Filters:
NameProjectTypeCompare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Compare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Compare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Uncompare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Uncompare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Uncompare
Győr, Geothermal District Heating Project PED Relevant Case Study Compare
Drammen, Jacobs Borchs Gate PED Relevant Case Study Compare
Freiburg im Breisgau, Dietenbach PED Relevant Case Study Compare
Lecce, SmartEnCity SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
Trento, STARDUST STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Malmö, Klimatkontrakt Hyllie PED Relevant Case Study Compare
Kaiserslautern, EnStadt:Pfaff PED Relevant Case Study / PED Lab Compare
Helsinki, mySMARTlife PED Relevant Case Study Compare
Firenze, Novoli-Cascine district on “le PIagge” buildings PED Relevant Case Study Compare
Bolzano, Sinfonia PED Relevant Case Study Compare
Zürich, Hunziker Areal PED Relevant Case Study Compare
Hammarby Sjöstad, Hammarby Sjöstad 2.0 PED Relevant Case Study Compare
Milano, Sharing Cities PED Relevant Case Study Compare
Mieres, District Heating Pozo Barredo PED Relevant Case Study Compare
Lund, Cityfied (demo Linero) PED Relevant Case Study Compare
Espoo, Smart Otaniemi PED Relevant Case Study / PED Lab Compare
Vienna, Zukunftsquartier PED Case Study Compare
Trento, Santa Chiara Open Lab PED Case Study Compare
Paterna, Barrio La Pinada PED Case Study / PED Lab Compare
Bergen, Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru, +CityxChange PED Case Study Compare
Trondheim, NTNU Campus within the Knowledge Axis ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Oslo, Furuset project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Măgurele, Laser Valley – Land of Lights PED Case Study Compare
Elverum, Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bodø, Airport, NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bærum, Fornebu ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Carquefou, Fleuraye west PED Case Study Compare
Åland, Smart Energy PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Uncompare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleUden, Loopkantstraat
Aveiro, Aradas district
Schönbühel-Aggsbach, Schönbühel an der Donau
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab
Torres Vedras, Encosta de São Vicente
Izmir, District of Karşıyaka
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabUden, LoopkantstraatAveiro, Aradas districtSchönbühel-Aggsbach, Schönbühel an der DonauBucharest, The Bucharest University of Economic Studies (ASE) PED LabTorres Vedras, Encosta de São VicenteIzmir, District of Karşıyaka
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynononononoyes
PED relevant case studyyesyesyesnonono
PED Lab.nononoyesyesno
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesyesyesyes
Annual energy surplusyesnonononoyes
Energy communitynoyesyesnoyesno
Circularitynononononono
Air quality and urban comfortnononononoyes
Electrificationyesyesnononono
Net-zero energy costnonoyesnonoyes
Net-zero emissionnononononono
Self-sufficiency (energy autonomous)nononononono
Maximise self-sufficiencynonoyesnonoyes
Othernononoyesyesno
Other (A1P004)Smart BuildingsUrban regeneration: Repair and retrofitting houses, greening public space, building and maintaining walking and cycling paths and access to public transport.
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabIn operationPlanning PhaseImplementation PhasePlanning PhaseImplementation PhasePlanning Phase
A1P006: Start Date
A1P006: Start date06/1712/2303/2504/1810/22
A1P007: End Date
A1P007: End date05/2311/2612/2712/3310/25
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts
  • Monitoring data available within the districts
A1P009: OtherOther
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • Inger Andresen, Tonje Healey Trulsrud, Luca Finocchiaro, Alessandro Nocente, Meril Tamm, Joana Ortiz, Jaume Salom, Abel Magyari, Linda Hoes-van Oeffelen, Wouter Borsboom, Wim Kornaat, Niki Gaitani, Design and performance predictions of plus energy neighbourhoods – Case studies of demonstration projects in four different European climates, Energy and Buildings, Volume 274, 2022, 112447, ISSN 0378-7788, https://doi.org/10.1016/j.enbuild.2022.112447. (https://www.sciencedirect.com/science/article/pii/S0378778822006181),
  • Deliverable, Report: Integrated Energy Design for Sustainable Plus Energy Neighbourhoods (syn.ikia),
  • Deliverable, Report: DEMONSTRATION CASE OF SUSTAINABLE PLUS ENERGY NEIGHBOURHOODS IN MARINE CLIMATE (syn.ikia),
  • https://www.synikia.eu/no/bibliotek/
          A1P011: Geographic coordinates
          X Coordinate (longitude):5.6191-8.659515.396926.09739432591498-9.26322490238905927.110049
          Y Coordinate (latitude):51.660640.635348.275244.4472496751992939.1026173326919538.496054
          A1P012: Country
          A1P012: CountryNetherlandsPortugalAustriaRomaniaPortugalTurkey
          A1P013: City
          A1P013: CityUdenAlveiro (Aradas)Schönbühel an der DonauBucharestTorres Vedrasİzmir
          A1P014: Climate Zone (Köppen Geiger classification)
          A1P014: Climate Zone (Köppen Geiger classification).CfbCsbDfbCsaCfaCsa
          A1P015: District boundary
          A1P015: District boundaryGeographicGeographicGeographicGeographicGeographicGeographic
          Other
          A1P016: Ownership of the case study/PED Lab
          A1P016: Ownership of the case study/PED Lab:PrivatePublicPrivatePublicMixedPrivate
          A1P017: Ownership of the land / physical infrastructure
          A1P017: Ownership of the land / physical infrastructure:Single OwnerMultiple OwnersMultiple OwnersSingle OwnerMultiple OwnersMultiple Owners
          A1P018: Number of buildings in PED
          A1P018: Number of buildings in PED1021
          A1P019: Conditioned space
          A1P019: Conditioned space [m²]2360477102795
          A1P020: Total ground area
          A1P020: Total ground area [m²]38608930000245048519000032600
          A1P021: Floor area ratio: Conditioned space / total ground area
          A1P021: Floor area ratio: Conditioned space / total ground area100003
          A1P022: Financial schemes
          A1P022a: Financing - PRIVATE - Real estateyesnoyesnonono
          A1P022a: Add the value in EUR if available [EUR]7804440
          A1P022b: Financing - PRIVATE - ESCO schemenononononono
          A1P022b: Add the value in EUR if available [EUR]
          A1P022c: Financing - PRIVATE - Othernononononono
          A1P022c: Add the value in EUR if available [EUR]
          A1P022d: Financing - PUBLIC - EU structural fundingnonononoyesno
          A1P022d: Add the value in EUR if available [EUR]5500000
          A1P022e: Financing - PUBLIC - National fundingnoyesyesnonono
          A1P022e: Add the value in EUR if available [EUR]
          A1P022f: Financing - PUBLIC - Regional fundingnonoyesnonono
          A1P022f: Add the value in EUR if available [EUR]
          A1P022g: Financing - PUBLIC - Municipal fundingnononononono
          A1P022g: Add the value in EUR if available [EUR]
          A1P022h: Financing - PUBLIC - Othernononoyesnono
          A1P022h: Add the value in EUR if available [EUR]
          A1P022i: Financing - RESEARCH FUNDING - EUnonononoyesyes
          A1P022i: Add the value in EUR if available [EUR]1246801193355
          A1P022j: Financing - RESEARCH FUNDING - Nationalnononononoyes
          A1P022j: Add the value in EUR if available [EUR]
          A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononono
          A1P022k: Add the value in EUR if available [EUR]
          A1P022l: Financing - RESEARCH FUNDING - Othernononononono
          A1P022l: Add the value in EUR if available [EUR]
          A1P022: Other
          A1P023: Economic Targets
          A1P023: Economic Targets
          • Positive externalities,
          • Boosting local and sustainable production
          A1P023: Other
          A1P024: More comments:
          A1P024: More comments:The project is a follow-up from the “Social Beautiful” concept which was developed in collaboration between Labyrint (Support in sheltered housing), Area (housing company), the municipality of Uden, and Hendriks Coppelmans (developer). The concept aims to provide an answer to changes in various policy areas and the changing demands of society. The Social Beautiful concept consists of the following elements: 1. Living, working, and community services are brought together in one location. A multifunctional residential and service centre is being realized at the location. 2. Housing is shaped by the realization of financially accessible homes suitable for the target group. The housing design is tailored to the target group. it may also include sheltered / protected living. 3. Work takes place at the location or from the same location. The work has a social function within the neighbourhood. Wage-related work must contribute to providing structure in the daily activities of the residents. 4. Neighbourhood management is organized from the location in the surrounding neighbourhood. A service package is provided from the residential and service centre that contributes to the ability of neighbourhood residents to live independently for longer, to strengthen the social network, and to improve the quality of life and safety in the neighbourhood. 5. The houses are suitable for use at all times for regular rental. Communal facilities must be realized within the contours of a regular apartment. The objective is to offer a suitable living and working situation to a group of vulnerable citizens. In this way they become a fully-fledged part of society. They not only make use of the facilities themselves, but also give substance to the level of facilities in the municipality. Due to the integrated approach, they experience a greater sense of well-being and security.
          A1P025: Estimated PED case study / PED LAB costs
          A1P025: Estimated PED case study / PED LAB costs [mil. EUR]78044405.62
          Contact person for general enquiries
          A1P026: NameTonje Healey TrulsrudDr. Gonçalo Homem De Almeida Rodriguez CorreiaGhazal EtminanAdela BaraMinh Thu NguyenOzlem Senyol
          A1P027: OrganizationNorwegian University of Science and Technology (NTNU)Delft University of TechnologyGhazal.Etminan@ait.ac.atThe Bucharest University of Economic StudiesISCTE-IULKarsiyaka Municipality
          A1P028: AffiliationResearch Center / UniversityResearch Center / UniversityResearch Center / UniversityResearch Center / UniversityResearch Center / UniversityMunicipality / Public Bodies
          A1P028: Other
          A1P029: Emailtonje.h.trulsrud@ntnu.nog.correia@tudelft.nlGhazal.Etminan@ait.ac.atBara.adela@ie.ase.roMtnnu@iscte-iul.ptozlemkocaer2@gmail.com
          Contact person for other special topics
          A1P030: NameQiaochu FanHasan Burak Cavka
          A1P031: Emailq.fan-1@tudelft.nlhasancavka@iyte.edu.tr
          Pursuant to the General Data Protection RegulationYesYesYesYesYesYes
          A2P001: Fields of application
          A2P001: Fields of application
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • Waste management,
          • Indoor air quality,
          • Construction materials
          • Energy efficiency,
          • Energy flexibility,
          • E-mobility,
          • Urban comfort (pollution, heat island, noise level etc.),
          • Digital technologies
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility
          • Energy efficiency,
          • Energy flexibility,
          • Digital technologies,
          • Indoor air quality
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • Urban comfort (pollution, heat island, noise level etc.)
          A2P001: Other
          A2P002: Tools/strategies/methods applied for each of the above-selected fields
          A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: Energy efficient envelope, with good insulation, triple glazing windows and airtight envelope. (EPC = 0) Energy Flexibility: MCP controls for the heat pump in the apartments. Energy production: PV panels on the roof, Ground source heat pumps Waste management: construction waste was kept to a minimum and sorted and collected separately as much as possible. Indoor air quality: Exhaust ventilation and opening of windows Construction materials: low carbon emission building materialsEnergy modelingMethods involve studying the feasibility of digital PED references for the case cities about their energy, environmental, and economic performance by EnergyPlus tool. In case of insufficient energy data and the need of high resolution data, ‘Gaussian mixture model and expectation-maximization algorithm’ and ‘time-series decomposition-recombination’ method will be used to supplement data to EnergyPlus. The feasibility results will be returned to stakeholders for iterative discussion, and the iterative results will be used to update digital references. Replication plans are developed based on such a cooperation process for strategies to implement PEDs. If a PED is demonstrated during the project period, the measured data will be used to verify the feasibility model to optimize previous results (WP7– R3 & R4). In the MAKING-CITY project, the overall PED design method is developed, which will be further optimised in this project. In addition, PED-ACT will use the methods and knowledge, including how to choose a suitable PED in a city, energy balance calculation, and technologies available for PED. The RUGGEDISED project outputs the governance model into the replication plan in PED-ACT. Its ‘smart city open-data decision platform’ will illustrate an excellent example for the database in PED-ACT. The IEA EBC Annex 83 and Cost Action 19126 create the basis for data collection, developing existing PED databases, characterization of PED, and review of regulations of PED, as well as development of simulation tools. The UBEM project further enables a detailed high-resolution energy balance calculation of PED.
          A2P003: Application of ISO52000
          A2P003: Application of ISO52000YesNoYes
          A2P004: Appliances included in the calculation of the energy balance
          A2P004: Appliances included in the calculation of the energy balanceNoYesYes
          A2P005: Mobility included in the calculation of the energy balance
          A2P005: Mobility included in the calculation of the energy balanceNoNoNo
          A2P006: Description of how mobility is included (or not included) in the calculation
          A2P006: Description of how mobility is included (or not included) in the calculationnot includedMobility is not included in the calculations.
          A2P007: Annual energy demand in buildings / Thermal demand
          A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]0.1480.0663.862
          A2P008: Annual energy demand in buildings / Electric Demand
          A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.1090.0121.226
          A2P009: Annual energy demand for e-mobility
          A2P009: Annual energy demand for e-mobility [GWh/annum]
          A2P010: Annual energy demand for urban infrastructure
          A2P010: Annual energy demand for urban infrastructure [GWh/annum]
          A2P011: Annual renewable electricity production on-site during target year
          A2P011: PVyesnoyesnonoyes
          A2P011: PV - specify production in GWh/annum [GWh/annum]0.0581.028
          A2P011: Windnononononono
          A2P011: Wind - specify production in GWh/annum [GWh/annum]
          A2P011: Hydronononononono
          A2P011: Hydro - specify production in GWh/annum [GWh/annum]
          A2P011: Biomass_elnononononono
          A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
          A2P011: Biomass_peat_elnononononono
          A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
          A2P011: PVT_elnononononono
          A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
          A2P011: Othernononononono
          A2P011: Other - specify production in GWh/annum [GWh/annum]
          A2P012: Annual renewable thermal production on-site during target year
          A2P012: Geothermalyesnonononono
          A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
          A2P012: Solar Thermalnononononono
          A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_heatnononononono
          A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
          A2P012: Waste heat+HPnononononono
          A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_peat_heatnononononono
          A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
          A2P012: PVT_thnononononono
          A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_firewood_thnononononono
          A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
          A2P012: Othernononononono
          A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
          A2P013: Renewable resources on-site - Additional notes
          A2P013: Renewable resources on-site - Additional notes*Annual energy use below is presentedin primary energy consumption
          A2P014: Annual energy use
          A2P014: Annual energy use [GWh/annum]0.1940.0795.088
          A2P015: Annual energy delivered
          A2P015: Annual energy delivered [GWh/annum]0.03680.0011
          A2P016: Annual non-renewable electricity production on-site during target year
          A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]
          A2P017: Annual non-renewable thermal production on-site during target year
          A2P017: Gasnononononoyes
          A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Coalnononononono
          A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Oilnononononono
          A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Othernononononono
          A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P018: Annual renewable electricity imports from outside the boundary during target year
          A2P018: PVnonoyesnonoyes
          A2P018 - PV: specify production in GWh/annum if available [GWh/annum]0.707
          A2P018: Windnonoyesnonono
          A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
          A2P018: Hydrononoyesnonono
          A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_elnonoyesnonono
          A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_peat_elnononononono
          A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: PVT_elnononononono
          A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Othernononononono
          A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
          A2P019: Annual renewable thermal imports from outside the boundary during target year
          A2P019: Geothermalnononononono
          A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Solar Thermalnononononono
          A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_heatnononononono
          A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Waste heat+HPnononononono
          A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_peat_heatnononononono
          A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
          A2P019: PVT_thnononononono
          A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_firewood_thnonoyesnonono
          A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Othernononononono
          A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
          A2P020: Share of RES on-site / RES outside the boundary
          A2P020: Share of RES on-site / RES outside the boundary000001.4540311173975
          A2P021: GHG-balance calculated for the PED
          A2P021: GHG-balance calculated for the PED [tCO2/annum]-0.000434
          A2P022: KPIs related to the PED case study / PED Lab
          A2P022: Safety & SecurityPersonal Safety
          A2P022: HealthHealthy community
          A2P022: Education
          A2P022: MobilitySustainable mobilityImproved accessibility to V2G-related transport options, focusing on inclusivity and equitable adoption in urban districts
          A2P022: EnergyNOn-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/self-consumption, net energy/net power, peak delivered/peak expoted, total greenhouse gas emissionTarget zero greenhouse gas emissions through the adoption of EVs with V2G capabilities, aiming to reduce reliance on fossil fuels and enhance local grid stabilityYes
          A2P022: Water
          A2P022: Economic developmentcapital costs, operational cots, overall economic performance (5 KPIs)Development of viable business models for V2G that allow decentralized energy markets to integrate with the grid, enhancing local economic resilience
          A2P022: Housing and Communitydemographic composition, diverse community, social cohesionSpecify the associated KPIs
          A2P022: Waste
          A2P022: OtherSmartness and flecibility, Indoor Environmental Quality, Social performance - Equity (affordable housing, access to servicees and amenitioes, afforability of energy, living conditions, sustinable mobility, universal design)
          A2P023: Technological Solutions / Innovations - Energy Generation
          A2P023: Photovoltaicsyesyesyesnonoyes
          A2P023: Solar thermal collectorsnononononono
          A2P023: Wind Turbinesnoyesnononono
          A2P023: Geothermal energy systemyesnonononono
          A2P023: Waste heat recoverynononononono
          A2P023: Waste to energynononononono
          A2P023: Polygenerationnononononono
          A2P023: Co-generationnononononono
          A2P023: Heat Pumpyesnoyesnonoyes
          A2P023: Hydrogennononononono
          A2P023: Hydropower plantnononononono
          A2P023: Biomassnononononono
          A2P023: Biogasnononononono
          A2P023: OtherPhotovoltaics are considered for the next years
          A2P024: Technological Solutions / Innovations - Energy Flexibility
          A2P024: A2P024: Information and Communication Technologies (ICT)nononoyesnono
          A2P024: Energy management systemyesyesyesyesnono
          A2P024: Demand-side managementyesyesnoyesnono
          A2P024: Smart electricity gridnoyesnononono
          A2P024: Thermal Storagenononononono
          A2P024: Electric Storagenoyesnononono
          A2P024: District Heating and Coolingnononononono
          A2P024: Smart metering and demand-responsive control systemsyesnonononono
          A2P024: P2P – buildingsnonoyesnonono
          A2P024: Other
          A2P025: Technological Solutions / Innovations - Energy Efficiency
          A2P025: Deep Retrofittingnoyesyesyesnoyes
          A2P025: Energy efficiency measures in historic buildingsnonoyesyesnono
          A2P025: High-performance new buildingsyesnonononono
          A2P025: Smart Public infrastructure (e.g. smart lighting)noyesnononono
          A2P025: Urban data platformsnoyesnononono
          A2P025: Mobile applications for citizensnononononono
          A2P025: Building services (HVAC & Lighting)yesnonoyesnoyes
          A2P025: Smart irrigationnononononono
          A2P025: Digital tracking for waste disposalnononononono
          A2P025: Smart surveillancenononoyesnono
          A2P025: Other
          A2P026: Technological Solutions / Innovations - Mobility
          A2P026: Efficiency of vehicles (public and/or private)noyesnononono
          A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)noyesnononono
          A2P026: e-Mobilitynoyesnononono
          A2P026: Soft mobility infrastructures and last mile solutionsnononononono
          A2P026: Car-free areanononononono
          A2P026: Other
          A2P027: Mobility strategies - Additional notes
          A2P027: Mobility strategies - Additional notes
          A2P028: Energy efficiency certificates
          A2P028: Energy efficiency certificatesYesYesNo
          A2P028: If yes, please specify and/or enter notesEPC = 0, energy neutral building
          A2P029: Any other building / district certificates
          A2P029: Any other building / district certificatesNoNoNo
          A2P029: If yes, please specify and/or enter notes
          A3P001: Relevant city /national strategy
          A3P001: Relevant city /national strategy
          • Promotion of energy communities (REC/CEC)
          • Energy master planning (SECAP, etc.),
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          A3P002: Quantitative targets included in the city / national strategy
          A3P002: Quantitative targets included in the city / national strategyKarşıyaka Municipality is the first local government in Turkey to sign the Covenant of Mayors in 2011. During this period, the greenhouse gas inventory of the district was carried out three times and reduction targets were set for 2020 and 2030. In the 2021 Sustainable Energy and Climate Action Plan prepared as of the end of 2021, Karşıyaka Municipality has targeted a 40% reduction in its emissions for 2030 compared to the base year 2018. In the 2021 Sustainable Energy and Climate Action Plan, Karşıyaka Municipality aims to reduce its greenhouse gas emissions from 3.96 tCO2e / person in 2018 to 2.37 tCO2e / person in 2030. System solutions such as the use of renewable energy sources, air, ground or water source heat pump, cogeneration and microcogeneration are analysed by designers in order to fully or partially meet the energy requirements for heating, cooling, ventilation, hot water, electricity and lighting for all buildings with a floor area of less than 20,000 square metres. If at least 50% of the building's total energy consumption costs are covered by one or more of these applications, the points are taken in the assessment table in the Building and housing estate business certification guide of 2023.
          A3P003: Strategies towards decarbonization of the gas grid
          A3P003: Strategies towards decarbonization of the gas grid
          • Electrification of Heating System based on Heat Pumps
          A3P003: Other
          A3P004: Identification of needs and priorities
          A3P004: Identification of needs and prioritiesAccording to the model developed for the district, the electrification of heating and cooling is necessary.Therefore, there needs to be the implementation of a heat pump. The building-integrated photovoltaic panelsshould follow. Through net-metering practices, the district is expected to reach energy positivity throughthis scenario.
          A3P005: Sustainable behaviour
          A3P005: Sustainable behaviour
          A3P006: Economic strategies
          A3P006: Economic strategies
          • Innovative business models,
          • Local trading,
          • Existing incentives
          • Local trading,
          • Existing incentives
          • Innovative business models,
          • Demand management Living Lab
          A3P006: Other
          A3P007: Social models
          A3P007: Social models
          • Co-creation / Citizen engagement strategies,
          • Social incentives,
          • Quality of Life
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Behavioural Change / End-users engagement,
          • Social incentives,
          • Prevention of energy poverty,
          • Digital Inclusion
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Behavioural Change / End-users engagement,
          • Quality of Life,
          • Citizen/owner involvement in planning and maintenance,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Digital Inclusion,
          • Citizen/owner involvement in planning and maintenance,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Affordability
          A3P007: Other
          A3P008: Integrated urban strategies
          A3P008: Integrated urban strategies
          • Strategic urban planning,
          • District Energy plans
          • Digital twinning and visual 3D models
          • Digital twinning and visual 3D models,
          • District Energy plans,
          • SECAP Updates
          A3P008: Other
          A3P009: Environmental strategies
          A3P009: Environmental strategies
          • Energy Neutral,
          • Low Emission Zone,
          • Nature Based Solutions (NBS)
          • Low Emission Zone,
          • Net zero carbon footprint,
          • Carbon-free
          • Energy Neutral,
          • Low Emission Zone,
          • Pollutants Reduction
          A3P009: Other
          A3P010: Legal / Regulatory aspects
          A3P010: Legal / Regulatory aspects
          B1P001: PED/PED relevant concept definition
          B1P001: PED/PED relevant concept definitionThe demonstration projects is a new residential development, which consists of an apartment complex which includes 39 apartments spread over 3 floors. It is a sustainble plus energy neighbouhood, and has reached a plus energy balance on its first year in operation. It has MPC controls on the individual heat pumps to improve the energy flexibility of the apartments. It includes the "social beatiful" concepts with a strong emphasis on the social sustainability of the project.The pilot area was selected on the basis of several criteria: its location within areas prioritised by Karşıyaka Municipality for combating climate change, compliance with the building regulations set out in the Green Building-Site-Operation (2023) guide, which are in line with Municipality's energy policy, the presence of open spaces that allow various applications for renewable energy, proximity to public facilities such as schools and municipal services, the availability of data on energy consumption (e.g. electricity and natural gas bills) and architectural features, the potential for community building, the suitability for solar energy systems, considering orientation and roof structure, and the potential for future building renovations. The aim of the initiative is to explore the feasibility of transforming the district into a Positive Energy District (PED).
          B1P002: Motivation behind PED/PED relevant project development
          B1P002: Motivation behind PED/PED relevant project developmentThe need for social housing and the ambition to create a great living environment with a high-performance apartment complex, supplied with renewable energy. It results in lower energy bills for the tenants and high-quality homes.
          B1P003: Environment of the case study area
          B2P003: Environment of the case study areaSuburban areaRurbanUrban area
          B1P004: Type of district
          B2P004: Type of district
          • New construction
          • Renovation
          • Renovation
          B1P005: Case Study Context
          B1P005: Case Study Context
          • New Development
          • Retrofitting Area,
          • Preservation Area
          • Retrofitting Area
          B1P006: Year of construction
          B1P006: Year of construction2005
          B1P007: District population before intervention - Residential
          B1P007: District population before intervention - Residential
          B1P008: District population after intervention - Residential
          B1P008: District population after intervention - Residential
          B1P009: District population before intervention - Non-residential
          B1P009: District population before intervention - Non-residential
          B1P010: District population after intervention - Non-residential
          B1P010: District population after intervention - Non-residential
          B1P011: Population density before intervention
          B1P011: Population density before intervention0000
          B1P012: Population density after intervention
          B1P012: Population density after intervention0000
          B1P013: Building and Land Use before intervention
          B1P013: Residentialnonoyesnonoyes
          B1P013 - Residential: Specify the sqm [m²]102795
          B1P013: Officenonoyesnonono
          B1P013 - Office: Specify the sqm [m²]
          B1P013: Industry and Utilitynononononono
          B1P013 - Industry and Utility: Specify the sqm [m²]
          B1P013: Commercialnononononono
          B1P013 - Commercial: Specify the sqm [m²]
          B1P013: Institutionalnononononono
          B1P013 - Institutional: Specify the sqm [m²]
          B1P013: Natural areasnononononono
          B1P013 - Natural areas: Specify the sqm [m²]
          B1P013: Recreationalnononononono
          B1P013 - Recreational: Specify the sqm [m²]
          B1P013: Dismissed areasnononononono
          B1P013 - Dismissed areas: Specify the sqm [m²]
          B1P013: Othernononononono
          B1P013 - Other: Specify the sqm [m²]
          B1P014: Building and Land Use after intervention
          B1P014: Residentialyesnoyesnonoyes
          B1P014 - Residential: Specify the sqm [m²]2394102795
          B1P014: Officenonoyesnonono
          B1P014 - Office: Specify the sqm [m²]
          B1P014: Industry and Utilitynononononono
          B1P014 - Industry and Utility: Specify the sqm [m²]
          B1P014: Commercialnononononono
          B1P014 - Commercial: Specify the sqm [m²]
          B1P014: Institutionalnononononono
          B1P014 - Institutional: Specify the sqm [m²]
          B1P014: Natural areasnononononono
          B1P014 - Natural areas: Specify the sqm [m²]
          B1P014: Recreationalnononononono
          B1P014 - Recreational: Specify the sqm [m²]
          B1P014: Dismissed areasnononononono
          B1P014 - Dismissed areas: Specify the sqm [m²]
          B1P014: Othernononononono
          B1P014 - Other: Specify the sqm [m²]
          B2P001: PED Lab concept definition
          B2P001: PED Lab concept definition
          B2P002: Installation life time
          B2P002: Installation life time
          B2P003: Scale of action
          B2P003: Scale
          B2P004: Operator of the installation
          B2P004: Operator of the installation
          B2P005: Replication framework: Applied strategy to reuse and recycling the materials
          B2P005: Replication framework: Applied strategy to reuse and recycling the materials
          B2P006: Circular Economy Approach
          B2P006: Do you apply any strategy to reuse and recycling the materials?
          B2P006: Other
          B2P007: Motivation for developing the PED Lab
          B2P007: Motivation for developing the PED Lab
          B2P007: Other
          B2P008: Lead partner that manages the PED Lab
          B2P008: Lead partner that manages the PED Lab
          B2P008: Other
          B2P009: Collaborative partners that participate in the PED Lab
          B2P009: Collaborative partners that participate in the PED Lab
          B2P009: Other
          B2P010: Synergies between the fields of activities
          B2P010: Synergies between the fields of activities
          B2P011: Available facilities to test urban configurations in PED Lab
          B2P011: Available facilities to test urban configurations in PED Lab
          B2P011: Other
          B2P012: Incubation capacities of PED Lab
          B2P012: Incubation capacities of PED Lab
          B2P013: Availability of the facilities for external people
          B2P013: Availability of the facilities for external people
          B2P014: Monitoring measures
          B2P014: Monitoring measures
          B2P015: Key Performance indicators
          B2P015: Key Performance indicators
          B2P016: Execution of operations
          B2P016: Execution of operations
          B2P017: Capacities
          B2P017: Capacities
          B2P018: Relations with stakeholders
          B2P018: Relations with stakeholders
          B2P019: Available tools
          B2P019: Available tools
          B2P019: Available tools
          B2P020: External accessibility
          B2P020: External accessibility
          C1P001: Unlocking Factors
          C1P001: Recent technological improvements for on-site RES production3 - Moderately important5 - Very important4 - Important4 - Important1 - Unimportant5 - Very important
          C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock1 - Unimportant4 - Important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important
          C1P001: Energy Communities, P2P, Prosumers concepts3 - Moderately important5 - Very important5 - Very important4 - Important1 - Unimportant1 - Unimportant
          C1P001: Storage systems and E-mobility market penetration4 - Important5 - Very important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
          C1P001: Decreasing costs of innovative materials4 - Important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
          C1P001: Financial mechanisms to reduce costs and maximize benefits3 - Moderately important5 - Very important5 - Very important3 - Moderately important1 - Unimportant4 - Important
          C1P001: The ability to predict Multiple Benefits3 - Moderately important4 - Important2 - Slightly important2 - Slightly important1 - Unimportant4 - Important
          C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important
          C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)3 - Moderately important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important
          C1P001: Social acceptance (top-down)5 - Very important4 - Important3 - Moderately important4 - Important1 - Unimportant5 - Very important
          C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)4 - Important5 - Very important5 - Very important4 - Important1 - Unimportant5 - Very important
          C1P001: Presence of integrated urban strategies and plans3 - Moderately important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important
          C1P001: Multidisciplinary approaches available for systemic integration5 - Very important4 - Important1 - Unimportant4 - Important1 - Unimportant4 - Important
          C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant5 - Very important
          C1P001: Availability of RES on site (Local RES)5 - Very important5 - Very important1 - Unimportant5 - Very important1 - Unimportant5 - Very important
          C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important5 - Very important4 - Important4 - Important1 - Unimportant5 - Very important
          C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P001: Any other UNLOCKING FACTORS (if any)
          C1P002: Driving Factors
          C1P002: Climate Change adaptation need5 - Very important4 - Important5 - Very important4 - Important1 - Unimportant5 - Very important
          C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important5 - Very important5 - Very important4 - Important1 - Unimportant5 - Very important
          C1P002: Rapid urbanization trend and need of urban expansions5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
          C1P002: Urban re-development of existing built environment4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
          C1P002: Economic growth need1 - Unimportant3 - Moderately important2 - Slightly important2 - Slightly important1 - Unimportant4 - Important
          C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)5 - Very important5 - Very important1 - Unimportant5 - Very important1 - Unimportant5 - Very important
          C1P002: Territorial and market attractiveness2 - Slightly important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
          C1P002: Energy autonomy/independence1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant5 - Very important
          C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P002: Any other DRIVING FACTOR (if any)
          C1P003: Administrative barriers
          C1P003: Difficulty in the coordination of high number of partners and authorities1 - Unimportant4 - Important3 - Moderately important2 - Slightly important1 - Unimportant4 - Important
          C1P003: Lack of good cooperation and acceptance among partners1 - Unimportant4 - Important3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important
          C1P003: Lack of public participation1 - Unimportant5 - Very important4 - Important4 - Important1 - Unimportant5 - Very important
          C1P003: Lack of institutions/mechanisms to disseminate information1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important
          C1P003:Long and complex procedures for authorization of project activities1 - Unimportant3 - Moderately important3 - Moderately important4 - Important1 - Unimportant3 - Moderately important
          C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant5 - Very important
          C1P003: Complicated and non-comprehensive public procurement1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant5 - Very important
          C1P003: Fragmented and or complex ownership structure1 - Unimportant2 - Slightly important5 - Very important2 - Slightly important1 - Unimportant5 - Very important
          C1P003: City administration & cross-sectoral attitude/approaches (silos)1 - Unimportant3 - Moderately important2 - Slightly important2 - Slightly important1 - Unimportant5 - Very important
          C1P003: Lack of internal capacities to support energy transition1 - Unimportant4 - Important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important
          C1P003: Any other Administrative BARRIER4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P003: Any other Administrative BARRIER (if any)Delay in the Environmental Dialogue processing in the municipality
          C1P004: Policy barriers
          C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important
          C1P004: Lacking or fragmented local political commitment and support on the long term1 - Unimportant4 - Important4 - Important3 - Moderately important1 - Unimportant4 - Important
          C1P004: Lack of Cooperation & support between national-regional-local entities1 - Unimportant4 - Important4 - Important3 - Moderately important1 - Unimportant5 - Very important
          C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P004: Any other Political BARRIER (if any)
          C1P005: Legal and Regulatory barriers
          C1P005: Inadequate regulations for new technologies1 - Unimportant5 - Very important2 - Slightly important2 - Slightly important1 - Unimportant5 - Very important
          C1P005: Regulatory instability1 - Unimportant4 - Important3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important
          C1P005: Non-effective regulations1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important
          C1P005: Unfavorable local regulations for innovative technologies1 - Unimportant4 - Important2 - Slightly important2 - Slightly important1 - Unimportant5 - Very important
          C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant4 - Important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important
          C1P005: Insufficient or insecure financial incentives1 - Unimportant5 - Very important3 - Moderately important2 - Slightly important1 - Unimportant4 - Important
          C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important
          C1P005: Shortage of proven and tested solutions and examples1 - Unimportant4 - Important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important
          C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P005: Any other Legal and Regulatory BARRIER (if any)
          C1P006: Environmental barriers
          C1P006: Environmental barriers- Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Air and Water Pollution: 2 - Natural Disasters: 1 - Water Scarcity: 1
          C1P007: Technical barriers
          C1P007: Lack of skilled and trained personnel1 - Unimportant4 - Important3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important
          C1P007: Deficient planning1 - Unimportant4 - Important4 - Important2 - Slightly important1 - Unimportant4 - Important
          C1P007: Retrofitting work in dwellings in occupied state1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important
          C1P007: Lack of well-defined process1 - Unimportant4 - Important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important
          C1P007: Inaccuracy in energy modelling and simulation1 - Unimportant4 - Important2 - Slightly important2 - Slightly important1 - Unimportant5 - Very important
          C1P007: Lack/cost of computational scalability1 - Unimportant4 - Important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important
          C1P007: Grid congestion, grid instability1 - Unimportant5 - Very important2 - Slightly important2 - Slightly important1 - Unimportant3 - Moderately important
          C1P007: Negative effects of project intervention on the natural environment1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important
          C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant3 - Moderately important5 - Very important2 - Slightly important1 - Unimportant4 - Important
          C1P007: Difficult definition of system boundaries1 - Unimportant3 - Moderately important4 - Important2 - Slightly important1 - Unimportant4 - Important
          C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P007: Any other Thecnical BARRIER (if any)
          C1P008: Social and Cultural barriers
          C1P008: Inertia1 - Unimportant4 - Important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important
          C1P008: Lack of values and interest in energy optimization measurements1 - Unimportant5 - Very important2 - Slightly important5 - Very important1 - Unimportant4 - Important
          C1P008: Low acceptance of new projects and technologies1 - Unimportant5 - Very important2 - Slightly important3 - Moderately important1 - Unimportant5 - Very important
          C1P008: Difficulty of finding and engaging relevant actors1 - Unimportant4 - Important4 - Important3 - Moderately important1 - Unimportant4 - Important
          C1P008: Lack of trust beyond social network1 - Unimportant5 - Very important4 - Important2 - Slightly important1 - Unimportant5 - Very important
          C1P008: Rebound effect1 - Unimportant3 - Moderately important2 - Slightly important2 - Slightly important1 - Unimportant5 - Very important
          C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant3 - Moderately important3 - Moderately important4 - Important1 - Unimportant3 - Moderately important
          C1P008: Exclusion of socially disadvantaged groups1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important
          C1P008: Non-energy issues are more important and urgent for actors1 - Unimportant4 - Important3 - Moderately important2 - Slightly important1 - Unimportant4 - Important
          C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important
          C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P008: Any other Social BARRIER (if any)
          C1P009: Information and Awareness barriers
          C1P009: Insufficient information on the part of potential users and consumers1 - Unimportant5 - Very important3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important
          C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts1 - Unimportant4 - Important4 - Important3 - Moderately important1 - Unimportant4 - Important
          C1P009: Lack of awareness among authorities1 - Unimportant3 - Moderately important3 - Moderately important4 - Important1 - Unimportant4 - Important
          C1P009: Information asymmetry causing power asymmetry of established actors1 - Unimportant3 - Moderately important4 - Important2 - Slightly important1 - Unimportant4 - Important
          C1P009: High costs of design, material, construction, and installation1 - Unimportant5 - Very important4 - Important2 - Slightly important1 - Unimportant5 - Very important
          C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P009: Any other Information and Awareness BARRIER (if any)
          C1P010: Financial barriers
          C1P010: Hidden costs1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant4 - Important
          C1P010: Insufficient external financial support and funding for project activities1 - Unimportant4 - Important3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important
          C1P010: Economic crisis1 - Unimportant3 - Moderately important4 - Important3 - Moderately important1 - Unimportant5 - Very important
          C1P010: Risk and uncertainty5 - Very important4 - Important3 - Moderately important4 - Important1 - Unimportant4 - Important
          C1P010: Lack of consolidated and tested business models1 - Unimportant5 - Very important4 - Important4 - Important1 - Unimportant4 - Important
          C1P010: Limited access to capital and cost disincentives1 - Unimportant5 - Very important4 - Important3 - Moderately important1 - Unimportant5 - Very important
          C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P010: Any other Financial BARRIER (if any)
          C1P011: Market barriers
          C1P011: Split incentives1 - Unimportant4 - Important4 - Important3 - Moderately important1 - Unimportant5 - Very important
          C1P011: Energy price distortion1 - Unimportant5 - Very important4 - Important3 - Moderately important1 - Unimportant5 - Very important
          C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant5 - Very important2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important
          C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P011: Any other Market BARRIER (if any)
          C1P012: Stakeholders involved
          C1P012: Government/Public Authorities
          • Planning/leading,
          • Design/demand aggregation
          C1P012: Research & Innovation
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Design/demand aggregation
          C1P012: Financial/Funding
          • Planning/leading
          C1P012: Analyst, ICT and Big Data
          • Planning/leading
          C1P012: Business process management
          • Planning/leading
          C1P012: Urban Services providers
          • Planning/leading
          C1P012: Real Estate developers
          • Planning/leading,
          • Construction/implementation,
          • Monitoring/operation/management
          • Planning/leading
          C1P012: Design/Construction companies
          • Planning/leading,
          • Design/demand aggregation
          • Planning/leading
          C1P012: End‐users/Occupants/Energy Citizens
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Monitoring/operation/management
          C1P012: Social/Civil Society/NGOs
          • Construction/implementation
          C1P012: Industry/SME/eCommerce
          • Design/demand aggregation
          C1P012: Other
          C1P012: Other (if any)
          Summary

          Authors (framework concept)

          Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

          Contributors (to the content)

          Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

          Implemented by

          Boutik.pt: Filipe Martins, Jamal Khan
          Marek Suchánek (Czech Technical University in Prague)