
        A2P018: Annual renewable electricity imports from outside the boundary during target year
        A2P018: PVnonononononono
        A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
        A2P018: Windnonononononono
        A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
        A2P018: Hydrononononononono
        A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_elnonononononono
        A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_peat_elnonononononono
        A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: PVT_elnonononononono
        A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Othernonononoyesnono
        A2P018 - Other: specify production in GWh/annum if available [GWh/annum]0.187
        A2P019: Annual renewable thermal imports from outside the boundary during target year
        A2P019: Geothermalnonononononono
        A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Solar Thermalnonononononono
        A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_heatnonononononono
        A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Waste heat+HPnonononononono
        A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_peat_heatnonononononono
        A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: PVT_thnonononononono
        A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_firewood_thnonononononono
        A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Othernonononoyesnono
        A2P019 Other: Please specify imports in GWh/annum [GWh/annum]0
        A2P020: Share of RES on-site / RES outside the boundary
        A2P020: Share of RES on-site / RES outside the boundary00000.5383957219251300
        A2P021: GHG-balance calculated for the PED
        A2P021: GHG-balance calculated for the PED [tCO2/annum]6.93
        A2P022: KPIs related to the PED case study / PED Lab
        A2P022: Safety & Securitynone
        A2P022: Healththermal comfort diagram
        A2P022: Educationnone
        A2P022: Mobilitynone
        A2P022: EnergyCost of energy; emissions linked to energy productionnormalized CO2/GHG & Energy intensityMix of energy demand, Mix of energy production, self-consumption, self-sufficiency
        A2P022: Water
        A2P022: Economic developmentcost of excess emissions
        A2P022: Housing and Community
        A2P022: Waste
        A2P022: Other
        A2P023: Technological Solutions / Innovations - Energy Generation
        A2P023: Photovoltaicsyesyesyesyesyesyesyes
        A2P023: Solar thermal collectorsnoyesyesyesyesnono
        A2P023: Wind Turbinesnonoyesnonoyesno
        A2P023: Geothermal energy systemnononoyesyesnono
        A2P023: Waste heat recoverynonoyesnoyesyesno
        A2P023: Waste to energynonononononoyes
        A2P023: Polygenerationnononoyesnonono
        A2P023: Co-generationnonononononono
        A2P023: Heat Pumpnoyesyesnoyesyesno
        A2P023: Hydrogennononoyesnonono
        A2P023: Hydropower plantnonononononono
        A2P023: Biomassnonoyesnononono
        A2P023: Biogasnononononoyesno
        A2P023: Other
        A2P024: Technological Solutions / Innovations - Energy Flexibility
        A2P024: A2P024: Information and Communication Technologies (ICT)noyesnoyesyesnoyes
        A2P024: Energy management systemnonoyesyesnonoyes
        A2P024: Demand-side managementnonononononono
        A2P024: Smart electricity gridyesyesnoyesnonono
        A2P024: Thermal Storagenonoyesyesyesyesno
        A2P024: Electric Storagenonoyesyesnoyesno
        A2P024: District Heating and Coolingnoyesyesyesyesyesno
        A2P024: Smart metering and demand-responsive control systemsnononoyesnonoyes
        A2P024: P2P – buildingsnonononononono
        A2P024: OtherPeak power production with CHP engine on biogas
        A2P025: Technological Solutions / Innovations - Energy Efficiency
        A2P025: Deep Retrofittingnonononoyesnono
        A2P025: Energy efficiency measures in historic buildingsnonononononono
        A2P025: High-performance new buildingsyesnoyesyesnonono
        A2P025: Smart Public infrastructure (e.g. smart lighting)noyesnonononono
        A2P025: Urban data platformsnonononononoyes
        A2P025: Mobile applications for citizensnonononononoyes
        A2P025: Building services (HVAC & Lighting)nonononoyesnoyes
        A2P025: Smart irrigationnonononononoyes
        A2P025: Digital tracking for waste disposalnonononononono
        A2P025: Smart surveillancenonononononono
        A2P025: Other
        A2P026: Technological Solutions / Innovations - Mobility
        A2P026: Efficiency of vehicles (public and/or private)nonononononono
        A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nonononononoyes
        A2P026: e-Mobilitynoyesyesyesnoyesno
        A2P026: Soft mobility infrastructures and last mile solutionsnonononononono
        A2P026: Car-free areanonononononono
        A2P026: Other
        A2P027: Mobility strategies - Additional notes
        A2P027: Mobility strategies - Additional notes
        A2P028: Energy efficiency certificates
        A2P028: Energy efficiency certificatesNoYes
        A2P028: If yes, please specify and/or enter notes
        A2P029: Any other building / district certificates
        A2P029: Any other building / district certificatesYesNoNo
        A2P029: If yes, please specify and/or enter notes300 LOGEMENTS PASSIFS CERTIFIÉS PASSIVHAUS
        A3P001: Relevant city /national strategy
        A3P001: Relevant city /national strategy
        • Smart cities strategies,
        • Urban Renewal Strategies
        • Energy master planning (SECAP, etc.)
        • Promotion of energy communities (REC/CEC),
        • Climate change adaption plan/strategy (e.g. Climate City contract)
        • New development strategies
        A3P002: Quantitative targets included in the city / national strategy
        A3P002: Quantitative targets included in the city / national strategyThe study aligns closely with the decarbonisation and energy reduction pathways of residential multi family buildings with 1.5°C global warming target in Sweden. This study will also contribute to the achievement of the carbon neturality of whole Borlänge city by 2030.- CO2 neutral by 2030 municipal real estate - Leeuwarden climate adaptive by 2035National Roadmap for Carbon Neutrality 2050 (RNC2050): 1. GHG Emissions Reduction: 55% reduction by 2030 (from 2005 levels). 100% reduction by 2050. 2. Renewable Energy: 47% share of renewables in final energy consumption by 2030. 20% renewable energy in transport by 2030. 3. Energy Efficiency: 35% improvement in primary energy consumption by 2030. Cascais 2050 Municipal Roadmap for Carbon Neutrality: 1. Renewable Energy Production: Local Energy Communities: Initiated in 2022, Cascais aims to generate 213 GWh annually through photovoltaic installations (23% of town’s electricity consumption). 2. Waste Management: 152% increase in plastic recycling (2014-2022) 3. Electric Mobility: Adoption of 100% electric waste collection vehicles
        A3P003: Strategies towards decarbonization of the gas grid
        A3P003: Strategies towards decarbonization of the gas grid
        • Electrification of Heating System based on Heat Pumps
        • Electrification of Heating System based on Heat Pumps,
        • Electrification of Cooking Methods,
        • Biogas
        • Hydrogen
        A3P003: Other
        A3P004: Identification of needs and priorities
        A3P004: Identification of needs and prioritiesIn our project, we carried out a comprehensive exploration of strategies to achieve positive energy districts in a Swedish residential portfolio. The focus on urban energy transitions necessitates a holistic approach that integrates building retrofit, solar technology exploration, and heating supply optimisation. Exploration of Local Solar Sources: The analysis reveals varying solar irradiance resources throughout the year, emphasizing the importance of strategic placement. Integration of combined photovoltaic and thermal panels into building envelopes demonstrates the potential to cover a significant portion of the energy demand even in Sweden. Heating Supply Optimisation with Solar Technologies: Despite the surplus energy production from on-site solar technology, challenges arise due to temporal energy asymmetry. The introduction of heat pumps emerges as a feasible solution to balance energy gaps, utilising both rejected and free heat. Optimisation scenarios, utilising a combination of geothermal heat pumps, water source heat pumps, and PVT, showcase remarkable reductions in emissions and primary energy consumption. Urban Form and Energy Infrastructure Design: We realised the importance of returning to urban form and energy infrastructure design to optimise future residential portfolio potential. Building layout design, influenced by zoning regulations and innovative typologies, plays a crucial role in achieving district level energy efficiency. Future challenges, including demographic shifts, e-mobility, and climate change, necessitate a more holistic approach to energy infrastructure design, addressing not only heating and electricity demands but also cooling requirements.• Reduction of GHG Emissions and Decarbonization Pathways (renewable energy adoption, energy-efficient retrofitting, reducing individual vehicle use) • Infrastructure and Technological Development (sustainable mobility infrastructure - public transportation, EV charging stations, cycling networks; Green spaces adaptation to climate change – biodiversity planting, smart irrigation systems; Digital tools development - carbon footprint calculators, mobility information hubs to support decision-making and track progress) • Promotion of Circular Economy and Waste Management (biodiesel production from used cooking oil, community composting, home composting, waste sorting systems) • Community Engagement and Behavioral Change (renewable energy communities, sustainable/soft mobility practices, waste reduction behaviors, awareness and education, workshops, campaigns, events) • Stakeholder Collaboration (strengthen partnerships among local businesses, public authorities, educational institutions, and community members; shared ownership of initiatives through participatory planning and implementation) • Policy Integration and Planning (alignment with Cascais 2050 Roadmap, the National Roadmap for Carbon Neutrality, and European decarbonization strategies; share of best practices; set up of a legal framework for REC (Renewable energy Community in the area) • Monitoring and Scaling Successful Pilots (Establish robust monitoring systems for energy, water, and waste management; Replicate and expand pilot projects like smart irrigation, carbon footprint tools, and renewable energy communities to other areas)
        A3P005: Sustainable behaviour
        A3P005: Sustainable behaviourWhile our investigation primarily centres on technical optimisation within Positive Energy District (PED) development, it is essential to acknowledge the broader scope encompassing social and governance dimensions. Specifically, understanding stakeholders' willingness to embrace technical recommendations upon project completion is important. Several potential influencing factors merit exploration, including economic considerations, technical optimisation-associated embodied carbon balance, the general public's technical perceptions, and operational feasibility. Evaluating these aspects holistically not only enhances the efficacy of PED initiatives but also fosters greater acceptance and participation within the communities they serve.Use of public transport, bicycles, and shared mobility options; using carbon footprint calculators to understand and reduce emissions; recycling and proper waste sorting, including biodiesel production from used cooking oil; adopting smart irrigation systems to conserve water in green spaces; engagement in community composting and home composting to reduce organic waste; preparedness for participation in Renewable Energy Communities (RECs) for shared renewable energy production; switching to energy-efficient technologies like LED lighting and A+ rated appliances; participation in events, workshops, and educational courses on sustainability and climate action.
        A3P006: Economic strategies
        A3P006: Economic strategies
        • Circular economy models
        • Demand management Living Lab
        • Open data business models,
        • Life Cycle Cost,
        • Circular economy models,
        • Local trading
        • Innovative business models,
        • Circular economy models,
        • Demand management Living Lab,
        • Existing incentives,
        • Other
        A3P006: OtherCollaborative energy models: Renewable Energy Communities (RECs)
        A3P007: Social models
        A3P007: Social models
        • Quality of Life
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Quality of Life
        • Co-creation / Citizen engagement strategies
        • Strategies towards (local) community-building,
        • Behavioural Change / End-users engagement,
        • Social incentives,
        • Affordability,
        • Digital Inclusion
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Social incentives,
        • Quality of Life,
        • Digital Inclusion,
        • Citizen/owner involvement in planning and maintenance,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        A3P007: Other
        A3P008: Integrated urban strategies
        A3P008: Integrated urban strategies
        • SECAP Updates
        • District Energy plans
        • Strategic urban planning,
        • Digital twinning and visual 3D models,
        • District Energy plans,
        • Building / district Certification
        • Digital twinning and visual 3D models,
        • District Energy plans
        • Strategic urban planning,
        • District Energy plans,
        • City Vision 2050,
        • SECAP Updates
        A3P008: Other
        A3P009: Environmental strategies
        A3P009: Environmental strategies
        • Energy Neutral,
        • Net zero carbon footprint,
        • Carbon-free
        • Energy Neutral
        • Energy Neutral,
        • Net zero carbon footprint
        • Low Emission Zone
        • Low Emission Zone,
        • Net zero carbon footprint,
        • Life Cycle approach,
        • Sustainable Urban drainage systems (SUDS)
        • Net zero carbon footprint
        • Net zero carbon footprint,
        • Pollutants Reduction,
        • Greening strategies,
        • Nature Based Solutions (NBS)
        A3P009: Other
        A3P010: Legal / Regulatory aspects
        A3P010: Legal / Regulatory aspectscompliance with Renewable Energy Communities (REC) regulations for energy sharing; •adherence to General Data Protection Regulation (GDPR) for data privacy in smart systems; •following EEA Grants public procurement rules for tendering and service hiring; •meeting urban mobility and transportation regulations for low-emission zones and EV infrastructure; •fulfilling waste management regulations for biodiesel production and organic waste processing
        B1P001: PED/PED relevant concept definition
        B1P001: PED/PED relevant concept definitionThe Rymdgatan's Residential Portfolio in Sweden presents a compelling case study for its classification as a PED-related research, given its alignment with sustainable behaviours and overarching PED development principles as follows: Inclusivity and Social Equity: The residential portfolio situated in Rymdgatan caters primarily to a low-income community. By focusing on this demographic, the project addresses critical aspects of social equity within sustainable urban development. Ensuring access to energy-efficient housing and amenities for economically disadvantaged populations not only fosters social cohesion but also mitigates energy poverty, a pressing concern in many urban contexts. Multifamily Residential Building: The inclusion of multifamily residential buildings within the portfolio underscores a commitment to density and efficient land use, both essential components of sustainable urban design. Such developments promote resource optimisation by consolidating housing units, thereby reducing per capita energy consumption and infrastructure demands. Moreover, multifamily dwellings often facilitate community engagement and shared resource management, fostering a culture of sustainability among residents. Low Carbon Retrofitting and Transition: The overarching initiative to transition the entire Jakobsgårdarna district. The included Rymdgatan portfolio, towards low carbon retrofitting, represents a significant example of decarbonization and climate resilience. By integrating energy-efficient technologies and renewable energy solutions into existing infrastructure, the project not only reduces carbon emissions but also serves as a blueprint for revitalising old urban environments sustainably. This holistic approach to retrofitting demonstrates a systemic commitment to environmental stewardship and long-term sustainability. Climate Adaptation and Renewable Energy Integration: Despite Sweden's climatic challenges, including lower solar resources during winter months, the Rymdgatan project leverages its geographical context to optimize renewable energy utilization. Sweden's greater solar resource availability during summer and geothermal potentials complement the design's emphasis on seasonal energy planning, where surplus energy generated during peak periods can be stored or redistributed efficiently. By embracing climate-responsive design strategies, the project demonstrates resilience in the face of climate variability while harnessing renewable energy potential effectively.The Cascais Smart Pole (CSP) is a relevant PED case study as it is a district-level project with high level of aspiration in terms of energy efficiency, energy flexibility and energy production. It employs core PED principles—energy production, efficiency, and sustainability—by integrating renewable energy, efficiency measures, community engagement, smart technologies, and scalable and replicable practices. Its outcomes align with the PED vision by fostering renewable energy, establishing Renewable Energy Communities, aiming for energy surplus, enhancing quality of life, and reducing environmental impacts.
        B1P002: Motivation behind PED/PED relevant project development
        B1P002: Motivation behind PED/PED relevant project developmentBorlänge city has committed to become the carbon-neutral city by 2030.CSP aims to serve as a living lab that demonstrates innovative solutions for achieving carbon neutrality and addressing climate change. Living Lab not only reduces carbon emissions but also creates a blueprint for replicable and scalable solutions, addressing the urgent need for climate action while improving quality of life, enabling energy efficiency, renewable energy production, energy sharing through REC (to be established), and aligning with global decarbonization goals.
        B1P003: Environment of the case study area
        B2P003: Environment of the case study areaSuburban areaRuralUrban areaUrban area
        B1P004: Type of district
        B2P004: Type of district
        • New construction
        • Renovation
        • New construction
        • Renovation
        • New construction
        B1P005: Case Study Context
        B1P005: Case Study Context
        • New Development
        • Retrofitting Area
        • New Development
        • Re-use / Transformation Area,
        • Retrofitting Area
        • New Development,
        • Retrofitting Area
        B1P006: Year of construction
        B1P006: Year of construction19902020
        B1P007: District population before intervention - Residential
        B1P007: District population before intervention - Residential1001662
        B1P008: District population after intervention - Residential
        B1P008: District population after intervention - Residential1001878
        B1P009: District population before intervention - Non-residential
        B1P009: District population before intervention - Non-residential64925
        B1P010: District population after intervention - Non-residential
        B1P010: District population after intervention - Non-residential66126
        B1P011: Population density before intervention
        B1P011: Population density before intervention0000020
        B1P012: Population density after intervention
        B1P012: Population density after intervention0000.010658622423328024.254545454545
        B1P013: Building and Land Use before intervention
        B1P013: Residentialnoyesnonoyesnoyes
        B1P013 - Residential: Specify the sqm [m²]4360
        B1P013: Officenonononononoyes
        B1P013 - Office: Specify the sqm [m²]
        B1P013: Industry and Utilitynonononononono
        B1P013 - Industry and Utility: Specify the sqm [m²]
        B1P013: Commercialnonononononoyes
        B1P013 - Commercial: Specify the sqm [m²]
        B1P013: Institutionalnonononononoyes
        B1P013 - Institutional: Specify the sqm [m²]
        B1P013: Natural areasnonoyesnononoyes
        B1P013 - Natural areas: Specify the sqm [m²]
        B1P013: Recreationalnonononononoyes
        B1P013 - Recreational: Specify the sqm [m²]
        B1P013: Dismissed areasnonononononono
        B1P013 - Dismissed areas: Specify the sqm [m²]
        B1P013: Othernonononoyesnono
        B1P013 - Other: Specify the sqm [m²]706
        B1P014: Building and Land Use after intervention
        B1P014: Residentialyesyesyesnoyesnoyes
        B1P014 - Residential: Specify the sqm [m²]4360
        B1P014: Officenonoyesnononoyes
        B1P014 - Office: Specify the sqm [m²]
        B1P014: Industry and Utilityyesnononononono
        B1P014 - Industry and Utility: Specify the sqm [m²]10000
        B1P014: Commercialyesnononononoyes
        B1P014 - Commercial: Specify the sqm [m²]
        B1P014: Institutionalnonononononoyes
        B1P014 - Institutional: Specify the sqm [m²]
        B1P014: Natural areasnonoyesnononoyes
        B1P014 - Natural areas: Specify the sqm [m²]
        B1P014: Recreationalyesnononononoyes
        B1P014 - Recreational: Specify the sqm [m²]
        B1P014: Dismissed areasnonononononono
        B1P014 - Dismissed areas: Specify the sqm [m²]
        B1P014: Othernonononoyesnono
        B1P014 - Other: Specify the sqm [m²]706
        B2P001: PED Lab concept definition
        B2P001: PED Lab concept definition
        B2P002: Installation life time
        B2P002: Installation life time
        B2P003: Scale of action
        B2P003: ScaleDistrictDistrict
        B2P004: Operator of the installation
        B2P004: Operator of the installation
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P006: Circular Economy Approach
        B2P006: Do you apply any strategy to reuse and recycling the materials?
        B2P006: Other
        B2P007: Motivation for developing the PED Lab
        B2P007: Motivation for developing the PED Lab
        B2P007: Other
        B2P008: Lead partner that manages the PED Lab
        B2P008: Lead partner that manages the PED Lab
        B2P008: Other
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Other
        B2P010: Synergies between the fields of activities
        B2P010: Synergies between the fields of activities
        B2P011: Available facilities to test urban configurations in PED Lab
        B2P011: Available facilities to test urban configurations in PED Lab
        B2P011: Other
        B2P012: Incubation capacities of PED Lab
        B2P012: Incubation capacities of PED Lab
        B2P013: Availability of the facilities for external people
        B2P013: Availability of the facilities for external people
        B2P014: Monitoring measures
        B2P014: Monitoring measures
        B2P015: Key Performance indicators
        B2P015: Key Performance indicators
        B2P016: Execution of operations
        B2P016: Execution of operations
        B2P017: Capacities
        B2P017: Capacities
        B2P018: Relations with stakeholders
        B2P018: Relations with stakeholders
        B2P019: Available tools
        B2P019: Available tools
        B2P019: Available tools
        B2P020: External accessibility
        B2P020: External accessibility
        C1P001: Unlocking Factors
        C1P001: Recent technological improvements for on-site RES production1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important4 - Important5 - Very important
        C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant3 - Moderately important
        C1P001: Energy Communities, P2P, Prosumers concepts1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important5 - Very important5 - Very important
        C1P001: Storage systems and E-mobility market penetration1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important5 - Very important5 - Very important
        C1P001: Decreasing costs of innovative materials1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
        C1P001: Financial mechanisms to reduce costs and maximize benefits1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important5 - Very important5 - Very important
        C1P001: The ability to predict Multiple Benefits1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant
        C1P001: The ability to predict the distribution of benefits and impacts1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant3 - Moderately important
        C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant5 - Very important
        C1P001: Social acceptance (top-down)1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant5 - Very important
        C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important5 - Very important
        C1P001: Presence of integrated urban strategies and plans1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important4 - Important
        C1P001: Multidisciplinary approaches available for systemic integration1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important4 - Important4 - Important
        C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important5 - Very important5 - Very important
        C1P001: Availability of RES on site (Local RES)1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant5 - Very important
        C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders1 - Unimportant1 - Unimportant1 - Unimportant4 - Important2 - Slightly important1 - Unimportant5 - Very important
        C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P001: Any other UNLOCKING FACTORS (if any)
        C1P002: Driving Factors
        C1P002: Climate Change adaptation need1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant4 - Important
        C1P002: Climate Change mitigation need (local RES production and efficiency)1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important5 - Very important5 - Very important
        C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important
        C1P002: Urban re-development of existing built environment1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important
        C1P002: Economic growth need1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important3 - Moderately important
        C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
        C1P002: Territorial and market attractiveness1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
        C1P002: Energy autonomy/independence1 - Unimportant1 - Unimportant1 - Unimportant4 - Important2 - Slightly important5 - Very important4 - Important
        C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P002: Any other DRIVING FACTOR (if any)
        C1P003: Administrative barriers
        C1P003: Difficulty in the coordination of high number of partners and authorities1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important4 - Important5 - Very important3 - Moderately important
        C1P003: Lack of good cooperation and acceptance among partners1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important4 - Important4 - Important3 - Moderately important
        C1P003: Lack of public participation1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant5 - Very important
        C1P003: Lack of institutions/mechanisms to disseminate information1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important4 - Important1 - Unimportant3 - Moderately important
        C1P003:Long and complex procedures for authorization of project activities1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important5 - Very important4 - Important
        C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important4 - Important5 - Very important4 - Important
        C1P003: Complicated and non-comprehensive public procurement1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant4 - Important
        C1P003: Fragmented and or complex ownership structure1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important4 - Important1 - Unimportant4 - Important
        C1P003: City administration & cross-sectoral attitude/approaches (silos)1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important5 - Very important3 - Moderately important
        C1P003: Lack of internal capacities to support energy transition1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important5 - Very important4 - Important
        C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P003: Any other Administrative BARRIER (if any)
        C1P004: Policy barriers
        C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important4 - Important3 - Moderately important
        C1P004: Lacking or fragmented local political commitment and support on the long term1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important4 - Important5 - Very important
        C1P004: Lack of Cooperation & support between national-regional-local entities1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important5 - Very important4 - Important
        C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P004: Any other Political BARRIER (if any)
        C1P005: Legal and Regulatory barriers
        C1P005: Inadequate regulations for new technologies1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important4 - Important5 - Very important4 - Important
        C1P005: Regulatory instability1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important4 - Important3 - Moderately important
        C1P005: Non-effective regulations1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant3 - Moderately important
        C1P005: Unfavorable local regulations for innovative technologies1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important4 - Important1 - Unimportant3 - Moderately important
        C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant3 - Moderately important
        C1P005: Insufficient or insecure financial incentives1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant4 - Important
        C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important4 - Important3 - Moderately important
        C1P005: Shortage of proven and tested solutions and examples1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important4 - Important3 - Moderately important2 - Slightly important
        C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER (if any)
        C1P006: Environmental barriers
        C1P006: Environmental barriers2 - Slightly important
        C1P007: Technical barriers
        C1P007: Lack of skilled and trained personnel1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important3 - Moderately important
        C1P007: Deficient planning1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important3 - Moderately important
        C1P007: Retrofitting work in dwellings in occupied state1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important2 - Slightly important
        C1P007: Lack of well-defined process1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important
        C1P007: Inaccuracy in energy modelling and simulation1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important
        C1P007: Lack/cost of computational scalability1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important
        C1P007: Grid congestion, grid instability1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important3 - Moderately important
        C1P007: Negative effects of project intervention on the natural environment1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
        C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Difficult definition of system boundaries1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Any other Thecnical BARRIER (if any)
        C1P008: Social and Cultural barriers
        C1P008: Inertia1 - Unimportant1 - Unimportant1 - Unimportant4 - Important2 - Slightly important1 - Unimportant5 - Very important
        C1P008: Lack of values and interest in energy optimization measurements1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant4 - Important
        C1P008: Low acceptance of new projects and technologies1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant4 - Important
        C1P008: Difficulty of finding and engaging relevant actors1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant5 - Very important
        C1P008: Lack of trust beyond social network1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant3 - Moderately important
        C1P008: Rebound effect1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant2 - Slightly important
        C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important
        C1P008: Exclusion of socially disadvantaged groups1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important
        C1P008: Non-energy issues are more important and urgent for actors1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant4 - Important
        C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant4 - Important
        C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Any other Social BARRIER (if any)
        C1P009: Information and Awareness barriers
        C1P009: Insufficient information on the part of potential users and consumers1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant4 - Important
        C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important
        C1P009: Lack of awareness among authorities1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important
        C1P009: Information asymmetry causing power asymmetry of established actors1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant3 - Moderately important
        C1P009: High costs of design, material, construction, and installation1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important5 - Very important4 - Important
        C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P009: Any other Information and Awareness BARRIER (if any)
        C1P010: Financial barriers
        C1P010: Hidden costs1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important
        C1P010: Insufficient external financial support and funding for project activities1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important5 - Very important1 - Unimportant
        C1P010: Economic crisis1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important
        C1P010: Risk and uncertainty1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important5 - Very important4 - Important
        C1P010: Lack of consolidated and tested business models1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important5 - Very important4 - Important
        C1P010: Limited access to capital and cost disincentives1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important
        C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P010: Any other Financial BARRIER (if any)
        C1P011: Market barriers
        C1P011: Split incentives1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant4 - Important
        C1P011: Energy price distortion1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant3 - Moderately important
        C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important
        C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P011: Any other Market BARRIER (if any)
        C1P012: Stakeholders involved
        C1P012: Government/Public Authorities
        • Monitoring/operation/management
        C1P012: Research & Innovation
        • Planning/leading
        C1P012: Financial/Funding
        • None
        C1P012: Analyst, ICT and Big Data
        • None
        C1P012: Business process management
        • None
        C1P012: Urban Services providers
        • None
        C1P012: Real Estate developers
        • Design/demand aggregation
        C1P012: Design/Construction companies
        • None
        C1P012: End‐users/Occupants/Energy Citizens
        • Monitoring/operation/management
        C1P012: Social/Civil Society/NGOs
        • Monitoring/operation/management
        C1P012: Industry/SME/eCommerce
        • None
        C1P012: Other
        C1P012: Other (if any)
        Summary

        Authors (framework concept)

        Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

        Contributors (to the content)

        Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

        Implemented by

        Boutik.pt: Filipe Martins, Jamal Khan
        Marek Suchánek (Czech Technical University in Prague)