Filters:
NameProjectTypeCompare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Compare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Compare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Compare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr, Geothermal District Heating Project PED Relevant Case Study Compare
Drammen, Jacobs Borchs Gate PED Relevant Case Study Compare
Freiburg im Breisgau, Dietenbach PED Relevant Case Study Compare
Lecce, SmartEnCity SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
Trento, STARDUST STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Malmö, Klimatkontrakt Hyllie PED Relevant Case Study Compare
Kaiserslautern, EnStadt:Pfaff PED Relevant Case Study / PED Lab Compare
Helsinki, mySMARTlife PED Relevant Case Study Compare
Firenze, Novoli-Cascine district on “le PIagge” buildings PED Relevant Case Study Compare
Bolzano, Sinfonia PED Relevant Case Study Compare
Zürich, Hunziker Areal PED Relevant Case Study Compare
Hammarby Sjöstad, Hammarby Sjöstad 2.0 PED Relevant Case Study Compare
Milano, Sharing Cities PED Relevant Case Study Compare
Mieres, District Heating Pozo Barredo PED Relevant Case Study Compare
Lund, Cityfied (demo Linero) PED Relevant Case Study Compare
Espoo, Smart Otaniemi PED Relevant Case Study / PED Lab Uncompare
Vienna, Zukunftsquartier PED Case Study Compare
Trento, Santa Chiara Open Lab PED Case Study Compare
Paterna, Barrio La Pinada PED Case Study / PED Lab Compare
Bergen, Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru, +CityxChange PED Case Study Compare
Trondheim, NTNU Campus within the Knowledge Axis ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Oslo, Furuset project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Măgurele, Laser Valley – Land of Lights PED Case Study Compare
Elverum, Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bodø, Airport, NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bærum, Fornebu ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Carquefou, Fleuraye west PED Case Study Compare
Åland, Smart Energy PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Uncompare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Uncompare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Uncompare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Uncompare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleUden, Loopkantstraat
Espoo, Smart Otaniemi
Kladno, Sletiště (Sport Area), PED Winter Stadium
Oslo, Verksbyen
Salzburg, Gneis district
Riga, Ķīpsala, RTU smart student city
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabUden, LoopkantstraatEspoo, Smart OtaniemiKladno, Sletiště (Sport Area), PED Winter StadiumOslo, VerksbyenSalzburg, Gneis districtRiga, Ķīpsala, RTU smart student city
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynononoyesyesyes
PED relevant case studyyesyesyesnonono
PED Lab.noyesnononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesyesyesyes
Annual energy surplusyesnoyesyesyesno
Energy communitynonoyesnoyesyes
Circularitynononononono
Air quality and urban comfortnononoyesyesno
Electrificationyesnoyesnonono
Net-zero energy costnononononono
Net-zero emissionnononoyesnono
Self-sufficiency (energy autonomous)nononononoyes
Maximise self-sufficiencynononononoyes
Othernoyesnononono
Other (A1P004)Social aspects/affordability; societal development, innovation capabilities, export businesses; new investing possibilities
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabIn operationIn operationPlanning PhaseImplementation PhaseCompletedPlanning Phase
A1P006: Start Date
A1P006: Start date06/1701/18202207/1801/2001/24
A1P007: End Date
A1P007: End date05/2308/2401/2412/26
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Open data city platform – different dashboards,
  • General statistical datasets
  • Monitoring data available within the districts
  • Monitoring data available within the districts,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • Inger Andresen, Tonje Healey Trulsrud, Luca Finocchiaro, Alessandro Nocente, Meril Tamm, Joana Ortiz, Jaume Salom, Abel Magyari, Linda Hoes-van Oeffelen, Wouter Borsboom, Wim Kornaat, Niki Gaitani, Design and performance predictions of plus energy neighbourhoods – Case studies of demonstration projects in four different European climates, Energy and Buildings, Volume 274, 2022, 112447, ISSN 0378-7788, https://doi.org/10.1016/j.enbuild.2022.112447. (https://www.sciencedirect.com/science/article/pii/S0378778822006181),
  • Deliverable, Report: Integrated Energy Design for Sustainable Plus Energy Neighbourhoods (syn.ikia),
  • Deliverable, Report: DEMONSTRATION CASE OF SUSTAINABLE PLUS ENERGY NEIGHBOURHOODS IN MARINE CLIMATE (syn.ikia),
  • https://www.synikia.eu/no/bibliotek/
A1P011: Geographic coordinates
X Coordinate (longitude):5.619124.83026514.0929610.98617335443299213.04121624.08168339
Y Coordinate (latitude):51.660660.18398950.1371559.2242971664204647.77101956.95245956
A1P012: Country
A1P012: CountryNetherlandsFinlandCzech RepublicNorwayAustriaLatvia
A1P013: City
A1P013: CityUdenEspooKladnoFredrikstadSalzburgRiga
A1P014: Climate Zone (Köppen Geiger classification)
A1P014: Climate Zone (Köppen Geiger classification).CfbDfbCfbCfbDfbCfb
A1P015: District boundary
A1P015: District boundaryGeographicGeographicGeographicGeographicGeographic
OtherV1* (ca 8 buildings)
A1P016: Ownership of the case study/PED Lab
A1P016: Ownership of the case study/PED Lab:PrivateMixedMixedPrivateMixedPublic
A1P017: Ownership of the land / physical infrastructure
A1P017: Ownership of the land / physical infrastructure:Single OwnerMultiple OwnersMultiple OwnersSingle OwnerSingle OwnerMultiple Owners
A1P018: Number of buildings in PED
A1P018: Number of buildings in PED1821715
A1P019: Conditioned space
A1P019: Conditioned space [m²]23603550199762170000
A1P020: Total ground area
A1P020: Total ground area [m²]3860119264
A1P021: Floor area ratio: Conditioned space / total ground area
A1P021: Floor area ratio: Conditioned space / total ground area100001
A1P022: Financial schemes
A1P022a: Financing - PRIVATE - Real estateyesnoyesyesnono
A1P022a: Add the value in EUR if available [EUR]7804440
A1P022b: Financing - PRIVATE - ESCO schemenonoyesnonono
A1P022b: Add the value in EUR if available [EUR]
A1P022c: Financing - PRIVATE - Othernoyesnononono
A1P022c: Add the value in EUR if available [EUR]39000000
A1P022d: Financing - PUBLIC - EU structural fundingnonoyesnonono
A1P022d: Add the value in EUR if available [EUR]
A1P022e: Financing - PUBLIC - National fundingnononononono
A1P022e: Add the value in EUR if available [EUR]
A1P022f: Financing - PUBLIC - Regional fundingnononononono
A1P022f: Add the value in EUR if available [EUR]
A1P022g: Financing - PUBLIC - Municipal fundingnonoyesnonono
A1P022g: Add the value in EUR if available [EUR]
A1P022h: Financing - PUBLIC - Othernononononono
A1P022h: Add the value in EUR if available [EUR]
A1P022i: Financing - RESEARCH FUNDING - EUnonoyesnoyesyes
A1P022i: Add the value in EUR if available [EUR]7500000
A1P022j: Financing - RESEARCH FUNDING - Nationalnonoyesnonono
A1P022j: Add the value in EUR if available [EUR]
A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononono
A1P022k: Add the value in EUR if available [EUR]
A1P022l: Financing - RESEARCH FUNDING - Othernoyesnononono
A1P022l: Add the value in EUR if available [EUR]27000000
A1P022: Other
A1P023: Economic Targets
A1P023: Economic Targets
  • Job creation,
  • Positive externalities
  • Positive externalities,
  • Other
  • Boosting local businesses,
  • Boosting local and sustainable production
A1P023: OtherBoosting social cooperation and social aid
A1P024: More comments:
A1P024: More comments:The project is a follow-up from the “Social Beautiful” concept which was developed in collaboration between Labyrint (Support in sheltered housing), Area (housing company), the municipality of Uden, and Hendriks Coppelmans (developer). The concept aims to provide an answer to changes in various policy areas and the changing demands of society. The Social Beautiful concept consists of the following elements: 1. Living, working, and community services are brought together in one location. A multifunctional residential and service centre is being realized at the location. 2. Housing is shaped by the realization of financially accessible homes suitable for the target group. The housing design is tailored to the target group. it may also include sheltered / protected living. 3. Work takes place at the location or from the same location. The work has a social function within the neighbourhood. Wage-related work must contribute to providing structure in the daily activities of the residents. 4. Neighbourhood management is organized from the location in the surrounding neighbourhood. A service package is provided from the residential and service centre that contributes to the ability of neighbourhood residents to live independently for longer, to strengthen the social network, and to improve the quality of life and safety in the neighbourhood. 5. The houses are suitable for use at all times for regular rental. Communal facilities must be realized within the contours of a regular apartment. The objective is to offer a suitable living and working situation to a group of vulnerable citizens. In this way they become a fully-fledged part of society. They not only make use of the facilities themselves, but also give substance to the level of facilities in the municipality. Due to the integrated approach, they experience a greater sense of well-being and security.The total development consists of more than 1500 dwellings, a kindergarten, a school, and commercial buildings. Two of the residential blocks are included as demonstration projects in syn.ikia. The two blocks have 20 dwellings in each and are 6 stories high.
A1P025: Estimated PED case study / PED LAB costs
A1P025: Estimated PED case study / PED LAB costs [mil. EUR]7804440
Contact person for general enquiries
A1P026: NameTonje Healey TrulsrudChristoph GollnerDavid ŠkorňaTonje Healey TrulsrudAbel MagyariJudith Stiekema
A1P027: OrganizationNorwegian University of Science and Technology (NTNU)FFGMěsto KladnoNorwegian University of Science and technology (NTNU)ABUDOASC
A1P028: AffiliationResearch Center / UniversityOtherMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversityOther
A1P028: Othernot for profit private organisation
A1P029: Emailtonje.h.trulsrud@ntnu.nochristoph.gollner@ffg.atdavid.skorna@mestokladno.cztonje.h.trulsrud@ntnu.nomagyari.abel@abud.hujudith@oascities.org
Contact person for other special topics
A1P030: NameMichal KuzmičStrassl Ingeborg
A1P031: Emailmichal.kuzmic@cvut.czinge.strassl@salzburg.gv.at
Pursuant to the General Data Protection RegulationYesYesYesYesYesYes
A2P001: Fields of application
A2P001: Fields of application
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • Waste management,
  • Indoor air quality,
  • Construction materials
  • Digital technologies
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Digital technologies,
  • Indoor air quality
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Urban comfort (pollution, heat island, noise level etc.),
  • Digital technologies,
  • Indoor air quality
  • Energy efficiency,
  • Energy flexibility,
  • Energy production
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Digital technologies
A2P001: Other
A2P002: Tools/strategies/methods applied for each of the above-selected fields
A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: Energy efficient envelope, with good insulation, triple glazing windows and airtight envelope. (EPC = 0) Energy Flexibility: MCP controls for the heat pump in the apartments. Energy production: PV panels on the roof, Ground source heat pumps Waste management: construction waste was kept to a minimum and sorted and collected separately as much as possible. Indoor air quality: Exhaust ventilation and opening of windows Construction materials: low carbon emission building materialsTrnsys, PV modelling tools, CADEnergy efficiency: energy-efficient buildings that comply with the Norwegian Passive House standard. Energy Flexibility: sharing of PV energy between the dwellings Energy production: BIPV on the roof and facades, and a ground source heat pump for thermal energy. E-mobility: EV charging Urban comfort: a large green park in the neighbourhood with a small lake and recreational areas Digital technologies: Smart Home Systems for lighting, heating and ventilation Indoor air quality: balanced ventilation- Dynamic district, and building scale energy modelling - Microclimate modelling - Klimaaktiv certification system - Energy community - Flexibility with shared heating and electricity systemsA suite of replicable modeling tools will enable stakeholders to analyze planning actions towards positive energy in a cost-effective fashion, aiding their evidence based decision-making process. The tools will be able to model the district’s energy production and demand, optimize for flexibility and simulate mobility and transport. By employing gamification and co-creation approaches, the project will enhance public awareness and engagement in energy efficiency. The project will culminate in the publication of practical guidelines, reusable models, algorithms, and training materials to aid other cities to replicate the digital twin for their districts, fostering widespread adoption of sustainable energy practices.
A2P003: Application of ISO52000
A2P003: Application of ISO52000YesNoYesYesNo
A2P004: Appliances included in the calculation of the energy balance
A2P004: Appliances included in the calculation of the energy balanceNoYesNoNoYes
A2P005: Mobility included in the calculation of the energy balance
A2P005: Mobility included in the calculation of the energy balanceNoNoNoNoYes
A2P006: Description of how mobility is included (or not included) in the calculation
A2P006: Description of how mobility is included (or not included) in the calculationnot includedNot yet included.The university operates a fleet of 13 electric vehicles (EV) (61kW power each). There are 5 EV charging stations on campus.
A2P007: Annual energy demand in buildings / Thermal demand
A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]0.1481.40.168000
A2P008: Annual energy demand in buildings / Electric Demand
A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.1090.30.0535000
A2P009: Annual energy demand for e-mobility
A2P009: Annual energy demand for e-mobility [GWh/annum]
A2P010: Annual energy demand for urban infrastructure
A2P010: Annual energy demand for urban infrastructure [GWh/annum]
A2P011: Annual renewable electricity production on-site during target year
A2P011: PVyesnoyesyesyesno
A2P011: PV - specify production in GWh/annum [GWh/annum]0.0581.10.180.7770664
A2P011: Windnononononoyes
A2P011: Wind - specify production in GWh/annum [GWh/annum]
A2P011: Hydronononononono
A2P011: Hydro - specify production in GWh/annum [GWh/annum]
A2P011: Biomass_elnononononono
A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
A2P011: Biomass_peat_elnononononono
A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
A2P011: PVT_elnononononoyes
A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
A2P011: Othernononononono
A2P011: Other - specify production in GWh/annum [GWh/annum]
A2P012: Annual renewable thermal production on-site during target year
A2P012: Geothermalyesnononoyesno
A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
A2P012: Solar Thermalnononononono
A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
A2P012: Biomass_heatnononononoyes
A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
A2P012: Waste heat+HPnonoyesnonono
A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]1.7
A2P012: Biomass_peat_heatnononononono
A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
A2P012: PVT_thnononononono
A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
A2P012: Biomass_firewood_thnononononono
A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
A2P012: Othernononononono
A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
A2P013: Renewable resources on-site - Additional notes
A2P013: Renewable resources on-site - Additional notes*Annual energy use below is presentedin primary energy consumptionWaste heat from cooling the ice rink.Conventional power generation: The university’s heat supply is designed as a local centralized heat supply system. Electrical power, generated in combined heat and power (CHP) units, is delivered to the distribution network and sold to energy traders as regulated by local legislation and norms. There are two natural gas burners acting as heat sources (3MW and 6MW capacity), and two CHP units (1.6MW and 0.45MW thermal capacity). All heating is supplied from the CHP plants. Renewable Energy Sources (RES): a wind turbine (3.6 kW) and PV panels (11.7 kW) are connected to the faculty microgrid. In the future it is planned to power the campus entirely from local RES.
A2P014: Annual energy use
A2P014: Annual energy use [GWh/annum]0.1942.10.819016
A2P015: Annual energy delivered
A2P015: Annual energy delivered [GWh/annum]0.0368
A2P016: Annual non-renewable electricity production on-site during target year
A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]-1
A2P017: Annual non-renewable thermal production on-site during target year
A2P017: Gasnononononoyes
A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Coalnononononono
A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Oilnononononono
A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Othernononononono
A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P018: Annual renewable electricity imports from outside the boundary during target year
A2P018: PVnononononono
A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
A2P018: Windnononononono
A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
A2P018: Hydronononononono
A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
A2P018: Biomass_elnononononono
A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
A2P018: Biomass_peat_elnononononono
A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
A2P018: PVT_elnononononono
A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
A2P018: Othernononononono
A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
A2P019: Annual renewable thermal imports from outside the boundary during target year
A2P019: Geothermalnononononono
A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
A2P019: Solar Thermalnononononono
A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_heatnononononono
A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
A2P019: Waste heat+HPnononononono
A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_peat_heatnononononono
A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
A2P019: PVT_thnononononono
A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_firewood_thnononononono
A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
A2P019: Othernononononono
A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
A2P020: Share of RES on-site / RES outside the boundary
A2P020: Share of RES on-site / RES outside the boundary000000
A2P021: GHG-balance calculated for the PED
A2P021: GHG-balance calculated for the PED [tCO2/annum]-0.00043-104-6.035
A2P022: KPIs related to the PED case study / PED Lab
A2P022: Safety & SecurityPersonal SafetyPersonal Safety
A2P022: HealthHealthy communityHealthy community + Indoor Evironmental Quality (indoor air quality, thermal comfort, lighting and visual comfort)CO2) levels, Predicted Mean Vote,Predicted Percentage of Dissatisfied, Temperature, Relative Humidity, Illuminance, Daylight factor, Sound pressure levels
A2P022: Education
A2P022: MobilitySustainable mobilitySustainable mobility
A2P022: EnergyNOn-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/self-consumption, net energy/net power, peak delivered/peak expoted, total greenhouse gas emissionEnergy demand (heating and hot water), Energy demand (cooling), Cooling demand, Distributin losses, PV production, RES production, OER, Primafry Non-renewable energy balance, AMR, HMR, CO2 balanceEnergy and environmental performance (non-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/ self-consumption, net energy/net power. peak delivered(peak exported power, connection capacity credit, total greenhouse gas emissionsNon-renewable primary energy balance, Renewable energy ratio, Grid Purchase factor, Load cover factor/Self-generation, Supply cover factor/Self-consumption, Net energy/Net power, Peak delivered/exported power, Connection capacity credit, Total greenhouse gas emissions
A2P022: Water
A2P022: Economic developmentcapital costs, operational cots, overall economic performance (5 KPIs)Investment cost, Caputal cost, Operation cost, payback period, NPV, cummulated cash flow, savings, Life cycle, ROI, SROIEconomic Performance: capital costs, operational costs, overall performanceInvestment costs, Share of investments covered by grants, Maintenance-related costs, Requirement-related costs, Operation-related costs, Other costs, Net Present Value, Internal Rate of Return, Economic Value Added, Payback Period, nZEB Cost Comparison
A2P022: Housing and Communitydemographic composition, diverse community, social cohesiondemopraphic composiiton, diverse community, social cohesion access to amenities, access to services, afordability of energy, affordability of shousing, living conditions, universal design, energy consciousnessAccess to services, Affordability of energy, Affordability of housing, Democratic legitimacy, Living conditions, Social cohesion, Personal safety, Energy consciousness
A2P022: Waste
A2P022: OtherSmartness and flecibility, Indoor Environmental Quality, Social performance - Equity (affordable housing, access to servicees and amenitioes, afforability of energy, living conditions, sustinable mobility, universal design)Smartness and Flexibility
A2P023: Technological Solutions / Innovations - Energy Generation
A2P023: Photovoltaicsyesnoyesyesyesno
A2P023: Solar thermal collectorsnononononono
A2P023: Wind Turbinesnononononono
A2P023: Geothermal energy systemyesyesnoyesyesno
A2P023: Waste heat recoverynonoyesnonono
A2P023: Waste to energynononononono
A2P023: Polygenerationnononononono
A2P023: Co-generationnononononono
A2P023: Heat Pumpyesnoyesyesnono
A2P023: Hydrogennononononono
A2P023: Hydropower plantnononononono
A2P023: Biomassnononononono
A2P023: Biogasnononononono
A2P023: Other
A2P024: Technological Solutions / Innovations - Energy Flexibility
A2P024: A2P024: Information and Communication Technologies (ICT)nonoyesyesnoyes
A2P024: Energy management systemyesnoyesyesyesyes
A2P024: Demand-side managementyesnoyesyesyesyes
A2P024: Smart electricity gridnonononoyesyes
A2P024: Thermal Storagenononononoyes
A2P024: Electric Storagenononononoyes
A2P024: District Heating and Coolingnoyesyesnonoyes
A2P024: Smart metering and demand-responsive control systemsyesnoyesyesnoyes
A2P024: P2P – buildingsnonononoyesno
A2P024: Other
A2P025: Technological Solutions / Innovations - Energy Efficiency
A2P025: Deep Retrofittingnonoyesnonono
A2P025: Energy efficiency measures in historic buildingsnononononono
A2P025: High-performance new buildingsyesnonoyesyesno
A2P025: Smart Public infrastructure (e.g. smart lighting)nononononono
A2P025: Urban data platformsnonoyesnonoyes
A2P025: Mobile applications for citizensnononononoyes
A2P025: Building services (HVAC & Lighting)yesnoyesyesyesyes
A2P025: Smart irrigationnononononono
A2P025: Digital tracking for waste disposalnononononono
A2P025: Smart surveillancenononononono
A2P025: Other
A2P026: Technological Solutions / Innovations - Mobility
A2P026: Efficiency of vehicles (public and/or private)nononononono
A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nonononoyesno
A2P026: e-Mobilitynonononoyesno
A2P026: Soft mobility infrastructures and last mile solutionsnononononono
A2P026: Car-free areanononononono
A2P026: Other
A2P027: Mobility strategies - Additional notes
A2P027: Mobility strategies - Additional notesShared mobility: a mobility point will be implemented and ensure the flexible use of different mobility services.
A2P028: Energy efficiency certificates
A2P028: Energy efficiency certificatesYesYesYesYesNo
A2P028: If yes, please specify and/or enter notesEPC = 0, energy neutral buildingNational standards apply.NS3700 Norwegian Passive HouseEnergy Performance Certificate
A2P029: Any other building / district certificates
A2P029: Any other building / district certificatesNoNoYesNo
A2P029: If yes, please specify and/or enter notesKlimaaktiv certificate, Greenpass certificate
A3P001: Relevant city /national strategy
A3P001: Relevant city /national strategy
  • Smart cities strategies
  • Smart cities strategies,
  • Energy master planning (SECAP, etc.),
  • Promotion of energy communities (REC/CEC),
  • National / international city networks addressing sustainable urban development and climate neutrality
  • Smart cities strategies,
  • Promotion of energy communities (REC/CEC),
  • Climate change adaption plan/strategy (e.g. Climate City contract),
  • National / international city networks addressing sustainable urban development and climate neutrality
A3P002: Quantitative targets included in the city / national strategy
A3P002: Quantitative targets included in the city / national strategyCarbon neutrality 2050
A3P003: Strategies towards decarbonization of the gas grid
A3P003: Strategies towards decarbonization of the gas grid
  • Electrification of Heating System based on Heat Pumps
  • Electrification of Heating System based on Heat Pumps
A3P003: Other
A3P004: Identification of needs and priorities
A3P004: Identification of needs and priorities
A3P005: Sustainable behaviour
A3P005: Sustainable behaviour
A3P006: Economic strategies
A3P006: Economic strategies
  • Innovative business models
  • Innovative business models,
  • PPP models,
  • Existing incentives
  • Innovative business models,
  • Local trading
  • Open data business models,
  • Innovative business models,
  • Demand management Living Lab
A3P006: Other
A3P007: Social models
A3P007: Social models
  • Co-creation / Citizen engagement strategies,
  • Social incentives,
  • Quality of Life
  • Strategies towards (local) community-building,
  • Affordability
  • Strategies towards (local) community-building,
  • Behavioural Change / End-users engagement,
  • Social incentives,
  • Quality of Life,
  • Strategies towards social mix,
  • Affordability,
  • Citizen/owner involvement in planning and maintenance
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies
A3P007: Other
A3P008: Integrated urban strategies
A3P008: Integrated urban strategies
  • Strategic urban planning,
  • City Vision 2050,
  • SECAP Updates
  • Building / district Certification
  • Digital twinning and visual 3D models
A3P008: Other
A3P009: Environmental strategies
A3P009: Environmental strategies
  • Energy Neutral
  • Net zero carbon footprint
  • Energy Neutral,
  • Low Emission Zone
  • Energy Neutral
A3P009: Other
A3P010: Legal / Regulatory aspects
A3P010: Legal / Regulatory aspects
B1P001: PED/PED relevant concept definition
B1P001: PED/PED relevant concept definitionThe demonstration projects is a new residential development, which consists of an apartment complex which includes 39 apartments spread over 3 floors. It is a sustainble plus energy neighbouhood, and has reached a plus energy balance on its first year in operation. It has MPC controls on the individual heat pumps to improve the energy flexibility of the apartments. It includes the "social beatiful" concepts with a strong emphasis on the social sustainability of the project.Onsite Energy Ratio > 1The case study follows the concept of syn.ikia with sustainable plus energy neighbourhoods (SPEN) and aims to reach a plus energy balance based on EPB uses on an annual basis.ExPEDite aims at creating and deploying a novel digital twin, allowing for real-time monitoring, visualization and management of district-level energy flows. Cities consume 65% of the world’s energy supply and are responsible for 70% of the CO² emissions, hence sharing a lot of the responsibility for climate change. We are faced with the challenge of redesigning our existing cities to make them more sustainable, resilient, inclusive and safe. Developing Positive Energy Districts (PEDs), is a breakthrough way to deal with the issue of urban emissions and applying adaptation and mitigation strategies to climate change, while ensuring that these urban areas generate an annual surplus of renewable energy and net zero greenhouse gas emissions. PEDs must address environmental, economic and social issues, providing solutions to energy consumption, production, emissions, transport & mobility and livability. By constantly monitoring and evaluating parameters through existing and/or novel sensor systems (e.g., renewable energy production/supply, transport conditions, air quality, energy demand, meteorological conditions, etc.), unconventional techniques may be applied to provide more sustainable options for the district’s needs.
B1P002: Motivation behind PED/PED relevant project development
B1P002: Motivation behind PED/PED relevant project developmentThe need for social housing and the ambition to create a great living environment with a high-performance apartment complex, supplied with renewable energy. It results in lower energy bills for the tenants and high-quality homes.Strategic, economicThe developers call their concept for Future Living, where the neighbourhood consist of highly energy-efficient buildings, is supplied with renewable energy onsite and includes green areas for well-being.Expected outcome 1 Increased number of (tangible) city planning actions for positive clean energy districts using the (proto-)PED design, development and management digital twin tools (based on pre-market research learnings) using open-standards based components which can be reused elsewhere. 2 Increased integration of existing smaller scale management systems (e.g. Building management systems) with open-standards based operational city platforms using sectorial data (e.g. building data, mobility, urban planning, etc.). 3 Enhanced data gathering approaches with identification of relevant multidimensional data sets (e.g. meteorological, load profile, social, geo-spatial, etc.) high-resolution real-time data streams (e.g. renewable energy production, energy consumption), and relevant forecasting data, drawing also on the work of common European data spaces. 4 Increased number of city planning departments / approaches using common data and (replicable) elements and processes. 5 Consolidated city sensor network specifications, complemented by appropriate data gathering approaches for soft data. 6 Improved performance of AI based self-learning systems for optimization of positive clean energy districts and bottom-up complex models. 7 Enhanced innovation capacity of local/regional administrations and accelerated uptake of shared, smart and sustainable zero emission solutions.
B1P003: Environment of the case study area
B2P003: Environment of the case study areaSuburban areaUrban areaUrban areaSuburban areaSuburban areaUrban area
B1P004: Type of district
B2P004: Type of district
  • New construction
  • New construction,
  • Renovation
  • New construction,
  • Renovation
  • New construction
  • New construction
B1P005: Case Study Context
B1P005: Case Study Context
  • New Development
  • Re-use / Transformation Area,
  • New Development
  • New Development,
  • Retrofitting Area
  • New Development
  • New Development
B1P006: Year of construction
B1P006: Year of construction2024
B1P007: District population before intervention - Residential
B1P007: District population before intervention - Residential
B1P008: District population after intervention - Residential
B1P008: District population after intervention - Residential
B1P009: District population before intervention - Non-residential
B1P009: District population before intervention - Non-residential
B1P010: District population after intervention - Non-residential
B1P010: District population after intervention - Non-residential
B1P011: Population density before intervention
B1P011: Population density before intervention000000
B1P012: Population density after intervention
B1P012: Population density after intervention000000
B1P013: Building and Land Use before intervention
B1P013: Residentialnonoyesnonono
B1P013 - Residential: Specify the sqm [m²]
B1P013: Officenonoyesnonono
B1P013 - Office: Specify the sqm [m²]
B1P013: Industry and Utilitynononoyesnono
B1P013 - Industry and Utility: Specify the sqm [m²]whole site was used for idustry and excavation
B1P013: Commercialnononononono
B1P013 - Commercial: Specify the sqm [m²]
B1P013: Institutionalnononononono
B1P013 - Institutional: Specify the sqm [m²]
B1P013: Natural areasnonononoyesno
B1P013 - Natural areas: Specify the sqm [m²]
B1P013: Recreationalnonoyesnonono
B1P013 - Recreational: Specify the sqm [m²]
B1P013: Dismissed areasnononononono
B1P013 - Dismissed areas: Specify the sqm [m²]
B1P013: Othernononononono
B1P013 - Other: Specify the sqm [m²]
B1P014: Building and Land Use after intervention
B1P014: Residentialyesnoyesyesyesno
B1P014 - Residential: Specify the sqm [m²]2394
B1P014: Officenonoyesnonono
B1P014 - Office: Specify the sqm [m²]
B1P014: Industry and Utilitynononononono
B1P014 - Industry and Utility: Specify the sqm [m²]
B1P014: Commercialnononononono
B1P014 - Commercial: Specify the sqm [m²]
B1P014: Institutionalnononononono
B1P014 - Institutional: Specify the sqm [m²]
B1P014: Natural areasnonononoyesno
B1P014 - Natural areas: Specify the sqm [m²]
B1P014: Recreationalnonoyesnonono
B1P014 - Recreational: Specify the sqm [m²]
B1P014: Dismissed areasnononononono
B1P014 - Dismissed areas: Specify the sqm [m²]
B1P014: Othernononononono
B1P014 - Other: Specify the sqm [m²]
B2P001: PED Lab concept definition
B2P001: PED Lab concept definition
B2P002: Installation life time
B2P002: Installation life time
B2P003: Scale of action
B2P003: ScaleDistrict
B2P004: Operator of the installation
B2P004: Operator of the installation
B2P005: Replication framework: Applied strategy to reuse and recycling the materials
B2P005: Replication framework: Applied strategy to reuse and recycling the materials
B2P006: Circular Economy Approach
B2P006: Do you apply any strategy to reuse and recycling the materials?
B2P006: Other
B2P007: Motivation for developing the PED Lab
B2P007: Motivation for developing the PED Lab
B2P007: Other
B2P008: Lead partner that manages the PED Lab
B2P008: Lead partner that manages the PED Lab
B2P008: Other
B2P009: Collaborative partners that participate in the PED Lab
B2P009: Collaborative partners that participate in the PED Lab
  • Academia,
  • Private
B2P009: Other
B2P010: Synergies between the fields of activities
B2P010: Synergies between the fields of activities
B2P011: Available facilities to test urban configurations in PED Lab
B2P011: Available facilities to test urban configurations in PED Lab
B2P011: Other
B2P012: Incubation capacities of PED Lab
B2P012: Incubation capacities of PED Lab
B2P013: Availability of the facilities for external people
B2P013: Availability of the facilities for external people
B2P014: Monitoring measures
B2P014: Monitoring measures
B2P015: Key Performance indicators
B2P015: Key Performance indicators
B2P016: Execution of operations
B2P016: Execution of operations
B2P017: Capacities
B2P017: Capacities
B2P018: Relations with stakeholders
B2P018: Relations with stakeholders
B2P019: Available tools
B2P019: Available tools
B2P019: Available tools
B2P020: External accessibility
B2P020: External accessibility
C1P001: Unlocking Factors
C1P001: Recent technological improvements for on-site RES production3 - Moderately important1 - Unimportant4 - Important5 - Very important1 - Unimportant5 - Very important
C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant5 - Very important
C1P001: Energy Communities, P2P, Prosumers concepts3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
C1P001: Storage systems and E-mobility market penetration4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
C1P001: Decreasing costs of innovative materials4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
C1P001: Financial mechanisms to reduce costs and maximize benefits3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant5 - Very important
C1P001: The ability to predict Multiple Benefits3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important
C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
C1P001: Social acceptance (top-down)5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant4 - Important
C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)4 - Important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important
C1P001: Presence of integrated urban strategies and plans3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important
C1P001: Multidisciplinary approaches available for systemic integration5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important
C1P001: Availability of RES on site (Local RES)5 - Very important1 - Unimportant4 - Important5 - Very important1 - Unimportant4 - Important
C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important
C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
C1P001: Any other UNLOCKING FACTORS (if any)Collaboration with the local partners
C1P002: Driving Factors
C1P002: Climate Change adaptation need5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important1 - Unimportant4 - Important5 - Very important1 - Unimportant4 - Important
C1P002: Rapid urbanization trend and need of urban expansions5 - Very important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant4 - Important
C1P002: Urban re-development of existing built environment4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
C1P002: Economic growth need1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important
C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)5 - Very important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant4 - Important
C1P002: Territorial and market attractiveness2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant4 - Important
C1P002: Energy autonomy/independence1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important
C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
C1P002: Any other DRIVING FACTOR (if any)
C1P003: Administrative barriers
C1P003: Difficulty in the coordination of high number of partners and authorities1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important
C1P003: Lack of good cooperation and acceptance among partners1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important
C1P003: Lack of public participation1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important
C1P003: Lack of institutions/mechanisms to disseminate information1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
C1P003:Long and complex procedures for authorization of project activities1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
C1P003: Complicated and non-comprehensive public procurement1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
C1P003: Fragmented and or complex ownership structure1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
C1P003: City administration & cross-sectoral attitude/approaches (silos)1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
C1P003: Lack of internal capacities to support energy transition1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
C1P003: Any other Administrative BARRIER4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
C1P003: Any other Administrative BARRIER (if any)Delay in the Environmental Dialogue processing in the municipalityFragmented financial support; lack of experimental budget for complex projects, etc.
C1P004: Policy barriers
C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
C1P004: Lacking or fragmented local political commitment and support on the long term1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
C1P004: Lack of Cooperation & support between national-regional-local entities1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
C1P004: Any other Political BARRIER (if any)Different priorities; overall problematic system od decentralization powers; non-fuctioning model of local development funding, etc.
C1P005: Legal and Regulatory barriers
C1P005: Inadequate regulations for new technologies1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant4 - Important
C1P005: Regulatory instability1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
C1P005: Non-effective regulations1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant3 - Moderately important
C1P005: Unfavorable local regulations for innovative technologies1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important
C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
C1P005: Insufficient or insecure financial incentives1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
C1P005: Shortage of proven and tested solutions and examples1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
C1P005: Any other Legal and Regulatory BARRIER (if any)
C1P006: Environmental barriers
C1P006: Environmental barriers
C1P007: Technical barriers
C1P007: Lack of skilled and trained personnel1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important
C1P007: Deficient planning1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important
C1P007: Retrofitting work in dwellings in occupied state1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
C1P007: Lack of well-defined process1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important
C1P007: Inaccuracy in energy modelling and simulation1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
C1P007: Lack/cost of computational scalability1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important
C1P007: Grid congestion, grid instability1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important
C1P007: Negative effects of project intervention on the natural environment1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
C1P007: Difficult definition of system boundaries1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
C1P007: Any other Thecnical BARRIER (if any)Inadequate regulation towards energy transition
C1P008: Social and Cultural barriers
C1P008: Inertia1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
C1P008: Lack of values and interest in energy optimization measurements1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
C1P008: Low acceptance of new projects and technologies1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important
C1P008: Difficulty of finding and engaging relevant actors1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
C1P008: Lack of trust beyond social network1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
C1P008: Rebound effect1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
C1P008: Exclusion of socially disadvantaged groups1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
C1P008: Non-energy issues are more important and urgent for actors1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
C1P008: Any other Social BARRIER (if any)
C1P009: Information and Awareness barriers
C1P009: Insufficient information on the part of potential users and consumers1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
C1P009: Lack of awareness among authorities1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
C1P009: Information asymmetry causing power asymmetry of established actors1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
C1P009: High costs of design, material, construction, and installation1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant3 - Moderately important
C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
C1P009: Any other Information and Awareness BARRIER (if any)
C1P010: Financial barriers
C1P010: Hidden costs1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important
C1P010: Insufficient external financial support and funding for project activities1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
C1P010: Economic crisis1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
C1P010: Risk and uncertainty5 - Very important1 - Unimportant4 - Important4 - Important1 - Unimportant3 - Moderately important
C1P010: Lack of consolidated and tested business models1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
C1P010: Limited access to capital and cost disincentives1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
C1P010: Any other Financial BARRIER (if any)
C1P011: Market barriers
C1P011: Split incentives1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
C1P011: Energy price distortion1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important
C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important
C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
C1P011: Any other Market BARRIER (if any)
C1P012: Stakeholders involved
C1P012: Government/Public Authorities
  • Planning/leading,
  • Design/demand aggregation
  • Planning/leading,
  • Design/demand aggregation
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation
  • Planning/leading
C1P012: Research & Innovation
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
C1P012: Financial/Funding
  • Planning/leading,
  • Design/demand aggregation,
  • Monitoring/operation/management
C1P012: Analyst, ICT and Big Data
  • Planning/leading,
  • Monitoring/operation/management
C1P012: Business process management
  • Monitoring/operation/management
C1P012: Urban Services providers
  • Design/demand aggregation
  • Planning/leading,
  • Monitoring/operation/management
C1P012: Real Estate developers
  • Planning/leading,
  • Construction/implementation,
  • Monitoring/operation/management
  • Design/demand aggregation
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Construction/implementation
C1P012: Design/Construction companies
  • Planning/leading,
  • Design/demand aggregation
  • Design/demand aggregation,
  • Construction/implementation
  • Construction/implementation
C1P012: End‐users/Occupants/Energy Citizens
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Design/demand aggregation
  • Design/demand aggregation
C1P012: Social/Civil Society/NGOs
  • Design/demand aggregation
C1P012: Industry/SME/eCommerce
  • Construction/implementation
C1P012: Other
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation
C1P012: Other (if any)
Summary

Authors (framework concept)

Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

Contributors (to the content)

Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

Implemented by

Boutik.pt: Filipe Martins, Jamal Khan
Marek Suchánek (Czech Technical University in Prague)