Filters:
NameProjectTypeCompare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Compare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Compare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Compare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr, Geothermal District Heating Project PED Relevant Case Study Compare
Drammen, Jacobs Borchs Gate PED Relevant Case Study Compare
Freiburg im Breisgau, Dietenbach PED Relevant Case Study Compare
Lecce, SmartEnCity SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
Trento, STARDUST STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Malmö, Klimatkontrakt Hyllie PED Relevant Case Study Compare
Kaiserslautern, EnStadt:Pfaff PED Relevant Case Study / PED Lab Compare
Helsinki, mySMARTlife PED Relevant Case Study Compare
Firenze, Novoli-Cascine district on “le PIagge” buildings PED Relevant Case Study Compare
Bolzano, Sinfonia PED Relevant Case Study Compare
Zürich, Hunziker Areal PED Relevant Case Study Compare
Hammarby Sjöstad, Hammarby Sjöstad 2.0 PED Relevant Case Study Compare
Milano, Sharing Cities PED Relevant Case Study Compare
Mieres, District Heating Pozo Barredo PED Relevant Case Study Compare
Lund, Cityfied (demo Linero) PED Relevant Case Study Compare
Espoo, Smart Otaniemi PED Relevant Case Study / PED Lab Compare
Vienna, Zukunftsquartier PED Case Study Compare
Trento, Santa Chiara Open Lab PED Case Study Compare
Paterna, Barrio La Pinada PED Case Study / PED Lab Compare
Bergen, Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru, +CityxChange PED Case Study Compare
Trondheim, NTNU Campus within the Knowledge Axis ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Oslo, Furuset project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Măgurele, Laser Valley – Land of Lights PED Case Study Compare
Elverum, Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bodø, Airport, NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bærum, Fornebu ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Uncompare
Carquefou, Fleuraye west PED Case Study Compare
Åland, Smart Energy PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Uncompare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Uncompare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Uncompare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleUden, Loopkantstraat
Schönbühel-Aggsbach, Schönbühel an der Donau
Bærum, Fornebu
Romania, Alba Iulia PED
Izmir, District of Karşıyaka
Umeå, Ålidhem district
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabUden, LoopkantstraatSchönbühel-Aggsbach, Schönbühel an der DonauBærum, FornebuRomania, Alba Iulia PEDIzmir, District of KarşıyakaUmeå, Ålidhem district
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynonoyesyesyesyes
PED relevant case studyyesyesnononono
PED Lab.nononononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesyesyesyes
Annual energy surplusyesnonoyesyesno
Energy communitynoyesnoyesnono
Circularitynononononono
Air quality and urban comfortnononoyesyesno
Electrificationyesnonoyesnono
Net-zero energy costnoyesnonoyesno
Net-zero emissionnonoyesnonono
Self-sufficiency (energy autonomous)nononoyesnono
Maximise self-sufficiencynoyesnoyesyesno
Othernonoyesnonono
Other (A1P004)Sustainable neighbourhood; Energy efficient
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabIn operationImplementation PhaseCompletedImplementation PhasePlanning PhasePlanning Phase
A1P006: Start Date
A1P006: Start date06/1701/1801/2410/2210/22
A1P007: End Date
A1P007: End date05/2312/2312/2610/2509/25
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts
  • Monitoring data available within the districts,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts
  • Monitoring data available within the districts
A1P009: OtherOther
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • Inger Andresen, Tonje Healey Trulsrud, Luca Finocchiaro, Alessandro Nocente, Meril Tamm, Joana Ortiz, Jaume Salom, Abel Magyari, Linda Hoes-van Oeffelen, Wouter Borsboom, Wim Kornaat, Niki Gaitani, Design and performance predictions of plus energy neighbourhoods – Case studies of demonstration projects in four different European climates, Energy and Buildings, Volume 274, 2022, 112447, ISSN 0378-7788, https://doi.org/10.1016/j.enbuild.2022.112447. (https://www.sciencedirect.com/science/article/pii/S0378778822006181),
  • Deliverable, Report: Integrated Energy Design for Sustainable Plus Energy Neighbourhoods (syn.ikia),
  • Deliverable, Report: DEMONSTRATION CASE OF SUSTAINABLE PLUS ENERGY NEIGHBOURHOODS IN MARINE CLIMATE (syn.ikia),
  • https://www.synikia.eu/no/bibliotek/
    • Historical sources,
    • GIS of the municipality,
    • Basic BEMs
    • Umeå Energi
    A1P011: Geographic coordinates
    X Coordinate (longitude):5.619115.396910.61140723.58011209802323527.11004920.2630
    Y Coordinate (latitude):51.660648.275259.89898546.07701527868011538.49605463.8258
    A1P012: Country
    A1P012: CountryNetherlandsAustriaNorwayRomaniaTurkeySweden
    A1P013: City
    A1P013: CityUdenSchönbühel an der DonauBærumAlba IuliaİzmirUmeå
    A1P014: Climate Zone (Köppen Geiger classification)
    A1P014: Climate Zone (Köppen Geiger classification).CfbDfbDfbDfbCsaDfb
    A1P015: District boundary
    A1P015: District boundaryGeographicGeographicFunctionalGeographicGeographic
    OtherGeographic
    A1P016: Ownership of the case study/PED Lab
    A1P016: Ownership of the case study/PED Lab:PrivatePrivateMixedPublicPrivatePublic
    A1P017: Ownership of the land / physical infrastructure
    A1P017: Ownership of the land / physical infrastructure:Single OwnerMultiple OwnersSingle OwnerSingle OwnerMultiple OwnersSingle Owner
    A1P018: Number of buildings in PED
    A1P018: Number of buildings in PED10621
    A1P019: Conditioned space
    A1P019: Conditioned space [m²]236047710279542000
    A1P020: Total ground area
    A1P020: Total ground area [m²]386024508423.453260052000
    A1P021: Floor area ratio: Conditioned space / total ground area
    A1P021: Floor area ratio: Conditioned space / total ground area100031
    A1P022: Financial schemes
    A1P022a: Financing - PRIVATE - Real estateyesyesnononono
    A1P022a: Add the value in EUR if available [EUR]7804440
    A1P022b: Financing - PRIVATE - ESCO schemenononononono
    A1P022b: Add the value in EUR if available [EUR]
    A1P022c: Financing - PRIVATE - Othernononononono
    A1P022c: Add the value in EUR if available [EUR]
    A1P022d: Financing - PUBLIC - EU structural fundingnononoyesnono
    A1P022d: Add the value in EUR if available [EUR]
    A1P022e: Financing - PUBLIC - National fundingnoyesnoyesnono
    A1P022e: Add the value in EUR if available [EUR]
    A1P022f: Financing - PUBLIC - Regional fundingnoyesnoyesnono
    A1P022f: Add the value in EUR if available [EUR]
    A1P022g: Financing - PUBLIC - Municipal fundingnononoyesnono
    A1P022g: Add the value in EUR if available [EUR]
    A1P022h: Financing - PUBLIC - Othernononononono
    A1P022h: Add the value in EUR if available [EUR]
    A1P022i: Financing - RESEARCH FUNDING - EUnonononoyesno
    A1P022i: Add the value in EUR if available [EUR]1193355
    A1P022j: Financing - RESEARCH FUNDING - Nationalnonononoyesno
    A1P022j: Add the value in EUR if available [EUR]
    A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononono
    A1P022k: Add the value in EUR if available [EUR]
    A1P022l: Financing - RESEARCH FUNDING - Othernononononono
    A1P022l: Add the value in EUR if available [EUR]
    A1P022: Other
    A1P023: Economic Targets
    A1P023: Economic Targets
    • Job creation,
    • Positive externalities,
    • Other
    • Positive externalities,
    • Boosting local and sustainable production
    A1P023: OtherBoosting sustainability for public schools
    A1P024: More comments:
    A1P024: More comments:The project is a follow-up from the “Social Beautiful” concept which was developed in collaboration between Labyrint (Support in sheltered housing), Area (housing company), the municipality of Uden, and Hendriks Coppelmans (developer). The concept aims to provide an answer to changes in various policy areas and the changing demands of society. The Social Beautiful concept consists of the following elements: 1. Living, working, and community services are brought together in one location. A multifunctional residential and service centre is being realized at the location. 2. Housing is shaped by the realization of financially accessible homes suitable for the target group. The housing design is tailored to the target group. it may also include sheltered / protected living. 3. Work takes place at the location or from the same location. The work has a social function within the neighbourhood. Wage-related work must contribute to providing structure in the daily activities of the residents. 4. Neighbourhood management is organized from the location in the surrounding neighbourhood. A service package is provided from the residential and service centre that contributes to the ability of neighbourhood residents to live independently for longer, to strengthen the social network, and to improve the quality of life and safety in the neighbourhood. 5. The houses are suitable for use at all times for regular rental. Communal facilities must be realized within the contours of a regular apartment. The objective is to offer a suitable living and working situation to a group of vulnerable citizens. In this way they become a fully-fledged part of society. They not only make use of the facilities themselves, but also give substance to the level of facilities in the municipality. Due to the integrated approach, they experience a greater sense of well-being and security.
    A1P025: Estimated PED case study / PED LAB costs
    A1P025: Estimated PED case study / PED LAB costs [mil. EUR]78044403.5
    Contact person for general enquiries
    A1P026: NameTonje Healey TrulsrudGhazal EtminanChristoph GollnerTudor DrâmbăreanOzlem SenyolGireesh Nair
    A1P027: OrganizationNorwegian University of Science and Technology (NTNU)Ghazal.Etminan@ait.ac.atFFGMunicipality of Alba IuliaKarsiyaka MunicipalityUmea Municipality
    A1P028: AffiliationResearch Center / UniversityResearch Center / UniversityOtherMunicipality / Public BodiesMunicipality / Public BodiesMunicipality / Public Bodies
    A1P028: OtherMaria Elena Seemann
    A1P029: Emailtonje.h.trulsrud@ntnu.noGhazal.Etminan@ait.ac.atchristoph.gollner@ffg.attudor.drambarean@apulum.roozlemkocaer2@gmail.comgireesh.nair@umu.se
    Contact person for other special topics
    A1P030: NameMaria-Elena SeemannHasan Burak Cavka
    A1P031: Emailmaria.seemann@apulum.roapulhasancavka@iyte.edu.tr
    Pursuant to the General Data Protection RegulationYesYesYesYesYesYes
    A2P001: Fields of application
    A2P001: Fields of application
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • Waste management,
    • Indoor air quality,
    • Construction materials
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility
    • Energy efficiency,
    • Energy production,
    • E-mobility
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Urban comfort (pollution, heat island, noise level etc.),
    • Digital technologies,
    • Construction materials
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • Urban comfort (pollution, heat island, noise level etc.)
    • Energy efficiency,
    • Energy flexibility,
    • Energy production
    A2P001: Other
    A2P002: Tools/strategies/methods applied for each of the above-selected fields
    A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: Energy efficient envelope, with good insulation, triple glazing windows and airtight envelope. (EPC = 0) Energy Flexibility: MCP controls for the heat pump in the apartments. Energy production: PV panels on the roof, Ground source heat pumps Waste management: construction waste was kept to a minimum and sorted and collected separately as much as possible. Indoor air quality: Exhaust ventilation and opening of windows Construction materials: low carbon emission building materialsEnergy modelingThermal rehabilitation of the main building, and investments in the energy efficiency and consumption fields.Methods involve studying the feasibility of digital PED references for the case cities about their energy, environmental, and economic performance by EnergyPlus tool. In case of insufficient energy data and the need of high resolution data, ‘Gaussian mixture model and expectation-maximization algorithm’ and ‘time-series decomposition-recombination’ method will be used to supplement data to EnergyPlus. The feasibility results will be returned to stakeholders for iterative discussion, and the iterative results will be used to update digital references. Replication plans are developed based on such a cooperation process for strategies to implement PEDs. If a PED is demonstrated during the project period, the measured data will be used to verify the feasibility model to optimize previous results (WP7– R3 & R4). In the MAKING-CITY project, the overall PED design method is developed, which will be further optimised in this project. In addition, PED-ACT will use the methods and knowledge, including how to choose a suitable PED in a city, energy balance calculation, and technologies available for PED. The RUGGEDISED project outputs the governance model into the replication plan in PED-ACT. Its ‘smart city open-data decision platform’ will illustrate an excellent example for the database in PED-ACT. The IEA EBC Annex 83 and Cost Action 19126 create the basis for data collection, developing existing PED databases, characterization of PED, and review of regulations of PED, as well as development of simulation tools. The UBEM project further enables a detailed high-resolution energy balance calculation of PED.Simulation tools: City Energy Analyst and Polysun
    A2P003: Application of ISO52000
    A2P003: Application of ISO52000YesNoYesYesNo
    A2P004: Appliances included in the calculation of the energy balance
    A2P004: Appliances included in the calculation of the energy balanceNoYesYesYesYes
    A2P005: Mobility included in the calculation of the energy balance
    A2P005: Mobility included in the calculation of the energy balanceNoNoNoNoNo
    A2P006: Description of how mobility is included (or not included) in the calculation
    A2P006: Description of how mobility is included (or not included) in the calculationnot includedThere will be 1 EV station placed nearby the main building. This would be the link to the mobility field.Mobility is not included in the calculations.
    A2P007: Annual energy demand in buildings / Thermal demand
    A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]0.1480.0660.9823.862
    A2P008: Annual energy demand in buildings / Electric Demand
    A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.1090.0120.0484411.2260
    A2P009: Annual energy demand for e-mobility
    A2P009: Annual energy demand for e-mobility [GWh/annum]
    A2P010: Annual energy demand for urban infrastructure
    A2P010: Annual energy demand for urban infrastructure [GWh/annum]
    A2P011: Annual renewable electricity production on-site during target year
    A2P011: PVyesyesnoyesyesyes
    A2P011: PV - specify production in GWh/annum [GWh/annum]0.0581.0280.249
    A2P011: Windnononononono
    A2P011: Wind - specify production in GWh/annum [GWh/annum]
    A2P011: Hydronononononono
    A2P011: Hydro - specify production in GWh/annum [GWh/annum]
    A2P011: Biomass_elnononononono
    A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
    A2P011: Biomass_peat_elnononononono
    A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
    A2P011: PVT_elnononononono
    A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
    A2P011: Othernononononono
    A2P011: Other - specify production in GWh/annum [GWh/annum]
    A2P012: Annual renewable thermal production on-site during target year
    A2P012: Geothermalyesnonononono
    A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
    A2P012: Solar Thermalnononononono
    A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
    A2P012: Biomass_heatnononononono
    A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
    A2P012: Waste heat+HPnononononono
    A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
    A2P012: Biomass_peat_heatnononononono
    A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
    A2P012: PVT_thnononononono
    A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
    A2P012: Biomass_firewood_thnononononono
    A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
    A2P012: Othernononoyesnono
    A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
    A2P013: Renewable resources on-site - Additional notes
    A2P013: Renewable resources on-site - Additional notes*Annual energy use below is presentedin primary energy consumptionOnly PVs - 940 PVs on the main building
    A2P014: Annual energy use
    A2P014: Annual energy use [GWh/annum]0.1940.0790.0000484415.0886.1
    A2P015: Annual energy delivered
    A2P015: Annual energy delivered [GWh/annum]0.03680.00110.000113331
    A2P016: Annual non-renewable electricity production on-site during target year
    A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]
    A2P017: Annual non-renewable thermal production on-site during target year
    A2P017: Gasnonononoyesno
    A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P017: Coalnononononono
    A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P017: Oilnononononono
    A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P017: Othernononoyesnono
    A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P018: Annual renewable electricity imports from outside the boundary during target year
    A2P018: PVnoyesnonoyesno
    A2P018 - PV: specify production in GWh/annum if available [GWh/annum]0.707
    A2P018: Windnoyesnononono
    A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
    A2P018: Hydronoyesnononono
    A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
    A2P018: Biomass_elnoyesnononono
    A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: Biomass_peat_elnononononono
    A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: PVT_elnononononono
    A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: Othernononoyesnono
    A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
    A2P019: Annual renewable thermal imports from outside the boundary during target year
    A2P019: Geothermalnononononono
    A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Solar Thermalnononononono
    A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_heatnononononoyes
    A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Waste heat+HPnononononoyes
    A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_peat_heatnononononono
    A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
    A2P019: PVT_thnononononono
    A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_firewood_thnoyesnononono
    A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Othernononoyesnono
    A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
    A2P020: Share of RES on-site / RES outside the boundary
    A2P020: Share of RES on-site / RES outside the boundary00001.45403111739750
    A2P021: GHG-balance calculated for the PED
    A2P021: GHG-balance calculated for the PED [tCO2/annum]-0.000434
    A2P022: KPIs related to the PED case study / PED Lab
    A2P022: Safety & SecurityPersonal Safetyyes
    A2P022: HealthHealthy communityyes
    A2P022: Educationyes
    A2P022: MobilitySustainable mobilityMode of transport; Access to public transportyes
    A2P022: EnergyNOn-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/self-consumption, net energy/net power, peak delivered/peak expoted, total greenhouse gas emissionEnergy efficiency in buildings (Net energy need; Gross energy need; Total energy need)yesEnergy
    A2P022: Wateryes
    A2P022: Economic developmentcapital costs, operational cots, overall economic performance (5 KPIs)yes
    A2P022: Housing and Communitydemographic composition, diverse community, social cohesionSpecify the associated KPIsDelivery and proximity to amenities
    A2P022: Waste
    A2P022: OtherSmartness and flecibility, Indoor Environmental Quality, Social performance - Equity (affordable housing, access to servicees and amenitioes, afforability of energy, living conditions, sustinable mobility, universal design)GHG emissions; Power/load; Life cycle cost (LCC); Demographic needs and consultation plan; Public Space
    A2P023: Technological Solutions / Innovations - Energy Generation
    A2P023: Photovoltaicsyesyesyesyesyesyes
    A2P023: Solar thermal collectorsnononoyesnono
    A2P023: Wind Turbinesnononononono
    A2P023: Geothermal energy systemyesnonononono
    A2P023: Waste heat recoverynononononono
    A2P023: Waste to energynononononono
    A2P023: Polygenerationnononoyesnono
    A2P023: Co-generationnononoyesnono
    A2P023: Heat Pumpyesyesnoyesyesno
    A2P023: Hydrogennononononono
    A2P023: Hydropower plantnononononono
    A2P023: Biomassnononononono
    A2P023: Biogasnononononono
    A2P023: Other
    A2P024: Technological Solutions / Innovations - Energy Flexibility
    A2P024: A2P024: Information and Communication Technologies (ICT)nononoyesnoyes
    A2P024: Energy management systemyesyesnoyesnono
    A2P024: Demand-side managementyesnonoyesnoyes
    A2P024: Smart electricity gridnononoyesnono
    A2P024: Thermal Storagenononononono
    A2P024: Electric Storagenononoyesnono
    A2P024: District Heating and Coolingnononononono
    A2P024: Smart metering and demand-responsive control systemsyesnonoyesnono
    A2P024: P2P – buildingsnoyesnoyesnono
    A2P024: OtherDistrict Heating
    A2P025: Technological Solutions / Innovations - Energy Efficiency
    A2P025: Deep Retrofittingnoyesnoyesyesyes
    A2P025: Energy efficiency measures in historic buildingsnoyesnononono
    A2P025: High-performance new buildingsyesnonononono
    A2P025: Smart Public infrastructure (e.g. smart lighting)nononoyesnono
    A2P025: Urban data platformsnononoyesnono
    A2P025: Mobile applications for citizensnononononono
    A2P025: Building services (HVAC & Lighting)yesnonoyesyesno
    A2P025: Smart irrigationnononononono
    A2P025: Digital tracking for waste disposalnononononono
    A2P025: Smart surveillancenononononono
    A2P025: Other
    A2P026: Technological Solutions / Innovations - Mobility
    A2P026: Efficiency of vehicles (public and/or private)nononoyesnono
    A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nononoyesnono
    A2P026: e-Mobilitynononoyesnono
    A2P026: Soft mobility infrastructures and last mile solutionsnononononono
    A2P026: Car-free areanononononono
    A2P026: Other
    A2P027: Mobility strategies - Additional notes
    A2P027: Mobility strategies - Additional notesThe Fornebu area will contain urban structures that will facilitate low and zero carbon mobility within the area, including pedestrian walking, bicycling and electrical vehicles.The new mobility plan integrates the PED area
    A2P028: Energy efficiency certificates
    A2P028: Energy efficiency certificatesYesYesYesNoYes
    A2P028: If yes, please specify and/or enter notesEPC = 0, energy neutral building
    A2P029: Any other building / district certificates
    A2P029: Any other building / district certificatesNoNoYesYesNo
    A2P029: If yes, please specify and/or enter notesAll buildings should be certified according to BREEAM-NOR Excellent
    A3P001: Relevant city /national strategy
    A3P001: Relevant city /national strategy
    • Promotion of energy communities (REC/CEC)
    • Smart cities strategies
    • Smart cities strategies,
    • Urban Renewal Strategies,
    • Energy master planning (SECAP, etc.),
    • New development strategies,
    • Promotion of energy communities (REC/CEC),
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Energy master planning (SECAP, etc.),
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Smart cities strategies,
    • Energy master planning (SECAP, etc.),
    • National / international city networks addressing sustainable urban development and climate neutrality
    A3P002: Quantitative targets included in the city / national strategy
    A3P002: Quantitative targets included in the city / national strategy40% reduction in emissions by 2030 according to the Covenant of MayorsKarşıyaka Municipality is the first local government in Turkey to sign the Covenant of Mayors in 2011. During this period, the greenhouse gas inventory of the district was carried out three times and reduction targets were set for 2020 and 2030. In the 2021 Sustainable Energy and Climate Action Plan prepared as of the end of 2021, Karşıyaka Municipality has targeted a 40% reduction in its emissions for 2030 compared to the base year 2018. In the 2021 Sustainable Energy and Climate Action Plan, Karşıyaka Municipality aims to reduce its greenhouse gas emissions from 3.96 tCO2e / person in 2018 to 2.37 tCO2e / person in 2030. System solutions such as the use of renewable energy sources, air, ground or water source heat pump, cogeneration and microcogeneration are analysed by designers in order to fully or partially meet the energy requirements for heating, cooling, ventilation, hot water, electricity and lighting for all buildings with a floor area of less than 20,000 square metres. If at least 50% of the building's total energy consumption costs are covered by one or more of these applications, the points are taken in the assessment table in the Building and housing estate business certification guide of 2023.
    A3P003: Strategies towards decarbonization of the gas grid
    A3P003: Strategies towards decarbonization of the gas grid
    • Electrification of Heating System based on Heat Pumps
    • Electrification of Heating System based on Heat Pumps
    A3P003: OtherNA
    A3P004: Identification of needs and priorities
    A3P004: Identification of needs and priorities- Thermal rehabilitation - Heat pumps - Smart system capable o various connections and data export - Usage of the energy produced by PVs placed on 3 buildings within the PEDAccording to the model developed for the district, the electrification of heating and cooling is necessary.Therefore, there needs to be the implementation of a heat pump. The building-integrated photovoltaic panelsshould follow. Through net-metering practices, the district is expected to reach energy positivity throughthis scenario.
    A3P005: Sustainable behaviour
    A3P005: Sustainable behaviour- Education - Replacement of the non-performant PVs - Professional maintenance of the PV system - Reduce of consumptions - Intelligent systems to recover heat - Intelligent system to permit the usage of domestic water from the heating system
    A3P006: Economic strategies
    A3P006: Economic strategies
    • Local trading,
    • Existing incentives
    • Open data business models,
    • Innovative business models,
    • Life Cycle Cost,
    • Circular economy models,
    • Demand management Living Lab
    A3P006: Other
    A3P007: Social models
    A3P007: Social models
    • Co-creation / Citizen engagement strategies,
    • Social incentives,
    • Quality of Life
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Behavioural Change / End-users engagement,
    • Quality of Life,
    • Citizen/owner involvement in planning and maintenance,
    • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Behavioural Change / End-users engagement,
    • Citizen Social Research,
    • Policy Forums,
    • Social incentives,
    • Quality of Life,
    • Strategies towards social mix,
    • Affordability,
    • Prevention of energy poverty,
    • Digital Inclusion,
    • Citizen/owner involvement in planning and maintenance,
    • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Affordability
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Behavioural Change / End-users engagement
    A3P007: Other
    A3P008: Integrated urban strategies
    A3P008: Integrated urban strategies
    • Strategic urban planning,
    • District Energy plans,
    • City Vision 2050,
    • SECAP Updates,
    • Building / district Certification
    • Digital twinning and visual 3D models,
    • District Energy plans,
    • SECAP Updates
    • District Energy plans
    A3P008: Other
    A3P009: Environmental strategies
    A3P009: Environmental strategies
    • Low Emission Zone,
    • Net zero carbon footprint,
    • Carbon-free
    • Energy Neutral,
    • Net zero carbon footprint,
    • Carbon-free
    • Energy Neutral,
    • Low Emission Zone,
    • Net zero carbon footprint,
    • Carbon-free,
    • Life Cycle approach,
    • Pollutants Reduction,
    • Greening strategies,
    • Sustainable Urban drainage systems (SUDS),
    • Cool Materials,
    • Nature Based Solutions (NBS)
    • Energy Neutral,
    • Low Emission Zone,
    • Pollutants Reduction
    • Carbon-free
    A3P009: Other
    A3P010: Legal / Regulatory aspects
    A3P010: Legal / Regulatory aspects
    B1P001: PED/PED relevant concept definition
    B1P001: PED/PED relevant concept definitionThe demonstration projects is a new residential development, which consists of an apartment complex which includes 39 apartments spread over 3 floors. It is a sustainble plus energy neighbouhood, and has reached a plus energy balance on its first year in operation. It has MPC controls on the individual heat pumps to improve the energy flexibility of the apartments. It includes the "social beatiful" concepts with a strong emphasis on the social sustainability of the project.Positive energy districtThe pilot area was selected on the basis of several criteria: its location within areas prioritised by Karşıyaka Municipality for combating climate change, compliance with the building regulations set out in the Green Building-Site-Operation (2023) guide, which are in line with Municipality's energy policy, the presence of open spaces that allow various applications for renewable energy, proximity to public facilities such as schools and municipal services, the availability of data on energy consumption (e.g. electricity and natural gas bills) and architectural features, the potential for community building, the suitability for solar energy systems, considering orientation and roof structure, and the potential for future building renovations. The aim of the initiative is to explore the feasibility of transforming the district into a Positive Energy District (PED).
    B1P002: Motivation behind PED/PED relevant project development
    B1P002: Motivation behind PED/PED relevant project developmentThe need for social housing and the ambition to create a great living environment with a high-performance apartment complex, supplied with renewable energy. It results in lower energy bills for the tenants and high-quality homes.Creation of an area which aims to be sustainable in terms of energy sufficiency and efficiency.
    B1P003: Environment of the case study area
    B2P003: Environment of the case study areaSuburban areaRurbanUrban areaUrban areaUrban area
    B1P004: Type of district
    B2P004: Type of district
    • New construction
    • Renovation
    • New construction
    • Renovation
    • Renovation
    • Renovation
    B1P005: Case Study Context
    B1P005: Case Study Context
    • New Development
    • Retrofitting Area,
    • Preservation Area
    • New Development
    • Retrofitting Area
    • Retrofitting Area
    • Retrofitting Area
    B1P006: Year of construction
    B1P006: Year of construction19762005
    B1P007: District population before intervention - Residential
    B1P007: District population before intervention - Residential
    B1P008: District population after intervention - Residential
    B1P008: District population after intervention - Residential
    B1P009: District population before intervention - Non-residential
    B1P009: District population before intervention - Non-residential
    B1P010: District population after intervention - Non-residential
    B1P010: District population after intervention - Non-residential
    B1P011: Population density before intervention
    B1P011: Population density before intervention000000
    B1P012: Population density after intervention
    B1P012: Population density after intervention000000
    B1P013: Building and Land Use before intervention
    B1P013: Residentialnoyesnonoyesyes
    B1P013 - Residential: Specify the sqm [m²]102795
    B1P013: Officenoyesnononono
    B1P013 - Office: Specify the sqm [m²]
    B1P013: Industry and Utilitynononononono
    B1P013 - Industry and Utility: Specify the sqm [m²]
    B1P013: Commercialnononononono
    B1P013 - Commercial: Specify the sqm [m²]
    B1P013: Institutionalnononoyesnono
    B1P013 - Institutional: Specify the sqm [m²]
    B1P013: Natural areasnononononono
    B1P013 - Natural areas: Specify the sqm [m²]
    B1P013: Recreationalnononononono
    B1P013 - Recreational: Specify the sqm [m²]
    B1P013: Dismissed areasnononononono
    B1P013 - Dismissed areas: Specify the sqm [m²]
    B1P013: Othernononononono
    B1P013 - Other: Specify the sqm [m²]
    B1P014: Building and Land Use after intervention
    B1P014: Residentialyesyesyesnoyesyes
    B1P014 - Residential: Specify the sqm [m²]2394102795
    B1P014: Officenoyesnononono
    B1P014 - Office: Specify the sqm [m²]
    B1P014: Industry and Utilitynononononono
    B1P014 - Industry and Utility: Specify the sqm [m²]
    B1P014: Commercialnononononono
    B1P014 - Commercial: Specify the sqm [m²]
    B1P014: Institutionalnononoyesnono
    B1P014 - Institutional: Specify the sqm [m²]
    B1P014: Natural areasnononononono
    B1P014 - Natural areas: Specify the sqm [m²]
    B1P014: Recreationalnonoyesnonono
    B1P014 - Recreational: Specify the sqm [m²]
    B1P014: Dismissed areasnononononono
    B1P014 - Dismissed areas: Specify the sqm [m²]
    B1P014: Othernononononono
    B1P014 - Other: Specify the sqm [m²]
    B2P001: PED Lab concept definition
    B2P001: PED Lab concept definition
    B2P002: Installation life time
    B2P002: Installation life time
    B2P003: Scale of action
    B2P003: ScaleDistrict
    B2P004: Operator of the installation
    B2P004: Operator of the installation
    B2P005: Replication framework: Applied strategy to reuse and recycling the materials
    B2P005: Replication framework: Applied strategy to reuse and recycling the materials
    B2P006: Circular Economy Approach
    B2P006: Do you apply any strategy to reuse and recycling the materials?
    B2P006: Other
    B2P007: Motivation for developing the PED Lab
    B2P007: Motivation for developing the PED Lab
    B2P007: Other
    B2P008: Lead partner that manages the PED Lab
    B2P008: Lead partner that manages the PED Lab
    B2P008: Other
    B2P009: Collaborative partners that participate in the PED Lab
    B2P009: Collaborative partners that participate in the PED Lab
    B2P009: Other
    B2P010: Synergies between the fields of activities
    B2P010: Synergies between the fields of activities
    B2P011: Available facilities to test urban configurations in PED Lab
    B2P011: Available facilities to test urban configurations in PED Lab
    B2P011: Other
    B2P012: Incubation capacities of PED Lab
    B2P012: Incubation capacities of PED Lab
    B2P013: Availability of the facilities for external people
    B2P013: Availability of the facilities for external people
    B2P014: Monitoring measures
    B2P014: Monitoring measures
    B2P015: Key Performance indicators
    B2P015: Key Performance indicators
    B2P016: Execution of operations
    B2P016: Execution of operations
    B2P017: Capacities
    B2P017: Capacities
    B2P018: Relations with stakeholders
    B2P018: Relations with stakeholders
    B2P019: Available tools
    B2P019: Available tools
    B2P019: Available tools
    B2P020: External accessibility
    B2P020: External accessibility
    C1P001: Unlocking Factors
    C1P001: Recent technological improvements for on-site RES production3 - Moderately important4 - Important1 - Unimportant4 - Important5 - Very important1 - Unimportant
    C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock1 - Unimportant2 - Slightly important1 - Unimportant4 - Important4 - Important1 - Unimportant
    C1P001: Energy Communities, P2P, Prosumers concepts3 - Moderately important5 - Very important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
    C1P001: Storage systems and E-mobility market penetration4 - Important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
    C1P001: Decreasing costs of innovative materials4 - Important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
    C1P001: Financial mechanisms to reduce costs and maximize benefits3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
    C1P001: The ability to predict Multiple Benefits3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
    C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
    C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant
    C1P001: Social acceptance (top-down)5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant
    C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)4 - Important5 - Very important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant
    C1P001: Presence of integrated urban strategies and plans3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
    C1P001: Multidisciplinary approaches available for systemic integration5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important1 - Unimportant
    C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant
    C1P001: Availability of RES on site (Local RES)5 - Very important1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant
    C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
    C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P001: Any other UNLOCKING FACTORS (if any)
    C1P002: Driving Factors
    C1P002: Climate Change adaptation need5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
    C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
    C1P002: Rapid urbanization trend and need of urban expansions5 - Very important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
    C1P002: Urban re-development of existing built environment4 - Important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant
    C1P002: Economic growth need1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant
    C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant
    C1P002: Territorial and market attractiveness2 - Slightly important3 - Moderately important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
    C1P002: Energy autonomy/independence1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant
    C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P002: Any other DRIVING FACTOR (if any)
    C1P003: Administrative barriers
    C1P003: Difficulty in the coordination of high number of partners and authorities1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
    C1P003: Lack of good cooperation and acceptance among partners1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
    C1P003: Lack of public participation1 - Unimportant4 - Important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant
    C1P003: Lack of institutions/mechanisms to disseminate information1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant
    C1P003:Long and complex procedures for authorization of project activities1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
    C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant
    C1P003: Complicated and non-comprehensive public procurement1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant
    C1P003: Fragmented and or complex ownership structure1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
    C1P003: City administration & cross-sectoral attitude/approaches (silos)1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant
    C1P003: Lack of internal capacities to support energy transition1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant
    C1P003: Any other Administrative BARRIER4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P003: Any other Administrative BARRIER (if any)Delay in the Environmental Dialogue processing in the municipality
    C1P004: Policy barriers
    C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
    C1P004: Lacking or fragmented local political commitment and support on the long term1 - Unimportant4 - Important1 - Unimportant4 - Important4 - Important1 - Unimportant
    C1P004: Lack of Cooperation & support between national-regional-local entities1 - Unimportant4 - Important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant
    C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P004: Any other Political BARRIER (if any)
    C1P005: Legal and Regulatory barriers
    C1P005: Inadequate regulations for new technologies1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
    C1P005: Regulatory instability1 - Unimportant3 - Moderately important1 - Unimportant4 - Important5 - Very important1 - Unimportant
    C1P005: Non-effective regulations1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant
    C1P005: Unfavorable local regulations for innovative technologies1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
    C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
    C1P005: Insufficient or insecure financial incentives1 - Unimportant3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant
    C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
    C1P005: Shortage of proven and tested solutions and examples1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
    C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P005: Any other Legal and Regulatory BARRIER (if any)
    C1P006: Environmental barriers
    C1P006: Environmental barriers- Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Air and Water Pollution: 2 - Natural Disasters: 1 - Water Scarcity: 1
    C1P007: Technical barriers
    C1P007: Lack of skilled and trained personnel1 - Unimportant3 - Moderately important1 - Unimportant4 - Important5 - Very important1 - Unimportant
    C1P007: Deficient planning1 - Unimportant4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
    C1P007: Retrofitting work in dwellings in occupied state1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant
    C1P007: Lack of well-defined process1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
    C1P007: Inaccuracy in energy modelling and simulation1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant
    C1P007: Lack/cost of computational scalability1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
    C1P007: Grid congestion, grid instability1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant
    C1P007: Negative effects of project intervention on the natural environment1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
    C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant
    C1P007: Difficult definition of system boundaries1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
    C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Any other Thecnical BARRIER (if any)
    C1P008: Social and Cultural barriers
    C1P008: Inertia1 - Unimportant3 - Moderately important1 - Unimportant4 - Important5 - Very important1 - Unimportant
    C1P008: Lack of values and interest in energy optimization measurements1 - Unimportant2 - Slightly important1 - Unimportant4 - Important4 - Important1 - Unimportant
    C1P008: Low acceptance of new projects and technologies1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant
    C1P008: Difficulty of finding and engaging relevant actors1 - Unimportant4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
    C1P008: Lack of trust beyond social network1 - Unimportant4 - Important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant
    C1P008: Rebound effect1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant
    C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
    C1P008: Exclusion of socially disadvantaged groups1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
    C1P008: Non-energy issues are more important and urgent for actors1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
    C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
    C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P008: Any other Social BARRIER (if any)
    C1P009: Information and Awareness barriers
    C1P009: Insufficient information on the part of potential users and consumers1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
    C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
    C1P009: Lack of awareness among authorities1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
    C1P009: Information asymmetry causing power asymmetry of established actors1 - Unimportant4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
    C1P009: High costs of design, material, construction, and installation1 - Unimportant4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
    C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P009: Any other Information and Awareness BARRIER (if any)
    C1P010: Financial barriers
    C1P010: Hidden costs1 - Unimportant3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant
    C1P010: Insufficient external financial support and funding for project activities1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
    C1P010: Economic crisis1 - Unimportant4 - Important1 - Unimportant4 - Important5 - Very important1 - Unimportant
    C1P010: Risk and uncertainty5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant
    C1P010: Lack of consolidated and tested business models1 - Unimportant4 - Important1 - Unimportant4 - Important4 - Important1 - Unimportant
    C1P010: Limited access to capital and cost disincentives1 - Unimportant4 - Important1 - Unimportant4 - Important5 - Very important1 - Unimportant
    C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P010: Any other Financial BARRIER (if any)
    C1P011: Market barriers
    C1P011: Split incentives1 - Unimportant4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
    C1P011: Energy price distortion1 - Unimportant4 - Important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant
    C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
    C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P011: Any other Market BARRIER (if any)
    C1P012: Stakeholders involved
    C1P012: Government/Public Authorities
    • Planning/leading,
    • Design/demand aggregation
    • Planning/leading
    C1P012: Research & Innovation
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Design/demand aggregation
    C1P012: Financial/Funding
    • Planning/leading
    C1P012: Analyst, ICT and Big Data
    • Planning/leading
    C1P012: Business process management
    • Planning/leading
    C1P012: Urban Services providers
    • Planning/leading
    C1P012: Real Estate developers
    • Planning/leading,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading
    C1P012: Design/Construction companies
    • Planning/leading,
    • Design/demand aggregation
    • Planning/leading
    C1P012: End‐users/Occupants/Energy Citizens
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Monitoring/operation/management
    C1P012: Social/Civil Society/NGOs
    • Construction/implementation
    C1P012: Industry/SME/eCommerce
    • Design/demand aggregation
    C1P012: Other
    C1P012: Other (if any)
    Summary

    Authors (framework concept)

    Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

    Contributors (to the content)

    Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

    Implemented by

    Boutik.pt: Filipe Martins, Jamal Khan
    Marek Suchánek (Czech Technical University in Prague)