Filters:
NameProjectTypeCompare
Winterthur, WinLab PERSIST PED Lab Compare
Luzern Living Lab, Wesemlin-Dreilinden PERSIST PED Lab Compare
Iruña-Pamplona, Rochapea, Navarra PERSIST PED Relevant Case Study / PED Lab Compare
Hradec Králové, Kukleny RESPED – Enabling Energy Resilience through new energy flexible and affordable PED concepts PED Case Study Compare
Thessaloniki, Residential buildings FLEdge PED Relevant Case Study Compare
Kavala, Offices in University premises FLEdge PED Relevant Case Study Compare
Sofia, Offices and Premises in university FLEdge PED Relevant Case Study Compare
The city of Carcavelos, Portugal CSP – Cascais Smart Pole PED Relevant Case Study Uncompare
Verdal Kommune, Trøndelag PERSIST PED Case Study Compare
Cluj-Napoca, UTCN Dormitories PERSIST PED Lab Compare
Alba Iulia, Social blocks, str. Marcus Aurelius PERSIST PED Lab Compare
Leeuwarden/de Zwette PED Lab Compare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Compare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Compare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Compare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Uncompare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr, Geothermal District Heating Project PED Relevant Case Study Compare
Drammen, Jacobs Borchs Gate PED Relevant Case Study Compare
Freiburg im Breisgau, Dietenbach PED Relevant Case Study Compare
Lecce, SmartEnCity SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
Trento, STARDUST STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Malmö, Klimatkontrakt Hyllie PED Relevant Case Study Compare
Kaiserslautern, EnStadt:Pfaff PED Relevant Case Study / PED Lab Compare
Helsinki, mySMARTlife PED Relevant Case Study Compare
Firenze, Novoli-Cascine district on “le PIagge” buildings PED Relevant Case Study Compare
Bolzano, Sinfonia PED Relevant Case Study Compare
Zürich, Hunziker Areal PED Relevant Case Study Compare
Hammarby Sjöstad, Hammarby Sjöstad 2.0 PED Relevant Case Study Compare
Milano, Sharing Cities PED Relevant Case Study Compare
Mieres, District Heating Pozo Barredo PED Relevant Case Study Compare
Lund, Cityfied (demo Linero) PED Relevant Case Study Compare
Espoo, Smart Otaniemi PED Relevant Case Study / PED Lab Compare
Vienna, Zukunftsquartier PED Case Study Compare
Trento, Santa Chiara Open Lab PED Case Study Compare
Paterna, Barrio La Pinada PED Case Study / PED Lab Compare
Bergen, Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru, +CityxChange PED Case Study Compare
Trondheim, NTNU Campus within the Knowledge Axis ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Oslo, Furuset project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Măgurele, Laser Valley – Land of Lights PED Case Study Compare
Elverum, Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bodø, Airport, NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bærum, Fornebu ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Carquefou, Fleuraye west PED Case Study Compare
Åland, Smart Energy PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Uncompare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Uncompare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleUden, Loopkantstraat
City of Espoo, Espoonlahti district, Lippulaiva block
Istanbul, Ozyegin University Campus
Maia, Sobreiro Social Housing
Vienna, 16. District, Leben am Wilhelminenberg
The city of Carcavelos, Portugal
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabUden, LoopkantstraatCity of Espoo, Espoonlahti district, Lippulaiva blockIstanbul, Ozyegin University CampusMaia, Sobreiro Social HousingVienna, 16. District, Leben am WilhelminenbergThe city of Carcavelos, Portugal
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesnononono
PED relevant case studyyesnoyesnoyesyes
PED Lab.nononoyesnono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesnoyesyesyesyes
Annual energy surplusyesnonononono
Energy communitynonononoyesyes
Circularitynononononoyes
Air quality and urban comfortnonoyesnonoyes
Electrificationyesnoyesnonono
Net-zero energy costnononononono
Net-zero emissionnononononono
Self-sufficiency (energy autonomous)nononononono
Maximise self-sufficiencynoyesnoyesnono
Othernonoyesnonono
Other (A1P004)almost nZEB district
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabIn operationIn operationImplementation PhasePlanning PhasePlanning PhaseCompleted
A1P006: Start Date
A1P006: Start date06/1706/1810/2410/2103/2404/20
A1P007: End Date
A1P007: End date05/2303/2210/2810/2412/2704/24
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • General statistical datasets
  • General statistical datasets
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • General statistical datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • Inger Andresen, Tonje Healey Trulsrud, Luca Finocchiaro, Alessandro Nocente, Meril Tamm, Joana Ortiz, Jaume Salom, Abel Magyari, Linda Hoes-van Oeffelen, Wouter Borsboom, Wim Kornaat, Niki Gaitani, Design and performance predictions of plus energy neighbourhoods – Case studies of demonstration projects in four different European climates, Energy and Buildings, Volume 274, 2022, 112447, ISSN 0378-7788, https://doi.org/10.1016/j.enbuild.2022.112447. (https://www.sciencedirect.com/science/article/pii/S0378778822006181),
  • Deliverable, Report: Integrated Energy Design for Sustainable Plus Energy Neighbourhoods (syn.ikia),
  • Deliverable, Report: DEMONSTRATION CASE OF SUSTAINABLE PLUS ENERGY NEIGHBOURHOODS IN MARINE CLIMATE (syn.ikia),
  • https://www.synikia.eu/no/bibliotek/
  • M. Hukkalainen, F. Zarrin, K. Klobut, O. Lindholm, M. Ranta, P. Hajduk, T. Vainio-Kaila, E. Wanne, J. Tartia, H. Horn, K. Kontu, J. Juhmen, S. Santala, R. Turtiainen, J. Töyräs, T. Koljonen. (2020). Deliverable D3.1 Detailed plan of the Espoo smart city lighthouse demonstrations. Available online: https://www.sparcs.info/sites/default/files/2020-09/SPARCS_D3.1_Detailed_plan_Espoo.pdf,
  • Hukkalainen, Zarrin Fatima, Krzysztof Klobut, Kalevi Piira, Mikaela Ranta, Petr Hajduk, Tiina Vainio-Kaila , Elina Wanne, Jani Tartia, Angela Bartel, Joni Mäkinen, Mia Kaurila, Kaisa Kontu, Jaano Juhmen, Merja Ryöppy, Reetta Turtiainen, Joona Töyräs, Timo Koljonen (2021) Deliverable 3.2 Midterm report on the implemented demonstrations of solutions for energy positive blocks in Espoo. Available online: https://www.sparcs.info/sites/default/files/2022-02/SPARCS_D3.2.pdf,
  • www.lippulaiva.fi
        A1P011: Geographic coordinates
        X Coordinate (longitude):5.619124.654329.258300-8.37355716.303112-9.323445
        Y Coordinate (latitude):51.660660.149141.03060041.13580448.21850138.684036
        A1P012: Country
        A1P012: CountryNetherlandsFinlandTurkeyPortugalAustriaPortugal
        A1P013: City
        A1P013: CityUdenEspooIstanbulMaiaViennaCarcavelos
        A1P014: Climate Zone (Köppen Geiger classification)
        A1P014: Climate Zone (Köppen Geiger classification).CfbDfbCfaCsbCfbCsa
        A1P015: District boundary
        A1P015: District boundaryGeographicGeographicGeographicVirtualVirtualGeographic
        Other
        A1P016: Ownership of the case study/PED Lab
        A1P016: Ownership of the case study/PED Lab:PrivatePrivatePrivatePublicPrivateMixed
        A1P017: Ownership of the land / physical infrastructure
        A1P017: Ownership of the land / physical infrastructure:Single OwnerSingle OwnerSingle OwnerMultiple OwnersMultiple OwnersMultiple Owners
        A1P018: Number of buildings in PED
        A1P018: Number of buildings in PED19152260
        A1P019: Conditioned space
        A1P019: Conditioned space [m²]236011200080.000
        A1P020: Total ground area
        A1P020: Total ground area [m²]3860165000285.400330.000
        A1P021: Floor area ratio: Conditioned space / total ground area
        A1P021: Floor area ratio: Conditioned space / total ground area110000
        A1P022: Financial schemes
        A1P022a: Financing - PRIVATE - Real estateyesyesyesnoyesno
        A1P022a: Add the value in EUR if available [EUR]7804440
        A1P022b: Financing - PRIVATE - ESCO schemenononononono
        A1P022b: Add the value in EUR if available [EUR]
        A1P022c: Financing - PRIVATE - Othernononoyesnoyes
        A1P022c: Add the value in EUR if available [EUR]
        A1P022d: Financing - PUBLIC - EU structural fundingnononononono
        A1P022d: Add the value in EUR if available [EUR]
        A1P022e: Financing - PUBLIC - National fundingnononoyesnono
        A1P022e: Add the value in EUR if available [EUR]
        A1P022f: Financing - PUBLIC - Regional fundingnononoyesnono
        A1P022f: Add the value in EUR if available [EUR]
        A1P022g: Financing - PUBLIC - Municipal fundingnononononono
        A1P022g: Add the value in EUR if available [EUR]
        A1P022h: Financing - PUBLIC - Othernononononono
        A1P022h: Add the value in EUR if available [EUR]
        A1P022i: Financing - RESEARCH FUNDING - EUnoyesyesyesnono
        A1P022i: Add the value in EUR if available [EUR]308875
        A1P022j: Financing - RESEARCH FUNDING - Nationalnononononono
        A1P022j: Add the value in EUR if available [EUR]
        A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononono
        A1P022k: Add the value in EUR if available [EUR]
        A1P022l: Financing - RESEARCH FUNDING - Othernononononono
        A1P022l: Add the value in EUR if available [EUR]
        A1P022: Other
        A1P023: Economic Targets
        A1P023: Economic Targets
        • Job creation,
        • Positive externalities,
        • Boosting local businesses
        • Positive externalities,
        • Boosting local and sustainable production,
        • Boosting consumption of local and sustainable products
        • Positive externalities,
        • Boosting local and sustainable production
        • Positive externalities,
        • Boosting local businesses,
        • Boosting local and sustainable production,
        • Boosting consumption of local and sustainable products,
        • Other
        A1P023: Other- Economic savings on water consumption and electricity - Promoting the circular economy and carbon neutrality in waste - Business oportunities resulting from less carbon-intensive practices created by the project - Financial benefits from using renewable energy sources –creation of Energy Communities
        A1P024: More comments:
        A1P024: More comments:The project is a follow-up from the “Social Beautiful” concept which was developed in collaboration between Labyrint (Support in sheltered housing), Area (housing company), the municipality of Uden, and Hendriks Coppelmans (developer). The concept aims to provide an answer to changes in various policy areas and the changing demands of society. The Social Beautiful concept consists of the following elements: 1. Living, working, and community services are brought together in one location. A multifunctional residential and service centre is being realized at the location. 2. Housing is shaped by the realization of financially accessible homes suitable for the target group. The housing design is tailored to the target group. it may also include sheltered / protected living. 3. Work takes place at the location or from the same location. The work has a social function within the neighbourhood. Wage-related work must contribute to providing structure in the daily activities of the residents. 4. Neighbourhood management is organized from the location in the surrounding neighbourhood. A service package is provided from the residential and service centre that contributes to the ability of neighbourhood residents to live independently for longer, to strengthen the social network, and to improve the quality of life and safety in the neighbourhood. 5. The houses are suitable for use at all times for regular rental. Communal facilities must be realized within the contours of a regular apartment. The objective is to offer a suitable living and working situation to a group of vulnerable citizens. In this way they become a fully-fledged part of society. They not only make use of the facilities themselves, but also give substance to the level of facilities in the municipality. Due to the integrated approach, they experience a greater sense of well-being and security.The Espoonlahti district is located on the south-western coast of Espoo. With 56,000 inhabitants, it is the second largest of the Espoo city centres. The number of inhabitants is estimated to grow to 70,000 within the next 10 years. Espoonlahti will be a future transit hub of the south-western Espoo, along the metro line, and the increasing stream of passengers provides a huge potential for retail, business and residential developments. E-mobility solutions and last-mile services have strong potential in the area when subway extension is finished and running. The extensive (re)development of the Lippulaiva blocks make a benchmark catering to the everyday needs of residents. The completely new shopping centre is a state-of-the-art cross point with 20,000 daily customers and 10,000 daily commuters (3.5 million/year). The new underground metro line and station, and feeder line bus terminal, are fully integrated. Residential housing of approximately 550 new apartments will be built on top. Lippulaiva is a large traffic hub, directly connected to public transport and right next to the Länsiväylä highway and extensive cycle paths. Lippulaiva offers diverse, mixed-use services, such as a shopping mall, public services, a day care centre, residential apartment buildings, and underground parking facilities. Lippulaiva received the LEED Gold environmental certificate and Smart Building Gold certificate. • Flagship of sustainability • Cooling and heating demand from geothermal energy system (on-site) with energy storage system, 4 MW • PV panels: roof and façade, 630 kWp • Smart control strategies for electricity and thermal energy, smart microgrid-system and battery storage • Charging capacity for 134 EVsIn addition to having the most energy efficient academic building in Turkey, the university campus also has 3 buildings with LEED NC Campus certificate and LEED BD+C Gold certificate. In addition, it aims to continuously improve the energy efficiency objectives on campus in an innovative way. For this purpose, energy management and storage systems are being installed in the Dormitory 6 building, which is used as the demo area of the LEGOFIT project, for the purpose of turning it into a PED project.The Cascais Smart Pole by NOVA SBE was implemented in a multifunctional area that integrates housing, commerce, facilities, and public spaces, acquiring a local identity through sociocultural interaction between residents, students, and visitors/tourists , also covering an area of 4.2ha of green spaces. Located in the Municipality of Cascais, a leading municipality in defining a Municipal Roadmap for Carbon Neutrality, the Cascais Smart Pole by NOVA SBE led the generation of change-makers, influencing people and all stakeholders on the path of innovation combined with carbon neutrality. The Cascais Smart Pole is a living lab pilot project that aims to create a carbon-neutral, sustainable urban environment by integrating innovative technological solutions and community engagement. The concept of the project is based on a physical space and a virtual space, providing testing ground for experimentation in domains of decarbonization, renewable energy, and climate resilience. Planned continuation of the project is establishing a Renewable Energy Community (REC) to promote local clean energy production and shared consumption. This initiative will support the Cascais 2030 Sustainable Energy Strategy and the Cascais 2050 Carbon Neutrality Roadmap, engaging residents and businesses in sustainable practices to drive collective impact. A Renewable Energy Community (CER) will be created from the Cascais Smart Pole, which will encourage residents, companies and NOVA SBE to jointly invest in the installation of photovoltaic panels, to share the consumption of the clean energy produced. The panels will be installed on the roof of NOVA SBE and surrounding residential buildings, and all interested parties will be able to participate in the CER by investing, purchasing energy or donating their roof or panels to the CER. The aim is for residents to not only save on their electricity bills, but also obtain social and financial returns and contribute to the decarbonization effort in that geographic area. Main objectives/activities and outcomes of the living lab include: 1. Roadmap for Carbon Neutrality: The project developed a comprehensive inventory of 2019 greenhouse gas emissions and modeled the path to carbon neutrality by 2050. Strategic options for decarbonization were outlined, with a focus on mobility and energy efficiency. The efforts resulted in a 65-ton CO₂ reduction during the project's duration. 2. Smart Pole Platform: A participatory digital platform was created, providing data on project activities and allowing public engagement through submissions of ideas. It also included tools like a carbon footprint calculator. The platform gained over 13,000 visits, fostering collaboration among stakeholders. 3. Smart Pole Community: Community-focused initiatives included renewable energy workshops and microgreen cultivation activities. Events engaged locals and students, with over 17 activities conducted, such as street fairs and environmental workshops. The Microgreen Community distributed kits to promote urban agriculture. 4. Urban Mobility: Sustainable transport behaviors were promoted via a mobile app (MobiCascais), tracking CO₂ emissions saved. Due to delays, some planned features were revised, but the app incorporated mobility KPIs and avoided emissions data. A campaign highlighted the importance of shared mobility. 5. Energy Efficiency: Smart energy management systems optimized HVAC and lighting, integrating occupancy data for predictive efficiency. Indoor air quality monitoring systems were deployed, and smart energy counters were installed in classrooms. The project saved energy while addressing privacy concerns. 6. Circular Economy in Waste: The initiative collected 19.4 tons of used cooking oil, surpassing the goal by 43%, producing biodiesel for municipal vehicles. A gamified "Pay-As-You-Throw" system incentivized recycling, reducing waste contamination rates. Smart bins monitored waste levels, improving collection efficiency. 7. Green Living: Urban green spaces were transformed with native plants and smart irrigation systems, reducing water consumption and enhancing biodiversity. Over 7,000 trees and shrubs were planted, and lawns were replaced with water-efficient meadows. Smart systems optimized water use and tracked conservation progress. 8. Smart Pole Market: Originally intended as a carbon credit marketplace, this activity shifted focus to creating a carbon footprint calculator for businesses. The tool provides actionable insights for companies to reduce their emissions. Workshops introduced the software to local entrepreneurs. 9. Smart Pole World: Communication efforts included public awareness campaigns, workshops, and art initiatives like "Sustent’Arte." Over 20 events engaged stakeholders, promoting the project's goals. The communication strategy emphasized local impact and scalability to inspire other municipalities. Main areas/axes of the living lab: Community, Water, Buildings, Energy, Green Spaces, Mobility, Circular Economy
        A1P025: Estimated PED case study / PED LAB costs
        A1P025: Estimated PED case study / PED LAB costs [mil. EUR]78044401
        Contact person for general enquiries
        A1P026: NameTonje Healey TrulsrudElina EkelundCem KeskinAdelina RodriguesRachel Leutgöb (e7)Mariana Sardinha
        A1P027: OrganizationNorwegian University of Science and Technology (NTNU)Citycon OyjCenter for Energy, Environment and Economy, Ozyegin UniversityMaia Municipality (CM Maia) – Energy and Mobility divisione7 GmbHGet2C Climate change, Energy, Carbon markets, Climate finance, Sustainable development
        A1P028: AffiliationResearch Center / UniversitySME / IndustryResearch Center / UniversityMunicipality / Public BodiesResearch Center / UniversitySME / Industry
        A1P028: OtherMariana Sardinha
        A1P029: Emailtonje.h.trulsrud@ntnu.noElina.ekelund@citycon.comcem.keskin@ozyegin.edu.trdscm.adelina@cm-maia.ptrachel.leutgoeb@e-sieben.atmariana.sardinha@get2c.com
        Contact person for other special topics
        A1P030: NameElina EkelundM. Pınar MengüçCarolina Gonçalves (AdEPorto)Mariana SardinhaMariana Sardinha
        A1P031: EmailElina.ekelund@citycon.compinar.menguc@ozyegin.edu.trcarolinagoncalves@adeporto.eumariana.sardinha@get2c.com
        Pursuant to the General Data Protection RegulationYesYesYesYesYesYes
        A2P001: Fields of application
        A2P001: Fields of application
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • Waste management,
        • Indoor air quality,
        • Construction materials
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies,
        • Waste management,
        • Indoor air quality,
        • Construction materials
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies
        • Energy efficiency,
        • Energy production,
        • Urban comfort (pollution, heat island, noise level etc.)
        • Energy efficiency,
        • Energy production,
        • E-mobility,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies,
        • Water use,
        • Waste management,
        • Indoor air quality
        A2P001: Other1. Roadmap for Carbon Neutrality • Tools: GHG emissions inventory tools and carbon modeling methodologies, with support from Get2C. • Methods: Data collection through surveys, energy use assessments, and direct engagement with stakeholders; scenario modeling for emissions reduction up to 2050. • Strategies: Alignment with the Cascais Municipal Roadmap for Carbon Neutrality and development of decarbonization pathways based on predictive modeling. 2. Smart Pole Platform • Tools: An interactive digital platform integrated with real-time data sharing and public participation features. Methods: Benchmarking similar IoT-enabled platforms and creating user-friendly UX/UI designs. • Methods: Benchmarking of similar platforms and custom UX/UI design to track project-specific KPIs like CO₂ emissions and participation rates. • Strategies: Enabling transparency and collaboration by integrating APIs for data collection and feedback loops for community input. 3. Smart Pole Community • Tools: Social media platforms and engagement tools for organizing events and activities. • Methods: Conducting workshops, technical visits, and environmental events to foster collaboration among residents, students, and stakeholders. • Strategies: Promoting sustainable habits through participatory activities such as microgreen cultivation and educational campaigns. 4. Urban Mobility • Tools: The Cascais Smart Pole platform mobility dashboard for monitoring metrics like avoided CO₂ emissions, trips taken, and kilometers traveled. • Methods: Integration of mobility data with platform analytics; promotion of shared transport options like bikes and scooters. • Strategies: Public awareness campaigns and gamification to encourage sustainable mobility behaviors and reduce reliance on private vehicles. 5. Energy Efficiency • Tools: Cisco CMX platform for zonal mapping, IAQ monitoring sensors for CO₂ and temperature tracking, intelligent energy systems, including occupancy-based HVAC and lighting controls managed via the Building Management System (BMS) by Veolia. • Methods: Integration of Wi-Fi-based occupancy data with HVAC and lighting systems for predictive energy adjustments. • Strategies: Real-time energy optimization algorithms and data-driven decision-making to improve efficiency and reduce emissions 6. Circular Economy in Waste • Tools: Smart waste bins with monitoring systems and a gamified "Pay-As-You-Throw" (PAYT) system using Citypoints by PRIO. • Methods: Collection of used cooking oils for biodiesel production, incentivized through gamification. • Strategies: Promoting recycling behaviors via smart monitoring and awareness campaigns while integrating circular economy practices 7. Water Use • Tools: Installation of water refill stations integrated with a digital mapping system for real-time updates on station locations. • Methods: Community campaigns promoting tap water use and workshops highlighting the environmental benefits of refill infrastructure. • Strategies: Educating residents and visitors about sustainable water use practices and providing accessible refill infrastructure. 8. Green Living • Tools: Smart irrigation systems, including various controllers, including Hunter's ACC2-75D-P controller and the MySOLEM app, with geolocation-based control and sensors for soil moisture, leaks, and water usage. Transformation of urban green spaces with native plants, planting trees. • Methods: Conversion of traditional lawns to rainfed meadows; installation of localized irrigation equipment to minimize water consumption. • Strategies: Expansion of smart irrigation systems to additional areas, enhancing biodiversity, and involving the community in sustainable practices 9. Smart Pole Market • Tools: A carbon footprint calculator – a software by Delta Soluções designed to assist businesses in assessing and reducing their emissions. • Methods: Workshops and municipal partnerships to encourage software adoption among local companies. • Strategies: Supporting businesses in carbon reporting and neutrality planning through accessible tools and guidance. 10. Smart Pole World • Tools: Cascais Smart Pole World website, multimedia campaigns, educational programs and Sustent’Arte artistic initiatives. • Methods: Stakeholder engagement through events like GreenFest and knowledge transfer via workshops and summer schools. • Strategies: Leveraging digital communication and interactive events to raise awareness and inspire community-driven sustainability efforts.
        A2P002: Tools/strategies/methods applied for each of the above-selected fields
        A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: Energy efficient envelope, with good insulation, triple glazing windows and airtight envelope. (EPC = 0) Energy Flexibility: MCP controls for the heat pump in the apartments. Energy production: PV panels on the roof, Ground source heat pumps Waste management: construction waste was kept to a minimum and sorted and collected separately as much as possible. Indoor air quality: Exhaust ventilation and opening of windows Construction materials: low carbon emission building materialsEnergy efficiency: - eliminating waste energy utilizing smart energy system - utilizing excess heat from grocery stores Energy flexibility: - A battery energy storage system (1,5 MW/1,5MWh); Active participation in Nordpool electricity market (FCR-N) Energy production: - heating and cooling from geothermal heat pump system; 171 energy wells (over 51 km); heat capacity 4 MW - installation of new photovoltaic (PV) systems for renewable on-site energy production; Estimation of annual production is about 540 MWh (630 kWp) E-mobility - Installation of charging stations for electric vehicles (for 134 EVs) - e-bike services (warm storage room, charging cabinets for e-bikes) Digital technologies: - Building Analytics system by Schneider ElectricLEED NC Campus + LEGOFIT Project Energy Efficiency: Tri- generation, Compliance with ISO 50001, ASHRAE 90.1, energy efficient appliances, HVAC and lighting Energy flexibility: Energy demand management Energy production: Solar PVs Onsite + (to be installed more) E-mobility: EV Charging stations Indoor Air Quality: Energy Management System, Compliance with ASHRAE 62.1, ASHRAE 55 Construction materials: Passive systems, LEED certified buildings, innovative materials such as PCM Waste Management: Zero waste documentEnergy production: - installation of photovoltaic systems for renewable on-site energy production; - installation of a BIPV demonstrator for the City Hall building. Energy flexibility: - implementation of an energy community through an active citizens involvement process. Digital technologies: - smart-meters installation in some dwellings in order to monitor consumption and suggest more sustainable energy behaviours. [PCP] Through https://balcaodigital.e-redes.pt/consumptions/history “Espaço Municipal” (https://www.espacomunicipal.pt/pt/) might access history of consumption up to midnight of the previous day. E-mobility: - Installation of new charging stations for electric vehicles; Urban comfort and air quality: - Monitoring units for air pollutants concentration (PM2.5, PM10, NO2) [PCP] Currently we are monitoring CO, O3, NO2, SO2, noise, PM2.5 and PM10 at a point 267 m east from the four buildings southeast of Sobreiro area:
        A2P003: Application of ISO52000
        A2P003: Application of ISO52000YesYesYesNoNo
        A2P004: Appliances included in the calculation of the energy balance
        A2P004: Appliances included in the calculation of the energy balanceNoYesYesYesYes
        A2P005: Mobility included in the calculation of the energy balance
        A2P005: Mobility included in the calculation of the energy balanceNoNoNoNoYes
        A2P006: Description of how mobility is included (or not included) in the calculation
        A2P006: Description of how mobility is included (or not included) in the calculationnot includedMobility is not included in the energy model.Not included, the campus is a non car area except emergenciesMobility was an integral part of the CO₂ inventory for the Cascais Smart Pole project, assessed through surveys capturing commuting behaviors among the NOVA SBE community. Emission factors for various transport modes, including private cars, public transport, and active mobility, were calculated to quantify contributions to greenhouse gas emissions. Additionally, the MobiCascais app tracked avoided CO₂ emissions from shifts to sustainable mobility options like shared bicycles and public transport. This data was integrated into the project’s digital platform, providing key metrics such as trips taken, kilometers traveled, and tons of CO₂ avoided, supporting the roadmap toward carbon neutrality.
        A2P007: Annual energy demand in buildings / Thermal demand
        A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]0.1485.51
        A2P008: Annual energy demand in buildings / Electric Demand
        A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.1095.8
        A2P009: Annual energy demand for e-mobility
        A2P009: Annual energy demand for e-mobility [GWh/annum]
        A2P010: Annual energy demand for urban infrastructure
        A2P010: Annual energy demand for urban infrastructure [GWh/annum]
        A2P011: Annual renewable electricity production on-site during target year
        A2P011: PVyesyesyesyesnoyes
        A2P011: PV - specify production in GWh/annum [GWh/annum]0.0580.54
        A2P011: Windnononononono
        A2P011: Wind - specify production in GWh/annum [GWh/annum]
        A2P011: Hydronononononono
        A2P011: Hydro - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_elnononononono
        A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_peat_elnononononono
        A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
        A2P011: PVT_elnononononono
        A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
        A2P011: Othernononononono
        A2P011: Other - specify production in GWh/annum [GWh/annum]
        A2P012: Annual renewable thermal production on-site during target year
        A2P012: Geothermalyesyesnononono
        A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]5
        A2P012: Solar Thermalnononoyesnoyes
        A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_heatnononononono
        A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: Waste heat+HPnononononono
        A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_peat_heatnononononono
        A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: PVT_thnononononono
        A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_firewood_thnononononono
        A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Othernononononono
        A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
        A2P013: Renewable resources on-site - Additional notes
        A2P013: Renewable resources on-site - Additional notes*Annual energy use below is presentedin primary energy consumptionThe photovoltaic panels installed as part of the Cascais Smart Pole project are currently set up within a self-consumption production unit (UPAC). While a contract was signed to allow sharing surplus production with nearby facilities, such as a school and a paddle tennis court, this setup remains in preliminary stages and has not yet been fully implemented. This arrangement is intended to eventually support shared energy use as part of the ongoing Renewable Energy Community (REC) initiative. Additionally, the project incorporates the production of biodiesel from collected used cooking oil (UCO), which is processed and utilized in municipal vehicles.
        A2P014: Annual energy use
        A2P014: Annual energy use [GWh/annum]0.19411.33.5
        A2P015: Annual energy delivered
        A2P015: Annual energy delivered [GWh/annum]0.03685.76
        A2P016: Annual non-renewable electricity production on-site during target year
        A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]00
        A2P017: Annual non-renewable thermal production on-site during target year
        A2P017: Gasnononononono
        A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]0
        A2P017: Coalnononononono
        A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]0
        A2P017: Oilnononononono
        A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]0
        A2P017: Othernononononono
        A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P018: Annual renewable electricity imports from outside the boundary during target year
        A2P018: PVnonoyesnonono
        A2P018 - PV: specify production in GWh/annum if available [GWh/annum]0.00045547
        A2P018: Windnononononono
        A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
        A2P018: Hydronononononono
        A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_elnononononono
        A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_peat_elnononononono
        A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: PVT_elnononononono
        A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Othernoyesnononono
        A2P018 - Other: specify production in GWh/annum if available [GWh/annum]5.26
        A2P019: Annual renewable thermal imports from outside the boundary during target year
        A2P019: Geothermalnononononono
        A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Solar Thermalnononononono
        A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_heatnononononono
        A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Waste heat+HPnononononono
        A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_peat_heatnononononono
        A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: PVT_thnononononono
        A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_firewood_thnononononono
        A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Othernononononono
        A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
        A2P020: Share of RES on-site / RES outside the boundary
        A2P020: Share of RES on-site / RES outside the boundary01.05323193916350000
        A2P021: GHG-balance calculated for the PED
        A2P021: GHG-balance calculated for the PED [tCO2/annum]-0.000430
        A2P022: KPIs related to the PED case study / PED Lab
        A2P022: Safety & SecurityPersonal Safety
        A2P022: HealthHealthy community
        A2P022: Education
        A2P022: MobilitySustainable mobility
        A2P022: EnergyNOn-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/self-consumption, net energy/net power, peak delivered/peak expoted, total greenhouse gas emissionOn-site energy ratioYes
        A2P022: Water
        A2P022: Economic developmentcapital costs, operational cots, overall economic performance (5 KPIs)
        A2P022: Housing and Communitydemographic composition, diverse community, social cohesion
        A2P022: Waste
        A2P022: OtherSmartness and flecibility, Indoor Environmental Quality, Social performance - Equity (affordable housing, access to servicees and amenitioes, afforability of energy, living conditions, sustinable mobility, universal design)
        A2P023: Technological Solutions / Innovations - Energy Generation
        A2P023: Photovoltaicsyesyesyesyesyesyes
        A2P023: Solar thermal collectorsnononoyesnono
        A2P023: Wind Turbinesnonoyesnonono
        A2P023: Geothermal energy systemyesyesnonoyesno
        A2P023: Waste heat recoverynoyesnononono
        A2P023: Waste to energynononononoyes
        A2P023: Polygenerationnononononono
        A2P023: Co-generationnonoyesnonono
        A2P023: Heat Pumpyesnoyesyesyesno
        A2P023: Hydrogennononononono
        A2P023: Hydropower plantnononononono
        A2P023: Biomassnononononono
        A2P023: Biogasnononononono
        A2P023: Other
        A2P024: Technological Solutions / Innovations - Energy Flexibility
        A2P024: A2P024: Information and Communication Technologies (ICT)noyesyesyesnoyes
        A2P024: Energy management systemyesyesyesyesnoyes
        A2P024: Demand-side managementyesnoyesnonono
        A2P024: Smart electricity gridnoyesnononono
        A2P024: Thermal Storagenoyesnonoyesno
        A2P024: Electric Storagenoyesyesyesnono
        A2P024: District Heating and Coolingnonoyesnoyesno
        A2P024: Smart metering and demand-responsive control systemsyesnoyesyesnoyes
        A2P024: P2P – buildingsnononononono
        A2P024: Other
        A2P025: Technological Solutions / Innovations - Energy Efficiency
        A2P025: Deep Retrofittingnononoyesyesno
        A2P025: Energy efficiency measures in historic buildingsnonononoyesno
        A2P025: High-performance new buildingsyesyesyesnonono
        A2P025: Smart Public infrastructure (e.g. smart lighting)noyesnoyesnono
        A2P025: Urban data platformsnononononoyes
        A2P025: Mobile applications for citizensnononononoyes
        A2P025: Building services (HVAC & Lighting)yesyesyesyesnoyes
        A2P025: Smart irrigationnonoyesnonoyes
        A2P025: Digital tracking for waste disposalnononoyesnono
        A2P025: Smart surveillancenonoyesnonono
        A2P025: Other
        A2P026: Technological Solutions / Innovations - Mobility
        A2P026: Efficiency of vehicles (public and/or private)nononoyesnono
        A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)noyesnononoyes
        A2P026: e-Mobilitynoyesyesyesnono
        A2P026: Soft mobility infrastructures and last mile solutionsnonoyesnonono
        A2P026: Car-free areanonoyesnonono
        A2P026: OtherLocal transportation hub with direct connection to metro & bus terminal; parking spaces for 1,400 bicycles and for 1,300 cars Promoting e-Mobility: 134 charging stations, A technical reservation for expanding EV charging system 1400 bicycle racks and charging cabinets for 10 e-bicycle batteries
        A2P027: Mobility strategies - Additional notes
        A2P027: Mobility strategies - Additional notes
        A2P028: Energy efficiency certificates
        A2P028: Energy efficiency certificatesYesYesYesYesYes
        A2P028: If yes, please specify and/or enter notesEPC = 0, energy neutral buildingEnergy Performance Certificate => Energy efficiency class B (2018 version)The Municipal Buildings have an energy certificate, according to the Portuguese legislation.
        A2P029: Any other building / district certificates
        A2P029: Any other building / district certificatesNoYesYesNoNo
        A2P029: If yes, please specify and/or enter notesLEED (Core & Shell, v4) GOLD certification, Smart Building certification (GOLD)LEED BD+C, LEED NC CAMPUS
        A3P001: Relevant city /national strategy
        A3P001: Relevant city /national strategy
        • Energy master planning (SECAP, etc.),
        • New development strategies,
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Smart cities strategies,
        • Energy master planning (SECAP, etc.),
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Urban Renewal Strategies,
        • Energy master planning (SECAP, etc.),
        • Promotion of energy communities (REC/CEC),
        • Climate change adaption plan/strategy (e.g. Climate City contract)
        • New development strategies
        A3P002: Quantitative targets included in the city / national strategy
        A3P002: Quantitative targets included in the city / national strategyRelevant city strategies behind PED development in Espoo include the following: - The Espoo Story: Sustainability is heavily included within the values and goals of the current Espoo city strategy, also known as the Espoo Story, running from 2021 to 2025. For example, the strategy names being a responsible pioneer as one of the main values of the city and has chosen achieving carbon neutrality by 2030 as one of the main goals of the current council term. In addition to the Espoo story, four cross-administrative development programmes act as cooperation platforms that allow the city, together with its partners, to develop innovative solutions through experiments and pilot projects in line with the Espoo Story. The Sustainable Espoo development programme is one of the four programmes, thus putting sustainability on the forefront in city development work. - EU Mission: 100 climate-neutral and smart cities by 2030: Cities selected for the Mission commit to achieving carbon-neutrality in 2030. A key tool in the Mission is the Climate City Contract. Each selected city will prepare and implement its contracts in collaboration with local businesses as well as other stakeholders and residents. - Covenant of Mayors for Climate and Energy: Espoo is committed to the Covenant of Mayors for Climate and Energy, under which the signatories commit to supporting the European Union’s 40% greenhouse gas emission reduction goal by 2030. The Sustainable Energy and Climate Action Plan (SECAP) is a key instrument for implementing the agreement. The Action Plan outlines the key measures the city will take to achieve its carbon neutrality goal. The plan also includes a mapping of climate change risks and vulnerabilities, adaptation measures, emission calculations, emission reduction scenarios and impact estimations of measures. The SECAP of the City of Espoo is available here (only available in Finnish). - UN Sustainable development Goals: The city of Espoo has committed to becoming a forerunner and achieving the UN's Sustainable Development Goals (SDG) by 2025. The goal is to make Espoo financially, ecologically, socially, and culturally sustainable. - The Circular Cities Declaration: At the end of 2020, Espoo signed the Europe-wide circular economy commitment Circular Cities Declaration. The ten goals of the declaration promote the implementation of the city’s circular economy. - Espoo Clean Heat: Fortum and the City of Espoo are committed to producing carbon-neutral district heating in the network operating in the areas of Espoo, Kauniainen and Kirkkonummi during the 2020s. The district heating network provides heating to some 250,000 end-users in homes and offices. Coal will be completely abandoned in the production of district heating by 2025. The main targets related to PED development included in the noted city strategies are the following: - Espoo will achieve carbon neutrality by 2030. To be precise, this carbon neutrality goal is defined as an 80% emission reduction from the 1990 level by the year 2030. The remaining 20% share can be absorbed in carbon sinks or compensated by other means. - District heating in Espoo will be carbon-neutral by 2029, and coal-based production will be phased out from district heating by 2025. - Espoo aims to end the use of fossil fuels in the heating of city-owned buildings by 2025. - Quantitative goals within the Espoo SECAP report: - Espoo aims to reduce total energy consumption within the municipal sector by 7.5% by the end of 2025 in comparison to the 2015 level. The social housing company Espoon Asunnot OY aims to meet the same target. - Espoo aims to cover 10% of the energy consumption of new buildings via on-site production. - Espoo aims to raise the modal split of cycling to 15% by 2024. - Espoo aims to raise the modal split of public transport by 1.1% yearly. - Espoo aims to reduce the emissions of bus transport by 90% by the end of 2025, when compared to 2010 levels.National Roadmap for Carbon Neutrality 2050 (RNC2050): 1. GHG Emissions Reduction: 55% reduction by 2030 (from 2005 levels). 100% reduction by 2050. 2. Renewable Energy: 47% share of renewables in final energy consumption by 2030. 20% renewable energy in transport by 2030. 3. Energy Efficiency: 35% improvement in primary energy consumption by 2030. Cascais 2050 Municipal Roadmap for Carbon Neutrality: 1. Renewable Energy Production: Local Energy Communities: Initiated in 2022, Cascais aims to generate 213 GWh annually through photovoltaic installations (23% of town’s electricity consumption). 2. Waste Management: 152% increase in plastic recycling (2014-2022) 3. Electric Mobility: Adoption of 100% electric waste collection vehicles
        A3P003: Strategies towards decarbonization of the gas grid
        A3P003: Strategies towards decarbonization of the gas grid
        • Electrification of Heating System based on Heat Pumps,
        • Electrification of Cooking Methods
        • Other
        • Hydrogen
        A3P003: OtherBoiler Automation, Energy Management System, Electric Battery Storage, Demand Management and Flexible PricingAt a national level there are some studies regarding the decarbonization of the gas grid, but no concrete strategies so far.
        A3P004: Identification of needs and priorities
        A3P004: Identification of needs and priorities- Citycon (developer and owner of Lippulaiva) aims to be carbon neutral in its energy use by 2030 - Lippulaiva is a unique urban centre with state-of-the-art energy concept. The centre has a smart managing system, which allows for example the temporary reduction of power used in air conditioning and charging stations when energy consumption is at its peak. In addition, a backup generator and a large electric battery will balance the operation of the electricity network. - Lippulaiva is also an important mobility hub for the people of Espoo. Espoonlahti metro station is located under the centre, and the West Metro started to operate to Espoonlahti in December 2022. Lippulaiva also has a bus terminal, which serves the metro’s feeder traffic in the Espoonlahti major district.Carbon and Energy Neutrality• Reduction of GHG Emissions and Decarbonization Pathways (renewable energy adoption, energy-efficient retrofitting, reducing individual vehicle use) • Infrastructure and Technological Development (sustainable mobility infrastructure - public transportation, EV charging stations, cycling networks; Green spaces adaptation to climate change – biodiversity planting, smart irrigation systems; Digital tools development - carbon footprint calculators, mobility information hubs to support decision-making and track progress) • Promotion of Circular Economy and Waste Management (biodiesel production from used cooking oil, community composting, home composting, waste sorting systems) • Community Engagement and Behavioral Change (renewable energy communities, sustainable/soft mobility practices, waste reduction behaviors, awareness and education, workshops, campaigns, events) • Stakeholder Collaboration (strengthen partnerships among local businesses, public authorities, educational institutions, and community members; shared ownership of initiatives through participatory planning and implementation) • Policy Integration and Planning (alignment with Cascais 2050 Roadmap, the National Roadmap for Carbon Neutrality, and European decarbonization strategies; share of best practices; set up of a legal framework for REC (Renewable energy Community in the area) • Monitoring and Scaling Successful Pilots (Establish robust monitoring systems for energy, water, and waste management; Replicate and expand pilot projects like smart irrigation, carbon footprint tools, and renewable energy communities to other areas)
        A3P005: Sustainable behaviour
        A3P005: Sustainable behaviourFor Citycon, it was important to engage local people within the Lippulaiva project. During the construction period as well as after opening of the shopping center, citizens have been engaged in multiple ways, such as informing local citizens of the progress of construction, engaging young people in the design processes of the shopping centre and long-term commitment of youngsters with Lippulaiva Buddy class initiative. Users’ engagement activities are conducted in close co-operation with SPARCS partners.Under LEGOFIT project, promoting sustainable behavior for better occupant experience is a targeted aim under a work package.Use of public transport, bicycles, and shared mobility options; using carbon footprint calculators to understand and reduce emissions; recycling and proper waste sorting, including biodiesel production from used cooking oil; adopting smart irrigation systems to conserve water in green spaces; engagement in community composting and home composting to reduce organic waste; preparedness for participation in Renewable Energy Communities (RECs) for shared renewable energy production; switching to energy-efficient technologies like LED lighting and A+ rated appliances; participation in events, workshops, and educational courses on sustainability and climate action.
        A3P006: Economic strategies
        A3P006: Economic strategies
        • Innovative business models
        • Innovative business models,
        • PPP models,
        • Existing incentives
        • Innovative business models
        • Innovative business models,
        • Circular economy models,
        • Demand management Living Lab,
        • Existing incentives,
        • Other
        A3P006: OtherCollaborative energy models: Renewable Energy Communities (RECs)
        A3P007: Social models
        A3P007: Social models
        • Co-creation / Citizen engagement strategies,
        • Social incentives,
        • Quality of Life
        • Co-creation / Citizen engagement strategies
        • Co-creation / Citizen engagement strategies,
        • Prevention of energy poverty,
        • Digital Inclusion,
        • Citizen/owner involvement in planning and maintenance,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Strategies towards (local) community-building
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Social incentives,
        • Quality of Life,
        • Digital Inclusion,
        • Citizen/owner involvement in planning and maintenance,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        A3P007: Other
        A3P008: Integrated urban strategies
        A3P008: Integrated urban strategies
        • Building / district Certification
        • City Vision 2050,
        • SECAP Updates,
        • Building / district Certification
        • City Vision 2050,
        • SECAP Updates,
        • Building / district Certification
        • Strategic urban planning,
        • District Energy plans,
        • City Vision 2050,
        • SECAP Updates
        A3P008: Other
        A3P009: Environmental strategies
        A3P009: Environmental strategies
        • Other
        • Energy Neutral,
        • Low Emission Zone,
        • Net zero carbon footprint,
        • Greening strategies,
        • Cool Materials
        • Energy Neutral,
        • Net zero carbon footprint,
        • Pollutants Reduction
        • Carbon-free,
        • Life Cycle approach
        • Net zero carbon footprint,
        • Pollutants Reduction,
        • Greening strategies,
        • Nature Based Solutions (NBS)
        A3P009: OtherCarbon free in terms of energy
        A3P010: Legal / Regulatory aspects
        A3P010: Legal / Regulatory aspects- Energy efficiency regulations (Directive 2006/32/EC and 2009/72/EC) - EU directive 2010/31/EU on the energy performance of buildings => all new buildings should be “nearly zero-energy buildings” (nZEB) from 2021ISO 45001, ISO 14001, ISO 50001, Zero Waste Policycompliance with Renewable Energy Communities (REC) regulations for energy sharing; •adherence to General Data Protection Regulation (GDPR) for data privacy in smart systems; •following EEA Grants public procurement rules for tendering and service hiring; •meeting urban mobility and transportation regulations for low-emission zones and EV infrastructure; •fulfilling waste management regulations for biodiesel production and organic waste processing
        B1P001: PED/PED relevant concept definition
        B1P001: PED/PED relevant concept definitionThe demonstration projects is a new residential development, which consists of an apartment complex which includes 39 apartments spread over 3 floors. It is a sustainble plus energy neighbouhood, and has reached a plus energy balance on its first year in operation. It has MPC controls on the individual heat pumps to improve the energy flexibility of the apartments. It includes the "social beatiful" concepts with a strong emphasis on the social sustainability of the project.Lippulaiva is a project with high level goal in terms of energy efficiency, energy flexibility and energy production.The campus should be considered a PED case study due to its exemplary commitment to sustainability and energy efficiency, as evidenced by several of its buildings achieving LEED certification. This certification underscores the campus's adherence to rigorous environmental standards and its proactive steps towards reducing carbon footprints. Also, the integration of sustainable practices across the campus aligns with the PED framework, which aims to create urban areas that produce more energy than they consume. Therefore, this campus serves as a model of how educational institutions can lead the way in fostering sustainable communities and advancing the goals of PED.The Cascais Smart Pole (CSP) is a relevant PED case study as it is a district-level project with high level of aspiration in terms of energy efficiency, energy flexibility and energy production. It employs core PED principles—energy production, efficiency, and sustainability—by integrating renewable energy, efficiency measures, community engagement, smart technologies, and scalable and replicable practices. Its outcomes align with the PED vision by fostering renewable energy, establishing Renewable Energy Communities, aiming for energy surplus, enhancing quality of life, and reducing environmental impacts.
        B1P002: Motivation behind PED/PED relevant project development
        B1P002: Motivation behind PED/PED relevant project developmentThe need for social housing and the ambition to create a great living environment with a high-performance apartment complex, supplied with renewable energy. It results in lower energy bills for the tenants and high-quality homes.- Citycon’s (developer and owner of Lippulaiva) target is to be carbon neutral by 2030 - Increasing sustainability requirements from the financing, tenants, cities, other stakeholdersThe purpose of implementing the PED project on this sustainable campus, where several buildings have LEED certification, is to further enhance its energy efficiency and environmental stewardship by creating a district that generates more energy than it consumes. The initiator was motivated by the need to address climate change, reduce greenhouse gas emissions, and promote renewable energy sources. Additionally, the campus's existing commitment to sustainability and the success of its LEED-certified buildings provided a strong foundation for demonstrating the feasibility and benefits of PED development, serving as a model for sustainable urban living and energy self-sufficiency.CSP aims to serve as a living lab that demonstrates innovative solutions for achieving carbon neutrality and addressing climate change. Living Lab not only reduces carbon emissions but also creates a blueprint for replicable and scalable solutions, addressing the urgent need for climate action while improving quality of life, enabling energy efficiency, renewable energy production, energy sharing through REC (to be established), and aligning with global decarbonization goals.
        B1P003: Environment of the case study area
        B2P003: Environment of the case study areaSuburban areaUrban areaSuburban areaUrban area
        B1P004: Type of district
        B2P004: Type of district
        • New construction
        • New construction
        • Renovation
        • New construction
        B1P005: Case Study Context
        B1P005: Case Study Context
        • New Development
        • Re-use / Transformation Area,
        • New Development
        • Retrofitting Area
        • New Development,
        • Retrofitting Area
        B1P006: Year of construction
        B1P006: Year of construction202220242020
        B1P007: District population before intervention - Residential
        B1P007: District population before intervention - Residential1662
        B1P008: District population after intervention - Residential
        B1P008: District population after intervention - Residential1878
        B1P009: District population before intervention - Non-residential
        B1P009: District population before intervention - Non-residential98004925
        B1P010: District population after intervention - Non-residential
        B1P010: District population after intervention - Non-residential98006126
        B1P011: Population density before intervention
        B1P011: Population density before intervention00340020
        B1P012: Population density after intervention
        B1P012: Population density after intervention0034.3377715487040024.254545454545
        B1P013: Building and Land Use before intervention
        B1P013: Residentialnononononoyes
        B1P013 - Residential: Specify the sqm [m²]
        B1P013: Officenononononoyes
        B1P013 - Office: Specify the sqm [m²]
        B1P013: Industry and Utilitynononononono
        B1P013 - Industry and Utility: Specify the sqm [m²]
        B1P013: Commercialnoyesnononoyes
        B1P013 - Commercial: Specify the sqm [m²]
        B1P013: Institutionalnonoyesnonoyes
        B1P013 - Institutional: Specify the sqm [m²]285.400
        B1P013: Natural areasnoyesnononoyes
        B1P013 - Natural areas: Specify the sqm [m²]
        B1P013: Recreationalnononononoyes
        B1P013 - Recreational: Specify the sqm [m²]
        B1P013: Dismissed areasnononononono
        B1P013 - Dismissed areas: Specify the sqm [m²]
        B1P013: Othernononononono
        B1P013 - Other: Specify the sqm [m²]
        B1P014: Building and Land Use after intervention
        B1P014: Residentialyesyesnononoyes
        B1P014 - Residential: Specify the sqm [m²]2394
        B1P014: Officenononononoyes
        B1P014 - Office: Specify the sqm [m²]
        B1P014: Industry and Utilitynononononono
        B1P014 - Industry and Utility: Specify the sqm [m²]
        B1P014: Commercialnoyesnononoyes
        B1P014 - Commercial: Specify the sqm [m²]
        B1P014: Institutionalnonoyesnonoyes
        B1P014 - Institutional: Specify the sqm [m²]280000
        B1P014: Natural areasnononononoyes
        B1P014 - Natural areas: Specify the sqm [m²]
        B1P014: Recreationalnononononoyes
        B1P014 - Recreational: Specify the sqm [m²]
        B1P014: Dismissed areasnononononono
        B1P014 - Dismissed areas: Specify the sqm [m²]
        B1P014: Othernononononono
        B1P014 - Other: Specify the sqm [m²]
        B2P001: PED Lab concept definition
        B2P001: PED Lab concept definition
        B2P002: Installation life time
        B2P002: Installation life timePermanent installation
        B2P003: Scale of action
        B2P003: ScaleVirtual
        B2P004: Operator of the installation
        B2P004: Operator of the installationCM Maia, IPMAIA, NEW, AdEP.
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P006: Circular Economy Approach
        B2P006: Do you apply any strategy to reuse and recycling the materials?No
        B2P006: Other
        B2P007: Motivation for developing the PED Lab
        B2P007: Motivation for developing the PED Lab
        • Strategic
        B2P007: Other
        B2P008: Lead partner that manages the PED Lab
        B2P008: Lead partner that manages the PED LabMunicipality
        B2P008: Other
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Collaborative partners that participate in the PED Lab
        • Academia,
        • Private,
        • Industrial,
        • Citizens, public, NGO,
        • Other
        B2P009: OtherEnergy Agency
        B2P010: Synergies between the fields of activities
        B2P010: Synergies between the fields of activities
        B2P011: Available facilities to test urban configurations in PED Lab
        B2P011: Available facilities to test urban configurations in PED Lab
        • Buildings,
        • Demand-side management,
        • Prosumers,
        • Renewable generation,
        • Energy storage,
        • Efficiency measures,
        • Lighting,
        • E-mobility,
        • Information and Communication Technologies (ICT),
        • Ambient measures,
        • Social interactions
        B2P011: Other
        B2P012: Incubation capacities of PED Lab
        B2P012: Incubation capacities of PED Lab
        • Monitoring and evaluation infrastructure,
        • Tools, spaces, events for testing and validation
        B2P013: Availability of the facilities for external people
        B2P013: Availability of the facilities for external peopleDepends on the building: _Tecmaia is open to the public but the buildings are for the exclusive use of companies allocated at the industrial site; _The municipal buildings have public access; _The residential buildings have an exclusive use for the residents.
        B2P014: Monitoring measures
        B2P014: Monitoring measures
        • Execution plan,
        • Available data,
        • Type of measured data
        B2P015: Key Performance indicators
        B2P015: Key Performance indicators
        • Energy,
        • Environmental,
        • Social,
        • Economical / Financial
        B2P016: Execution of operations
        B2P016: Execution of operationsCurrent PED status (WP5 SPARCS): Conceptualization and methodology definition of the (virtual) PED for Maia Municipality with real monitoring and assessment in order to replicate and scale up to a city-level PED. The financial investments were already targeted.
        B2P017: Capacities
        B2P017: Capacities_Energy production and storage, _Monitoring; _Digitization.
        B2P018: Relations with stakeholders
        B2P018: Relations with stakeholdersThe relationship with stakeholders (municipal companies, industry, citizens, etc) has been fundamental for the definition of the PED. In this sense, some sessions were organized to gather different points of view in order to trace the best path for the PED. Also, the participation of Maia Municipality in EU projects, as EHHUR and OMEGA-X, makes possible the share of knowledge between different partners.
        B2P019: Available tools
        B2P019: Available tools
        • Energy modelling,
        • Social models,
        • Business and financial models,
        • Fundraising and accessing resources,
        • Matching actors
        B2P019: Available tools
        B2P020: External accessibility
        B2P020: External accessibility
        C1P001: Unlocking Factors
        C1P001: Recent technological improvements for on-site RES production3 - Moderately important4 - Important5 - Very important4 - Important5 - Very important5 - Very important
        C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock1 - Unimportant1 - Unimportant5 - Very important4 - Important3 - Moderately important3 - Moderately important
        C1P001: Energy Communities, P2P, Prosumers concepts3 - Moderately important4 - Important4 - Important4 - Important3 - Moderately important5 - Very important
        C1P001: Storage systems and E-mobility market penetration4 - Important4 - Important4 - Important4 - Important1 - Unimportant5 - Very important
        C1P001: Decreasing costs of innovative materials4 - Important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant3 - Moderately important
        C1P001: Financial mechanisms to reduce costs and maximize benefits3 - Moderately important5 - Very important5 - Very important4 - Important4 - Important5 - Very important
        C1P001: The ability to predict Multiple Benefits3 - Moderately important4 - Important4 - Important4 - Important2 - Slightly important1 - Unimportant
        C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important4 - Important4 - Important4 - Important2 - Slightly important3 - Moderately important
        C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)3 - Moderately important3 - Moderately important5 - Very important4 - Important2 - Slightly important5 - Very important
        C1P001: Social acceptance (top-down)5 - Very important2 - Slightly important4 - Important4 - Important5 - Very important5 - Very important
        C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)4 - Important2 - Slightly important5 - Very important4 - Important3 - Moderately important5 - Very important
        C1P001: Presence of integrated urban strategies and plans3 - Moderately important1 - Unimportant4 - Important5 - Very important1 - Unimportant4 - Important
        C1P001: Multidisciplinary approaches available for systemic integration5 - Very important1 - Unimportant4 - Important4 - Important4 - Important4 - Important
        C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects1 - Unimportant1 - Unimportant4 - Important4 - Important4 - Important5 - Very important
        C1P001: Availability of RES on site (Local RES)5 - Very important5 - Very important5 - Very important4 - Important4 - Important5 - Very important
        C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important1 - Unimportant4 - Important4 - Important1 - Unimportant5 - Very important
        C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P001: Any other UNLOCKING FACTORS (if any)
        C1P002: Driving Factors
        C1P002: Climate Change adaptation need5 - Very important5 - Very important5 - Very important5 - Very important5 - Very important4 - Important
        C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important4 - Important5 - Very important4 - Important5 - Very important5 - Very important
        C1P002: Rapid urbanization trend and need of urban expansions5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important3 - Moderately important
        C1P002: Urban re-development of existing built environment4 - Important1 - Unimportant4 - Important4 - Important5 - Very important4 - Important
        C1P002: Economic growth need1 - Unimportant3 - Moderately important4 - Important4 - Important2 - Slightly important3 - Moderately important
        C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)5 - Very important3 - Moderately important5 - Very important4 - Important3 - Moderately important5 - Very important
        C1P002: Territorial and market attractiveness2 - Slightly important2 - Slightly important4 - Important4 - Important1 - Unimportant4 - Important
        C1P002: Energy autonomy/independence1 - Unimportant4 - Important5 - Very important4 - Important4 - Important4 - Important
        C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P002: Any other DRIVING FACTOR (if any)
        C1P003: Administrative barriers
        C1P003: Difficulty in the coordination of high number of partners and authorities1 - Unimportant4 - Important5 - Very important5 - Very important3 - Moderately important3 - Moderately important
        C1P003: Lack of good cooperation and acceptance among partners1 - Unimportant2 - Slightly important5 - Very important4 - Important1 - Unimportant3 - Moderately important
        C1P003: Lack of public participation1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant5 - Very important
        C1P003: Lack of institutions/mechanisms to disseminate information1 - Unimportant1 - Unimportant4 - Important3 - Moderately important3 - Moderately important3 - Moderately important
        C1P003:Long and complex procedures for authorization of project activities1 - Unimportant1 - Unimportant5 - Very important5 - Very important3 - Moderately important4 - Important
        C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant4 - Important
        C1P003: Complicated and non-comprehensive public procurement1 - Unimportant1 - Unimportant4 - Important4 - Important4 - Important4 - Important
        C1P003: Fragmented and or complex ownership structure1 - Unimportant1 - Unimportant4 - Important5 - Very important2 - Slightly important4 - Important
        C1P003: City administration & cross-sectoral attitude/approaches (silos)1 - Unimportant1 - Unimportant5 - Very important5 - Very important2 - Slightly important3 - Moderately important
        C1P003: Lack of internal capacities to support energy transition1 - Unimportant2 - Slightly important5 - Very important4 - Important3 - Moderately important4 - Important
        C1P003: Any other Administrative BARRIER4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P003: Any other Administrative BARRIER (if any)Delay in the Environmental Dialogue processing in the municipality
        C1P004: Policy barriers
        C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important5 - Very important3 - Moderately important
        C1P004: Lacking or fragmented local political commitment and support on the long term1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important4 - Important5 - Very important
        C1P004: Lack of Cooperation & support between national-regional-local entities1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important4 - Important4 - Important
        C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P004: Any other Political BARRIER (if any)
        C1P005: Legal and Regulatory barriers
        C1P005: Inadequate regulations for new technologies1 - Unimportant2 - Slightly important5 - Very important4 - Important4 - Important4 - Important
        C1P005: Regulatory instability1 - Unimportant3 - Moderately important5 - Very important4 - Important3 - Moderately important3 - Moderately important
        C1P005: Non-effective regulations1 - Unimportant4 - Important4 - Important4 - Important3 - Moderately important3 - Moderately important
        C1P005: Unfavorable local regulations for innovative technologies1 - Unimportant2 - Slightly important4 - Important4 - Important1 - Unimportant3 - Moderately important
        C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant2 - Slightly important4 - Important4 - Important1 - Unimportant3 - Moderately important
        C1P005: Insufficient or insecure financial incentives1 - Unimportant2 - Slightly important5 - Very important4 - Important4 - Important4 - Important
        C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant3 - Moderately important
        C1P005: Shortage of proven and tested solutions and examples1 - Unimportant3 - Moderately important4 - Important3 - Moderately important3 - Moderately important2 - Slightly important
        C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER (if any)
        C1P006: Environmental barriers
        C1P006: Environmental barriersAir Quality Management Importance Level: 5 (Very Important) Energy Efficiency Importance Level: 5 (Very Important) Water Conservation Importance Level: 5 (Very Important) Waste Management Importance Level: 4 (Important) Material Selection Importance Level: 4 (Important) Renewable Energy Integration Importance Level: 5 (Very Important) Heat Island Effect Mitigation Importance Level: 4 (Important) Noise Pollution Control Importance Level: 3 (Moderately Important)
        C1P007: Technical barriers
        C1P007: Lack of skilled and trained personnel1 - Unimportant4 - Important5 - Very important4 - Important2 - Slightly important3 - Moderately important
        C1P007: Deficient planning1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important
        C1P007: Retrofitting work in dwellings in occupied state1 - Unimportant4 - Important3 - Moderately important4 - Important5 - Very important2 - Slightly important
        C1P007: Lack of well-defined process1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant3 - Moderately important
        C1P007: Inaccuracy in energy modelling and simulation1 - Unimportant2 - Slightly important5 - Very important4 - Important1 - Unimportant3 - Moderately important
        C1P007: Lack/cost of computational scalability1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant3 - Moderately important
        C1P007: Grid congestion, grid instability1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant3 - Moderately important
        C1P007: Negative effects of project intervention on the natural environment1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant1 - Unimportant4 - Important4 - Important5 - Very important1 - Unimportant
        C1P007: Difficult definition of system boundaries1 - Unimportant1 - Unimportant4 - Important4 - Important4 - Important3 - Moderately important
        C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Any other Thecnical BARRIER (if any)
        C1P008: Social and Cultural barriers
        C1P008: Inertia1 - Unimportant1 - Unimportant4 - Important3 - Moderately important2 - Slightly important5 - Very important
        C1P008: Lack of values and interest in energy optimization measurements1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important2 - Slightly important4 - Important
        C1P008: Low acceptance of new projects and technologies1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important2 - Slightly important4 - Important
        C1P008: Difficulty of finding and engaging relevant actors1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant5 - Very important
        C1P008: Lack of trust beyond social network1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant3 - Moderately important
        C1P008: Rebound effect1 - Unimportant3 - Moderately important3 - Moderately important4 - Important1 - Unimportant2 - Slightly important
        C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important3 - Moderately important2 - Slightly important
        C1P008: Exclusion of socially disadvantaged groups1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important
        C1P008: Non-energy issues are more important and urgent for actors1 - Unimportant4 - Important4 - Important4 - Important4 - Important4 - Important
        C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important3 - Moderately important4 - Important
        C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Any other Social BARRIER (if any)
        C1P009: Information and Awareness barriers
        C1P009: Insufficient information on the part of potential users and consumers1 - Unimportant3 - Moderately important5 - Very important4 - Important2 - Slightly important4 - Important
        C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant3 - Moderately important
        C1P009: Lack of awareness among authorities1 - Unimportant1 - Unimportant5 - Very important4 - Important3 - Moderately important2 - Slightly important
        C1P009: Information asymmetry causing power asymmetry of established actors1 - Unimportant3 - Moderately important4 - Important4 - Important1 - Unimportant3 - Moderately important
        C1P009: High costs of design, material, construction, and installation1 - Unimportant4 - Important4 - Important4 - Important5 - Very important4 - Important
        C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P009: Any other Information and Awareness BARRIER (if any)
        C1P010: Financial barriers
        C1P010: Hidden costs1 - Unimportant2 - Slightly important4 - Important4 - Important2 - Slightly important2 - Slightly important
        C1P010: Insufficient external financial support and funding for project activities1 - Unimportant3 - Moderately important5 - Very important4 - Important5 - Very important1 - Unimportant
        C1P010: Economic crisis1 - Unimportant4 - Important4 - Important4 - Important4 - Important3 - Moderately important
        C1P010: Risk and uncertainty5 - Very important3 - Moderately important5 - Very important4 - Important5 - Very important4 - Important
        C1P010: Lack of consolidated and tested business models1 - Unimportant4 - Important4 - Important4 - Important3 - Moderately important4 - Important
        C1P010: Limited access to capital and cost disincentives1 - Unimportant3 - Moderately important5 - Very important4 - Important3 - Moderately important3 - Moderately important
        C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P010: Any other Financial BARRIER (if any)
        C1P011: Market barriers
        C1P011: Split incentives1 - Unimportant3 - Moderately important5 - Very important5 - Very important1 - Unimportant4 - Important
        C1P011: Energy price distortion1 - Unimportant3 - Moderately important5 - Very important4 - Important1 - Unimportant3 - Moderately important
        C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant3 - Moderately important4 - Important4 - Important1 - Unimportant3 - Moderately important
        C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P011: Any other Market BARRIER (if any)
        C1P012: Stakeholders involved
        C1P012: Government/Public Authorities
        • Planning/leading,
        • Design/demand aggregation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Research & Innovation
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Financial/Funding
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        • Planning/leading,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Analyst, ICT and Big Data
        • Planning/leading,
        • Design/demand aggregation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Business process management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Urban Services providers
        • None
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Real Estate developers
        • Planning/leading,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Design/Construction companies
        • Planning/leading,
        • Design/demand aggregation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: End‐users/Occupants/Energy Citizens
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Monitoring/operation/management
        C1P012: Social/Civil Society/NGOs
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Industry/SME/eCommerce
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Other
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Other (if any)
        Summary

        Authors (framework concept)

        Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

        Contributors (to the content)

        Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haase (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv), Oya Tabanoglu (Demir Enerji), Jelena Brajković (University of Belgrade), Juveria Shah (Dalarna University), Michela Pirro (ENEA), Francesca Sabatini (University of Bologna)

        Implemented by

        Boutik.pt: Filipe Martins, Jamal Khan
        Marek Suchánek (Czech Technical University in Prague)