Filters:
NameProjectTypeCompare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Compare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Uncompare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Compare
Pamplona OPEN4CEC PED Lab Uncompare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Uncompare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
Lecce, SmartEnCity SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
Firenze, Novoli-Cascine district on “le PIagge” buildings PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Uncompare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleEspoo, Kera
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona
Aveiro, Aradas district
Pamplona
Innsbruck, Campagne-Areal
Borlänge, Rymdgatan’s Residential Portfolio
City of Espoo, Espoonlahti district, Lippulaiva block
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabEspoo, KeraCerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de BarcelonaAveiro, Aradas districtPamplonaInnsbruck, Campagne-ArealBorlänge, Rymdgatan’s Residential PortfolioCity of Espoo, Espoonlahti district, Lippulaiva block
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studyyesnononononoyes
PED relevant case studyyesnoyesnoyesyesno
PED Lab.noyesnoyesnonono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesyesyesyesno
Annual energy surplusnononononoyesno
Energy communitynonoyesyesnoyesno
Circularityyesnononononono
Air quality and urban comfortnonononononono
Electrificationnonoyesnonoyesno
Net-zero energy costnonononononono
Net-zero emissionnonononoyesnono
Self-sufficiency (energy autonomous)nonononononono
Maximise self-sufficiencynononononoyesyes
Othernoyesnonononono
Other (A1P004): PV generation/home consumption behaviour emulation at LAB
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhasePlanning PhasePlanning PhaseImplementation PhaseCompletedPlanning PhaseIn operation
A1P006: Start Date
A1P006: Start date01/1509/2512/2306/2404/1606/18
A1P007: End Date
A1P007: End date12/3512/2611/2607/2804/2203/22
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts
  • Open data city platform – different dashboards
  • General statistical datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
          • M. Hukkalainen, F. Zarrin, K. Klobut, O. Lindholm, M. Ranta, P. Hajduk, T. Vainio-Kaila, E. Wanne, J. Tartia, H. Horn, K. Kontu, J. Juhmen, S. Santala, R. Turtiainen, J. Töyräs, T. Koljonen. (2020). Deliverable D3.1 Detailed plan of the Espoo smart city lighthouse demonstrations. Available online: https://www.sparcs.info/sites/default/files/2020-09/SPARCS_D3.1_Detailed_plan_Espoo.pdf,
          • Hukkalainen, Zarrin Fatima, Krzysztof Klobut, Kalevi Piira, Mikaela Ranta, Petr Hajduk, Tiina Vainio-Kaila , Elina Wanne, Jani Tartia, Angela Bartel, Joni Mäkinen, Mia Kaurila, Kaisa Kontu, Jaano Juhmen, Merja Ryöppy, Reetta Turtiainen, Joona Töyräs, Timo Koljonen (2021) Deliverable 3.2 Midterm report on the implemented demonstrations of solutions for energy positive blocks in Espoo. Available online: https://www.sparcs.info/sites/default/files/2022-02/SPARCS_D3.2.pdf,
          • www.lippulaiva.fi
          A1P011: Geographic coordinates
          X Coordinate (longitude):24.753777782.112145524436096-8.6595-1.6432311.42434673814025615.39449524.6543
          Y Coordinate (latitude):60.2162222241.5003086008059240.635342.8168747.27147078672910460.48660960.1491
          A1P012: Country
          A1P012: CountryFinlandSpainPortugalSpainAustriaSwedenFinland
          A1P013: City
          A1P013: CityEspooCerdanyola del VallesAlveiro (Aradas)PamplonaInnsbruckBorlängeEspoo
          A1P014: Climate Zone (Köppen Geiger classification)
          A1P014: Climate Zone (Köppen Geiger classification).DfbCsaCsbCfbDfbDsbDfb
          A1P015: District boundary
          A1P015: District boundaryGeographicFunctionalGeographicGeographicGeographicGeographicGeographic
          Other
          A1P016: Ownership of the case study/PED Lab
          A1P016: Ownership of the case study/PED Lab:MixedPublicPublicMixedMixedMixedPrivate
          A1P017: Ownership of the land / physical infrastructure
          A1P017: Ownership of the land / physical infrastructure:Multiple OwnersSingle OwnerMultiple OwnersMultiple OwnersMultiple OwnersSingle OwnerSingle Owner
          A1P018: Number of buildings in PED
          A1P018: Number of buildings in PED4109
          A1P019: Conditioned space
          A1P019: Conditioned space [m²]222773700112000
          A1P020: Total ground area
          A1P020: Total ground area [m²]580000893000023550000113519945165000
          A1P021: Floor area ratio: Conditioned space / total ground area
          A1P021: Floor area ratio: Conditioned space / total ground area0000201
          A1P022: Financial schemes
          A1P022a: Financing - PRIVATE - Real estatenonononononoyes
          A1P022a: Add the value in EUR if available [EUR]
          A1P022b: Financing - PRIVATE - ESCO schemenonononononono
          A1P022b: Add the value in EUR if available [EUR]
          A1P022c: Financing - PRIVATE - Othernonononononono
          A1P022c: Add the value in EUR if available [EUR]
          A1P022d: Financing - PUBLIC - EU structural fundingnonononononono
          A1P022d: Add the value in EUR if available [EUR]
          A1P022e: Financing - PUBLIC - National fundingnonoyesnononono
          A1P022e: Add the value in EUR if available [EUR]
          A1P022f: Financing - PUBLIC - Regional fundingnonononononono
          A1P022f: Add the value in EUR if available [EUR]
          A1P022g: Financing - PUBLIC - Municipal fundingnononoyesnonono
          A1P022g: Add the value in EUR if available [EUR]
          A1P022h: Financing - PUBLIC - Othernoyesnonononono
          A1P022h: Add the value in EUR if available [EUR]
          A1P022i: Financing - RESEARCH FUNDING - EUnonononononoyes
          A1P022i: Add the value in EUR if available [EUR]308875
          A1P022j: Financing - RESEARCH FUNDING - Nationalnonononoyesnono
          A1P022j: Add the value in EUR if available [EUR]
          A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononono
          A1P022k: Add the value in EUR if available [EUR]
          A1P022l: Financing - RESEARCH FUNDING - Othernonononononono
          A1P022l: Add the value in EUR if available [EUR]
          A1P022: OtherMultiple different funding schemes depending on the case.
          A1P023: Economic Targets
          A1P023: Economic Targets
          • Job creation,
          • Positive externalities,
          • Boosting local businesses,
          • Boosting local and sustainable production,
          • Boosting consumption of local and sustainable products
          • Job creation,
          • Other
          • Positive externalities,
          • Boosting local businesses,
          • Boosting consumption of local and sustainable products
          • Job creation,
          • Positive externalities,
          • Boosting local businesses
          A1P023: OtherCircular economyCreate affordable appartments for the citizens
          A1P024: More comments:
          A1P024: More comments:Owners are two local social housing companies. The complete district will consist 4 building blocks, from which only the first one with 4 building is ready built and occupied. At the end, it would be a district of ca. 1100 flats in 16 buildings with 78000 m2The Espoonlahti district is located on the south-western coast of Espoo. With 56,000 inhabitants, it is the second largest of the Espoo city centres. The number of inhabitants is estimated to grow to 70,000 within the next 10 years. Espoonlahti will be a future transit hub of the south-western Espoo, along the metro line, and the increasing stream of passengers provides a huge potential for retail, business and residential developments. E-mobility solutions and last-mile services have strong potential in the area when subway extension is finished and running. The extensive (re)development of the Lippulaiva blocks make a benchmark catering to the everyday needs of residents. The completely new shopping centre is a state-of-the-art cross point with 20,000 daily customers and 10,000 daily commuters (3.5 million/year). The new underground metro line and station, and feeder line bus terminal, are fully integrated. Residential housing of approximately 550 new apartments will be built on top. Lippulaiva is a large traffic hub, directly connected to public transport and right next to the Länsiväylä highway and extensive cycle paths. Lippulaiva offers diverse, mixed-use services, such as a shopping mall, public services, a day care centre, residential apartment buildings, and underground parking facilities. Lippulaiva received the LEED Gold environmental certificate and Smart Building Gold certificate. • Flagship of sustainability • Cooling and heating demand from geothermal energy system (on-site) with energy storage system, 4 MW • PV panels: roof and façade, 630 kWp • Smart control strategies for electricity and thermal energy, smart microgrid-system and battery storage • Charging capacity for 134 EVs
          A1P025: Estimated PED case study / PED LAB costs
          A1P025: Estimated PED case study / PED LAB costs [mil. EUR]
          Contact person for general enquiries
          A1P026: NameJoni MäkinenJose Lopez VicarioDr. Gonçalo Homem De Almeida Rodriguez CorreiaOscar Puyal LAtorreGeorgios DermentzisJingchun ShenElina Ekelund
          A1P027: OrganizationCity of EspooUniversitat Autonoma Barcelona (UAB)Delft University of TechnologyEndef Engineering SLUniversity of InnsbruckHögskolan DalarnaCitycon Oyj
          A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversitySME / IndustryResearch Center / UniversityResearch Center / UniversitySME / Industry
          A1P028: Other
          A1P029: Emailjoni.makinen@espoo.fijose.vicario@uab.catg.correia@tudelft.nloscar.puyal@endef.comGeorgios.Dermentzis@uibk.ac.atjih@du.seElina.ekelund@citycon.com
          Contact person for other special topics
          A1P030: NameQiaochu FanXingxing ZhangElina Ekelund
          A1P031: Emailq.fan-1@tudelft.nlxza@du.seElina.ekelund@citycon.com
          Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYes
          A2P001: Fields of application
          A2P001: Fields of application
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies,
          • Waste management,
          • Construction materials
          • Energy efficiency,
          • Energy flexibility,
          • Digital technologies
          • Energy efficiency,
          • Energy flexibility,
          • E-mobility,
          • Urban comfort (pollution, heat island, noise level etc.),
          • Digital technologies
          • Energy efficiency
          • Energy efficiency,
          • Energy production,
          • Indoor air quality
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Construction materials
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies
          A2P001: Other
          A2P002: Tools/strategies/methods applied for each of the above-selected fields
          A2P002: Tools/strategies/methods applied for each of the above-selected fields- Kera development commitment (https://www.espoo.fi/en/kera-development-commitment). - SPARCS Co-creation model for sustainable and smart urban areas (www.co-creatingsparcs.fi/en). - Kera area carbon neutrality roadmap (https://static.espoo.fi/cdn/ff/MHDdcMNJ9aYn7CjpoD4zNpo5M-M9HIDLXlJdUrUmf-8/1642756766/public/2022-01/Kera%20carbon%20neutrality%20map_EN.pdf)The buildings are designed based on Passive House standards and dynamic building and system simulations are performed to optimise the HVAC systems, that are a ground-water heat pump for space heating and district heating for domestic hot water preparation. Photovoltaic systems are installed in the available roof spaces, however, more renewable sources are required due to very large number of apartments (very high density) to reach PED, and thus, simulation studies are performed.Load calculation and system optimisation: City Energy Analyst Identification of stranded assets for asset owners and investors to understand the carbon risks: CRREMEnergy efficiency: - eliminating waste energy utilizing smart energy system - utilizing excess heat from grocery stores Energy flexibility: - A battery energy storage system (1,5 MW/1,5MWh); Active participation in Nordpool electricity market (FCR-N) Energy production: - heating and cooling from geothermal heat pump system; 171 energy wells (over 51 km); heat capacity 4 MW - installation of new photovoltaic (PV) systems for renewable on-site energy production; Estimation of annual production is about 540 MWh (630 kWp) E-mobility - Installation of charging stations for electric vehicles (for 134 EVs) - e-bike services (warm storage room, charging cabinets for e-bikes) Digital technologies: - Building Analytics system by Schneider Electric
          A2P003: Application of ISO52000
          A2P003: Application of ISO52000NoNoNoYes
          A2P004: Appliances included in the calculation of the energy balance
          A2P004: Appliances included in the calculation of the energy balanceNoYesYesYes
          A2P005: Mobility included in the calculation of the energy balance
          A2P005: Mobility included in the calculation of the energy balanceNoNoNoNo
          A2P006: Description of how mobility is included (or not included) in the calculation
          A2P006: Description of how mobility is included (or not included) in the calculationMobility is not included in the energy model.
          A2P007: Annual energy demand in buildings / Thermal demand
          A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]54.50.390.67775.5
          A2P008: Annual energy demand in buildings / Electric Demand
          A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]19.40.6550.036565.8
          A2P009: Annual energy demand for e-mobility
          A2P009: Annual energy demand for e-mobility [GWh/annum]00
          A2P010: Annual energy demand for urban infrastructure
          A2P010: Annual energy demand for urban infrastructure [GWh/annum]0
          A2P011: Annual renewable electricity production on-site during target year
          A2P011: PVyesnononoyesnoyes
          A2P011: PV - specify production in GWh/annum [GWh/annum]40.420.54
          A2P011: Windnonononononono
          A2P011: Wind - specify production in GWh/annum [GWh/annum]
          A2P011: Hydrononononononono
          A2P011: Hydro - specify production in GWh/annum [GWh/annum]
          A2P011: Biomass_elnonononononono
          A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
          A2P011: Biomass_peat_elnonononononono
          A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
          A2P011: PVT_elnononononoyesno
          A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.01818
          A2P011: Othernonononononono
          A2P011: Other - specify production in GWh/annum [GWh/annum]
          A2P012: Annual renewable thermal production on-site during target year
          A2P012: Geothermalnonononononoyes
          A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]5
          A2P012: Solar Thermalnonononononono
          A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_heatnonononononono
          A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
          A2P012: Waste heat+HPyesnononononono
          A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_peat_heatnonononononono
          A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
          A2P012: PVT_thnononononoyesno
          A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]0.0825
          A2P012: Biomass_firewood_thnonononononono
          A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
          A2P012: Othernonononononono
          A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
          A2P013: Renewable resources on-site - Additional notes
          A2P013: Renewable resources on-site - Additional notesLocal energy utility will implement district level thermal solution. First, energy will be produced from waste heat from a local data center. Further thermal solutions are under discussion and development.
          A2P014: Annual energy use
          A2P014: Annual energy use [GWh/annum]78.80.960.31811.3
          A2P015: Annual energy delivered
          A2P015: Annual energy delivered [GWh/annum]15.4-20.20555.76
          A2P016: Annual non-renewable electricity production on-site during target year
          A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]000
          A2P017: Annual non-renewable thermal production on-site during target year
          A2P017: Gasnonononononono
          A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]0
          A2P017: Coalnonononononono
          A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]0
          A2P017: Oilnonononononono
          A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]0
          A2P017: Othernononononoyesno
          A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]0
          A2P018: Annual renewable electricity imports from outside the boundary during target year
          A2P018: PVnonononononono
          A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
          A2P018: Windnonononononono
          A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
          A2P018: Hydrononononononono
          A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_elnonononononono
          A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_peat_elnonononononono
          A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: PVT_elnonononononono
          A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Othernononononoyesyes
          A2P018 - Other: specify production in GWh/annum if available [GWh/annum]0.1875.26
          A2P019: Annual renewable thermal imports from outside the boundary during target year
          A2P019: Geothermalnonononononono
          A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Solar Thermalnonononononono
          A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_heatnonononononono
          A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Waste heat+HPnonononononono
          A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_peat_heatnonononononono
          A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
          A2P019: PVT_thnonononononono
          A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_firewood_thnonononononono
          A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Othernononononoyesno
          A2P019 Other: Please specify imports in GWh/annum [GWh/annum]0
          A2P020: Share of RES on-site / RES outside the boundary
          A2P020: Share of RES on-site / RES outside the boundary000000.538395721925131.0532319391635
          A2P021: GHG-balance calculated for the PED
          A2P021: GHG-balance calculated for the PED [tCO2/annum]4500006.930
          A2P022: KPIs related to the PED case study / PED Lab
          A2P022: Safety & Securitynone
          A2P022: Healthindoor air quility (indoor CO2 concentration) - measured on the extract air of the mechanical ventilation system. Relative humidity to avoid mold.thermal comfort diagram
          A2P022: Educationnone
          A2P022: MobilityImproved accessibility to V2G-related transport options, focusing on inclusivity and equitable adoption in urban districtsnone
          A2P022: EnergyYesTarget zero greenhouse gas emissions through the adoption of EVs with V2G capabilities, aiming to reduce reliance on fossil fuels and enhance local grid stabilitySpace heating demand, thermal energy delivered by district heating, electricity of the heat pump, thermal losses of the pipes, and PV production.normalized CO2/GHG & Energy intensityOn-site energy ratio
          A2P022: Water
          A2P022: Economic developmentDevelopment of viable business models for V2G that allow decentralized energy markets to integrate with the grid, enhancing local economic resiliencecost of excess emissions
          A2P022: Housing and CommunityNumber of people interested in participating in an energy community
          A2P022: Waste
          A2P022: Other
          A2P023: Technological Solutions / Innovations - Energy Generation
          A2P023: Photovoltaicsyesyesyesyesyesyesyes
          A2P023: Solar thermal collectorsnononononoyesno
          A2P023: Wind Turbinesnonoyesnononono
          A2P023: Geothermal energy systemnononononoyesyes
          A2P023: Waste heat recoveryyesnonononoyesyes
          A2P023: Waste to energynonononononono
          A2P023: Polygenerationnonononononono
          A2P023: Co-generationnonononononono
          A2P023: Heat Pumpyesnononoyesyesno
          A2P023: Hydrogennonononononono
          A2P023: Hydropower plantnonononononono
          A2P023: Biomassnonononononono
          A2P023: Biogasnonononononono
          A2P023: Other
          A2P024: Technological Solutions / Innovations - Energy Flexibility
          A2P024: A2P024: Information and Communication Technologies (ICT)yesyesnononoyesyes
          A2P024: Energy management systemyesyesyesnononoyes
          A2P024: Demand-side managementyesyesyesnononono
          A2P024: Smart electricity gridyesnoyesnononoyes
          A2P024: Thermal Storagenonononoyesyesyes
          A2P024: Electric Storagenonoyesnononoyes
          A2P024: District Heating and Coolingyesnononoyesyesno
          A2P024: Smart metering and demand-responsive control systemsnononoyesnonono
          A2P024: P2P – buildingsnonononoyesnono
          A2P024: Other
          A2P025: Technological Solutions / Innovations - Energy Efficiency
          A2P025: Deep Retrofittingnoyesyesnonoyesno
          A2P025: Energy efficiency measures in historic buildingsnonononononono
          A2P025: High-performance new buildingsyesnononoyesnoyes
          A2P025: Smart Public infrastructure (e.g. smart lighting)yesnoyesnononoyes
          A2P025: Urban data platformsyesnoyesnononono
          A2P025: Mobile applications for citizensnonononononono
          A2P025: Building services (HVAC & Lighting)yesnononoyesyesyes
          A2P025: Smart irrigationnonononononono
          A2P025: Digital tracking for waste disposalnonononononono
          A2P025: Smart surveillancenononoyesnonono
          A2P025: Other
          A2P026: Technological Solutions / Innovations - Mobility
          A2P026: Efficiency of vehicles (public and/or private)yesnoyesnononono
          A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)yesnoyesnononoyes
          A2P026: e-Mobilityyesnoyesnononoyes
          A2P026: Soft mobility infrastructures and last mile solutionsyesnononononono
          A2P026: Car-free areanonononononono
          A2P026: OtherLocal transportation hub with direct connection to metro & bus terminal; parking spaces for 1,400 bicycles and for 1,300 cars Promoting e-Mobility: 134 charging stations, A technical reservation for expanding EV charging system 1400 bicycle racks and charging cabinets for 10 e-bicycle batteries
          A2P027: Mobility strategies - Additional notes
          A2P027: Mobility strategies - Additional notes
          A2P028: Energy efficiency certificates
          A2P028: Energy efficiency certificatesNoYesNoYes
          A2P028: If yes, please specify and/or enter notesTwo buildings are certified "Passive House new build"Energy Performance Certificate => Energy efficiency class B (2018 version)
          A2P029: Any other building / district certificates
          A2P029: Any other building / district certificatesNoNoNoYes
          A2P029: If yes, please specify and/or enter notesLEED (Core & Shell, v4) GOLD certification, Smart Building certification (GOLD)
          A3P001: Relevant city /national strategy
          A3P001: Relevant city /national strategy
          • Energy master planning (SECAP, etc.),
          • Climate change adaption plan/strategy (e.g. Climate City contract)
          • Smart cities strategies
          • Promotion of energy communities (REC/CEC),
          • Climate change adaption plan/strategy (e.g. Climate City contract)
          • Energy master planning (SECAP, etc.),
          • New development strategies,
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          A3P002: Quantitative targets included in the city / national strategy
          A3P002: Quantitative targets included in the city / national strategyThe study aligns closely with the decarbonisation and energy reduction pathways of residential multi family buildings with 1.5°C global warming target in Sweden. This study will also contribute to the achievement of the carbon neturality of whole Borlänge city by 2030.Relevant city strategies behind PED development in Espoo include the following: - The Espoo Story: Sustainability is heavily included within the values and goals of the current Espoo city strategy, also known as the Espoo Story, running from 2021 to 2025. For example, the strategy names being a responsible pioneer as one of the main values of the city and has chosen achieving carbon neutrality by 2030 as one of the main goals of the current council term. In addition to the Espoo story, four cross-administrative development programmes act as cooperation platforms that allow the city, together with its partners, to develop innovative solutions through experiments and pilot projects in line with the Espoo Story. The Sustainable Espoo development programme is one of the four programmes, thus putting sustainability on the forefront in city development work. - EU Mission: 100 climate-neutral and smart cities by 2030: Cities selected for the Mission commit to achieving carbon-neutrality in 2030. A key tool in the Mission is the Climate City Contract. Each selected city will prepare and implement its contracts in collaboration with local businesses as well as other stakeholders and residents. - Covenant of Mayors for Climate and Energy: Espoo is committed to the Covenant of Mayors for Climate and Energy, under which the signatories commit to supporting the European Union’s 40% greenhouse gas emission reduction goal by 2030. The Sustainable Energy and Climate Action Plan (SECAP) is a key instrument for implementing the agreement. The Action Plan outlines the key measures the city will take to achieve its carbon neutrality goal. The plan also includes a mapping of climate change risks and vulnerabilities, adaptation measures, emission calculations, emission reduction scenarios and impact estimations of measures. The SECAP of the City of Espoo is available here (only available in Finnish). - UN Sustainable development Goals: The city of Espoo has committed to becoming a forerunner and achieving the UN's Sustainable Development Goals (SDG) by 2025. The goal is to make Espoo financially, ecologically, socially, and culturally sustainable. - The Circular Cities Declaration: At the end of 2020, Espoo signed the Europe-wide circular economy commitment Circular Cities Declaration. The ten goals of the declaration promote the implementation of the city’s circular economy. - Espoo Clean Heat: Fortum and the City of Espoo are committed to producing carbon-neutral district heating in the network operating in the areas of Espoo, Kauniainen and Kirkkonummi during the 2020s. The district heating network provides heating to some 250,000 end-users in homes and offices. Coal will be completely abandoned in the production of district heating by 2025. The main targets related to PED development included in the noted city strategies are the following: - Espoo will achieve carbon neutrality by 2030. To be precise, this carbon neutrality goal is defined as an 80% emission reduction from the 1990 level by the year 2030. The remaining 20% share can be absorbed in carbon sinks or compensated by other means. - District heating in Espoo will be carbon-neutral by 2029, and coal-based production will be phased out from district heating by 2025. - Espoo aims to end the use of fossil fuels in the heating of city-owned buildings by 2025. - Quantitative goals within the Espoo SECAP report: - Espoo aims to reduce total energy consumption within the municipal sector by 7.5% by the end of 2025 in comparison to the 2015 level. The social housing company Espoon Asunnot OY aims to meet the same target. - Espoo aims to cover 10% of the energy consumption of new buildings via on-site production. - Espoo aims to raise the modal split of cycling to 15% by 2024. - Espoo aims to raise the modal split of public transport by 1.1% yearly. - Espoo aims to reduce the emissions of bus transport by 90% by the end of 2025, when compared to 2010 levels.
          A3P003: Strategies towards decarbonization of the gas grid
          A3P003: Strategies towards decarbonization of the gas grid
          • Electrification of Heating System based on Heat Pumps,
          • Other
          A3P003: OtherDistrict heating based mainly on heat pumps and renewable sources
          A3P004: Identification of needs and priorities
          A3P004: Identification of needs and prioritiesThe priority was to eliminate the CO2 emissions by optimizing the building envelope and the heating systems.In our project, we carried out a comprehensive exploration of strategies to achieve positive energy districts in a Swedish residential portfolio. The focus on urban energy transitions necessitates a holistic approach that integrates building retrofit, solar technology exploration, and heating supply optimisation. Exploration of Local Solar Sources: The analysis reveals varying solar irradiance resources throughout the year, emphasizing the importance of strategic placement. Integration of combined photovoltaic and thermal panels into building envelopes demonstrates the potential to cover a significant portion of the energy demand even in Sweden. Heating Supply Optimisation with Solar Technologies: Despite the surplus energy production from on-site solar technology, challenges arise due to temporal energy asymmetry. The introduction of heat pumps emerges as a feasible solution to balance energy gaps, utilising both rejected and free heat. Optimisation scenarios, utilising a combination of geothermal heat pumps, water source heat pumps, and PVT, showcase remarkable reductions in emissions and primary energy consumption. Urban Form and Energy Infrastructure Design: We realised the importance of returning to urban form and energy infrastructure design to optimise future residential portfolio potential. Building layout design, influenced by zoning regulations and innovative typologies, plays a crucial role in achieving district level energy efficiency. Future challenges, including demographic shifts, e-mobility, and climate change, necessitate a more holistic approach to energy infrastructure design, addressing not only heating and electricity demands but also cooling requirements.- Citycon (developer and owner of Lippulaiva) aims to be carbon neutral in its energy use by 2030 - Lippulaiva is a unique urban centre with state-of-the-art energy concept. The centre has a smart managing system, which allows for example the temporary reduction of power used in air conditioning and charging stations when energy consumption is at its peak. In addition, a backup generator and a large electric battery will balance the operation of the electricity network. - Lippulaiva is also an important mobility hub for the people of Espoo. Espoonlahti metro station is located under the centre, and the West Metro started to operate to Espoonlahti in December 2022. Lippulaiva also has a bus terminal, which serves the metro’s feeder traffic in the Espoonlahti major district.
          A3P005: Sustainable behaviour
          A3P005: Sustainable behaviourWhile our investigation primarily centres on technical optimisation within Positive Energy District (PED) development, it is essential to acknowledge the broader scope encompassing social and governance dimensions. Specifically, understanding stakeholders' willingness to embrace technical recommendations upon project completion is important. Several potential influencing factors merit exploration, including economic considerations, technical optimisation-associated embodied carbon balance, the general public's technical perceptions, and operational feasibility. Evaluating these aspects holistically not only enhances the efficacy of PED initiatives but also fosters greater acceptance and participation within the communities they serve.For Citycon, it was important to engage local people within the Lippulaiva project. During the construction period as well as after opening of the shopping center, citizens have been engaged in multiple ways, such as informing local citizens of the progress of construction, engaging young people in the design processes of the shopping centre and long-term commitment of youngsters with Lippulaiva Buddy class initiative. Users’ engagement activities are conducted in close co-operation with SPARCS partners.
          A3P006: Economic strategies
          A3P006: Economic strategies
          • PPP models,
          • Circular economy models
          • Innovative business models
          • Innovative business models,
          • Local trading,
          • Existing incentives
          • Open data business models,
          • Life Cycle Cost,
          • Circular economy models,
          • Local trading
          • Innovative business models
          A3P006: Other
          A3P007: Social models
          A3P007: Social models
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Quality of Life
          • Digital Inclusion,
          • Citizen/owner involvement in planning and maintenance,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Behavioural Change / End-users engagement,
          • Social incentives,
          • Prevention of energy poverty,
          • Digital Inclusion
          • Co-creation / Citizen engagement strategies
          • Co-creation / Citizen engagement strategies,
          • Social incentives,
          • Affordability,
          • Prevention of energy poverty,
          • Citizen/owner involvement in planning and maintenance
          • Strategies towards (local) community-building,
          • Behavioural Change / End-users engagement,
          • Social incentives,
          • Affordability,
          • Digital Inclusion
          • Co-creation / Citizen engagement strategies
          A3P007: Other
          A3P008: Integrated urban strategies
          A3P008: Integrated urban strategies
          • Strategic urban planning,
          • Digital twinning and visual 3D models,
          • District Energy plans
          • District Energy plans
          • Strategic urban planning,
          • District Energy plans
          • Strategic urban planning,
          • Digital twinning and visual 3D models,
          • District Energy plans,
          • Building / district Certification
          • Building / district Certification
          A3P008: Other
          A3P009: Environmental strategies
          A3P009: Environmental strategies
          • Net zero carbon footprint,
          • Life Cycle approach,
          • Greening strategies,
          • Nature Based Solutions (NBS)
          • Energy Neutral,
          • Low Emission Zone,
          • Nature Based Solutions (NBS)
          • Greening strategies
          • Energy Neutral,
          • Low Emission Zone
          • Low Emission Zone,
          • Net zero carbon footprint,
          • Life Cycle approach,
          • Sustainable Urban drainage systems (SUDS)
          • Other
          A3P009: OtherCarbon free in terms of energy
          A3P010: Legal / Regulatory aspects
          A3P010: Legal / Regulatory aspects- Energy efficiency regulations (Directive 2006/32/EC and 2009/72/EC) - EU directive 2010/31/EU on the energy performance of buildings => all new buildings should be “nearly zero-energy buildings” (nZEB) from 2021
          B1P001: PED/PED relevant concept definition
          B1P001: PED/PED relevant concept definitionImplementation of district level heating system to make heating energy positive and expanding local renewable electricity production.Extremely low building energy demand, the electric energy of the heat pump used for space heating is significantly lower compared to thermal energy for the domestic hot water preparation.The Rymdgatan's Residential Portfolio in Sweden presents a compelling case study for its classification as a PED-related research, given its alignment with sustainable behaviours and overarching PED development principles as follows: Inclusivity and Social Equity: The residential portfolio situated in Rymdgatan caters primarily to a low-income community. By focusing on this demographic, the project addresses critical aspects of social equity within sustainable urban development. Ensuring access to energy-efficient housing and amenities for economically disadvantaged populations not only fosters social cohesion but also mitigates energy poverty, a pressing concern in many urban contexts. Multifamily Residential Building: The inclusion of multifamily residential buildings within the portfolio underscores a commitment to density and efficient land use, both essential components of sustainable urban design. Such developments promote resource optimisation by consolidating housing units, thereby reducing per capita energy consumption and infrastructure demands. Moreover, multifamily dwellings often facilitate community engagement and shared resource management, fostering a culture of sustainability among residents. Low Carbon Retrofitting and Transition: The overarching initiative to transition the entire Jakobsgårdarna district. The included Rymdgatan portfolio, towards low carbon retrofitting, represents a significant example of decarbonization and climate resilience. By integrating energy-efficient technologies and renewable energy solutions into existing infrastructure, the project not only reduces carbon emissions but also serves as a blueprint for revitalising old urban environments sustainably. This holistic approach to retrofitting demonstrates a systemic commitment to environmental stewardship and long-term sustainability. Climate Adaptation and Renewable Energy Integration: Despite Sweden's climatic challenges, including lower solar resources during winter months, the Rymdgatan project leverages its geographical context to optimize renewable energy utilization. Sweden's greater solar resource availability during summer and geothermal potentials complement the design's emphasis on seasonal energy planning, where surplus energy generated during peak periods can be stored or redistributed efficiently. By embracing climate-responsive design strategies, the project demonstrates resilience in the face of climate variability while harnessing renewable energy potential effectively.Lippulaiva is a project with high level goal in terms of energy efficiency, energy flexibility and energy production.
          B1P002: Motivation behind PED/PED relevant project development
          B1P002: Motivation behind PED/PED relevant project developmentSince it is an urban area, with high building and apartment density, the need for CO2 reduction is quite relevant and thus, in new built, the minimization of CO2 emissions is crucial.Borlänge city has committed to become the carbon-neutral city by 2030.- Citycon’s (developer and owner of Lippulaiva) target is to be carbon neutral by 2030 - Increasing sustainability requirements from the financing, tenants, cities, other stakeholders
          B1P003: Environment of the case study area
          B2P003: Environment of the case study areaUrban areaUrban areaUrban areaUrban area
          B1P004: Type of district
          B2P004: Type of district
          • New construction
          • New construction
          • Renovation
          • New construction
          B1P005: Case Study Context
          B1P005: Case Study Context
          • Re-use / Transformation Area
          • Re-use / Transformation Area,
          • New Development
          • Re-use / Transformation Area,
          • Retrofitting Area
          • Re-use / Transformation Area,
          • New Development
          B1P006: Year of construction
          B1P006: Year of construction202219902022
          B1P007: District population before intervention - Residential
          B1P007: District population before intervention - Residential100
          B1P008: District population after intervention - Residential
          B1P008: District population after intervention - Residential14000780100
          B1P009: District population before intervention - Non-residential
          B1P009: District population before intervention - Non-residential6
          B1P010: District population after intervention - Non-residential
          B1P010: District population after intervention - Non-residential100006
          B1P011: Population density before intervention
          B1P011: Population density before intervention000000
          B1P012: Population density after intervention
          B1P012: Population density after intervention0.041379310344828000.0687164126508680.0106586224233280
          B1P013: Building and Land Use before intervention
          B1P013: Residentialyesnonononoyesno
          B1P013 - Residential: Specify the sqm [m²]4360
          B1P013: Officeyesnononononono
          B1P013 - Office: Specify the sqm [m²]
          B1P013: Industry and Utilityyesnononononono
          B1P013 - Industry and Utility: Specify the sqm [m²]
          B1P013: Commercialnonononononoyes
          B1P013 - Commercial: Specify the sqm [m²]
          B1P013: Institutionalnonononononono
          B1P013 - Institutional: Specify the sqm [m²]
          B1P013: Natural areasnonononononoyes
          B1P013 - Natural areas: Specify the sqm [m²]
          B1P013: Recreationalnonononononono
          B1P013 - Recreational: Specify the sqm [m²]
          B1P013: Dismissed areasyesnononononono
          B1P013 - Dismissed areas: Specify the sqm [m²]
          B1P013: Othernononononoyesno
          B1P013 - Other: Specify the sqm [m²]706
          B1P014: Building and Land Use after intervention
          B1P014: Residentialyesnononoyesyesyes
          B1P014 - Residential: Specify the sqm [m²]4360
          B1P014: Officeyesnononononono
          B1P014 - Office: Specify the sqm [m²]
          B1P014: Industry and Utilitynonononononono
          B1P014 - Industry and Utility: Specify the sqm [m²]
          B1P014: Commercialyesnononoyesnoyes
          B1P014 - Commercial: Specify the sqm [m²]
          B1P014: Institutionalnonononoyesnono
          B1P014 - Institutional: Specify the sqm [m²]
          B1P014: Natural areasnonononononono
          B1P014 - Natural areas: Specify the sqm [m²]
          B1P014: Recreationalyesnononoyesnono
          B1P014 - Recreational: Specify the sqm [m²]
          B1P014: Dismissed areasnonononononono
          B1P014 - Dismissed areas: Specify the sqm [m²]
          B1P014: Othernononononoyesno
          B1P014 - Other: Specify the sqm [m²]706
          B2P001: PED Lab concept definition
          B2P001: PED Lab concept definition
          B2P002: Installation life time
          B2P002: Installation life time
          B2P003: Scale of action
          B2P003: Scale
          B2P004: Operator of the installation
          B2P004: Operator of the installation
          B2P005: Replication framework: Applied strategy to reuse and recycling the materials
          B2P005: Replication framework: Applied strategy to reuse and recycling the materials
          B2P006: Circular Economy Approach
          B2P006: Do you apply any strategy to reuse and recycling the materials?
          B2P006: Other
          B2P007: Motivation for developing the PED Lab
          B2P007: Motivation for developing the PED Lab
          B2P007: Other
          B2P008: Lead partner that manages the PED Lab
          B2P008: Lead partner that manages the PED Lab
          B2P008: Other
          B2P009: Collaborative partners that participate in the PED Lab
          B2P009: Collaborative partners that participate in the PED Lab
          B2P009: Other
          B2P010: Synergies between the fields of activities
          B2P010: Synergies between the fields of activities
          B2P011: Available facilities to test urban configurations in PED Lab
          B2P011: Available facilities to test urban configurations in PED Lab
          B2P011: Other
          B2P012: Incubation capacities of PED Lab
          B2P012: Incubation capacities of PED Lab
          B2P013: Availability of the facilities for external people
          B2P013: Availability of the facilities for external people
          B2P014: Monitoring measures
          B2P014: Monitoring measures
          B2P015: Key Performance indicators
          B2P015: Key Performance indicators
          B2P016: Execution of operations
          B2P016: Execution of operations
          B2P017: Capacities
          B2P017: Capacities
          B2P018: Relations with stakeholders
          B2P018: Relations with stakeholders
          B2P019: Available tools
          B2P019: Available tools
          B2P019: Available tools
          B2P020: External accessibility
          B2P020: External accessibility
          C1P001: Unlocking Factors
          C1P001: Recent technological improvements for on-site RES production5 - Very important4 - Important5 - Very important1 - Unimportant1 - Unimportant4 - Important4 - Important
          C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock4 - Important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant
          C1P001: Energy Communities, P2P, Prosumers concepts3 - Moderately important4 - Important5 - Very important5 - Very important3 - Moderately important3 - Moderately important4 - Important
          C1P001: Storage systems and E-mobility market penetration4 - Important3 - Moderately important5 - Very important3 - Moderately important2 - Slightly important3 - Moderately important4 - Important
          C1P001: Decreasing costs of innovative materials3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant
          C1P001: Financial mechanisms to reduce costs and maximize benefits3 - Moderately important3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant5 - Very important5 - Very important
          C1P001: The ability to predict Multiple Benefits3 - Moderately important2 - Slightly important4 - Important1 - Unimportant3 - Moderately important4 - Important4 - Important
          C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important3 - Moderately important4 - Important2 - Slightly important3 - Moderately important4 - Important4 - Important
          C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important3 - Moderately important5 - Very important5 - Very important2 - Slightly important5 - Very important3 - Moderately important
          C1P001: Social acceptance (top-down)3 - Moderately important4 - Important4 - Important2 - Slightly important4 - Important5 - Very important2 - Slightly important
          C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important4 - Important5 - Very important3 - Moderately important3 - Moderately important4 - Important2 - Slightly important
          C1P001: Presence of integrated urban strategies and plans4 - Important3 - Moderately important4 - Important2 - Slightly important4 - Important5 - Very important1 - Unimportant
          C1P001: Multidisciplinary approaches available for systemic integration5 - Very important4 - Important4 - Important4 - Important4 - Important5 - Very important1 - Unimportant
          C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects3 - Moderately important5 - Very important5 - Very important2 - Slightly important4 - Important4 - Important1 - Unimportant
          C1P001: Availability of RES on site (Local RES)4 - Important5 - Very important5 - Very important1 - Unimportant3 - Moderately important5 - Very important5 - Very important
          C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders5 - Very important4 - Important5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant
          C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P001: Any other UNLOCKING FACTORS (if any)
          C1P002: Driving Factors
          C1P002: Climate Change adaptation need5 - Very important4 - Important4 - Important3 - Moderately important5 - Very important5 - Very important5 - Very important
          C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important4 - Important5 - Very important5 - Very important4 - Important5 - Very important4 - Important
          C1P002: Rapid urbanization trend and need of urban expansions4 - Important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
          C1P002: Urban re-development of existing built environment5 - Very important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
          C1P002: Economic growth need4 - Important2 - Slightly important3 - Moderately important2 - Slightly important1 - Unimportant4 - Important3 - Moderately important
          C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)4 - Important5 - Very important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important
          C1P002: Territorial and market attractiveness3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important
          C1P002: Energy autonomy/independence2 - Slightly important5 - Very important5 - Very important1 - Unimportant4 - Important2 - Slightly important4 - Important
          C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P002: Any other DRIVING FACTOR (if any)
          C1P003: Administrative barriers
          C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important2 - Slightly important4 - Important3 - Moderately important2 - Slightly important4 - Important4 - Important
          C1P003: Lack of good cooperation and acceptance among partners5 - Very important2 - Slightly important4 - Important2 - Slightly important2 - Slightly important4 - Important2 - Slightly important
          C1P003: Lack of public participation4 - Important4 - Important5 - Very important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
          C1P003: Lack of institutions/mechanisms to disseminate information4 - Important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant
          C1P003:Long and complex procedures for authorization of project activities3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant5 - Very important1 - Unimportant
          C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy3 - Moderately important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
          C1P003: Complicated and non-comprehensive public procurement3 - Moderately important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant
          C1P003: Fragmented and or complex ownership structure3 - Moderately important2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
          C1P003: City administration & cross-sectoral attitude/approaches (silos)4 - Important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
          C1P003: Lack of internal capacities to support energy transition4 - Important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important
          C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P003: Any other Administrative BARRIER (if any)
          C1P004: Policy barriers
          C1P004: Lack of long-term and consistent energy plans and policies4 - Important3 - Moderately important5 - Very important2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant
          C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important3 - Moderately important4 - Important2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant
          C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important3 - Moderately important4 - Important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant
          C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P004: Any other Political BARRIER (if any)
          C1P005: Legal and Regulatory barriers
          C1P005: Inadequate regulations for new technologies3 - Moderately important2 - Slightly important5 - Very important4 - Important1 - Unimportant4 - Important2 - Slightly important
          C1P005: Regulatory instability3 - Moderately important2 - Slightly important4 - Important4 - Important1 - Unimportant2 - Slightly important3 - Moderately important
          C1P005: Non-effective regulations3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important4 - Important
          C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important2 - Slightly important4 - Important2 - Slightly important1 - Unimportant4 - Important2 - Slightly important
          C1P005: Building code and land-use planning hindering innovative technologies4 - Important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important
          C1P005: Insufficient or insecure financial incentives5 - Very important2 - Slightly important5 - Very important2 - Slightly important1 - Unimportant3 - Moderately important2 - Slightly important
          C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation2 - Slightly important2 - Slightly important5 - Very important2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant
          C1P005: Shortage of proven and tested solutions and examples2 - Slightly important2 - Slightly important4 - Important2 - Slightly important1 - Unimportant4 - Important3 - Moderately important
          C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P005: Any other Legal and Regulatory BARRIER (if any)
          C1P006: Environmental barriers
          C1P006: Environmental barriersUrban area very high buildings (and apartment) density and thus, less available space for renewable sources.2 - Slightly important
          C1P007: Technical barriers
          C1P007: Lack of skilled and trained personnel3 - Moderately important2 - Slightly important4 - Important4 - Important2 - Slightly important4 - Important4 - Important
          C1P007: Deficient planning3 - Moderately important2 - Slightly important4 - Important5 - Very important1 - Unimportant4 - Important1 - Unimportant
          C1P007: Retrofitting work in dwellings in occupied state1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important4 - Important
          C1P007: Lack of well-defined process3 - Moderately important2 - Slightly important4 - Important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant
          C1P007: Inaccuracy in energy modelling and simulation3 - Moderately important2 - Slightly important4 - Important2 - Slightly important1 - Unimportant2 - Slightly important2 - Slightly important
          C1P007: Lack/cost of computational scalability3 - Moderately important2 - Slightly important4 - Important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
          C1P007: Grid congestion, grid instability3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
          C1P007: Negative effects of project intervention on the natural environment3 - Moderately important2 - Slightly important3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant
          C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant2 - Slightly important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P007: Difficult definition of system boundaries2 - Slightly important2 - Slightly important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P007: Any other Thecnical BARRIER (if any)
          C1P008: Social and Cultural barriers
          C1P008: Inertia3 - Moderately important3 - Moderately important4 - Important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant
          C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important5 - Very important5 - Very important4 - Important1 - Unimportant5 - Very important1 - Unimportant
          C1P008: Low acceptance of new projects and technologies3 - Moderately important3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important
          C1P008: Difficulty of finding and engaging relevant actors4 - Important3 - Moderately important4 - Important5 - Very important1 - Unimportant4 - Important1 - Unimportant
          C1P008: Lack of trust beyond social network3 - Moderately important2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant
          C1P008: Rebound effect3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
          C1P008: Hostile or passive attitude towards environmentalism2 - Slightly important4 - Important3 - Moderately important4 - Important1 - Unimportant3 - Moderately important2 - Slightly important
          C1P008: Exclusion of socially disadvantaged groups4 - Important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important
          C1P008: Non-energy issues are more important and urgent for actors2 - Slightly important2 - Slightly important4 - Important5 - Very important1 - Unimportant3 - Moderately important4 - Important
          C1P008: Hostile or passive attitude towards energy collaboration2 - Slightly important2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important
          C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P008: Any other Social BARRIER (if any)
          C1P009: Information and Awareness barriers
          C1P009: Insufficient information on the part of potential users and consumers4 - Important2 - Slightly important5 - Very important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important
          C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts4 - Important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
          C1P009: Lack of awareness among authorities3 - Moderately important4 - Important3 - Moderately important4 - Important1 - Unimportant5 - Very important1 - Unimportant
          C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important2 - Slightly important3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important3 - Moderately important
          C1P009: High costs of design, material, construction, and installation4 - Important2 - Slightly important5 - Very important4 - Important5 - Very important5 - Very important4 - Important
          C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P009: Any other Information and Awareness BARRIER (if any)
          C1P010: Financial barriers
          C1P010: Hidden costs3 - Moderately important2 - Slightly important3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important2 - Slightly important
          C1P010: Insufficient external financial support and funding for project activities4 - Important2 - Slightly important4 - Important5 - Very important1 - Unimportant5 - Very important3 - Moderately important
          C1P010: Economic crisis4 - Important3 - Moderately important3 - Moderately important3 - Moderately important4 - Important5 - Very important4 - Important
          C1P010: Risk and uncertainty3 - Moderately important4 - Important4 - Important3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important
          C1P010: Lack of consolidated and tested business models3 - Moderately important4 - Important5 - Very important4 - Important1 - Unimportant5 - Very important4 - Important
          C1P010: Limited access to capital and cost disincentives3 - Moderately important3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important
          C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P010: Any other Financial BARRIER (if any)
          C1P011: Market barriers
          C1P011: Split incentives3 - Moderately important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important
          C1P011: Energy price distortion3 - Moderately important3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important
          C1P011: Energy market concentration, gatekeeper actors (DSOs)3 - Moderately important3 - Moderately important5 - Very important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important
          C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P011: Any other Market BARRIER (if any)
          C1P012: Stakeholders involved
          C1P012: Government/Public Authorities
          • Planning/leading,
          • Design/demand aggregation
          • Planning/leading
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          C1P012: Research & Innovation
          • Planning/leading,
          • Design/demand aggregation
          • Planning/leading,
          • Design/demand aggregation,
          • Monitoring/operation/management
          • Planning/leading
          • Planning/leading,
          • Design/demand aggregation
          C1P012: Financial/Funding
          • Design/demand aggregation,
          • Construction/implementation
          • Planning/leading,
          • Construction/implementation
          • None
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          C1P012: Analyst, ICT and Big Data
          • Planning/leading,
          • Monitoring/operation/management
          • Monitoring/operation/management
          • None
          • Planning/leading,
          • Design/demand aggregation,
          • Monitoring/operation/management
          C1P012: Business process management
          • Design/demand aggregation,
          • Construction/implementation
          • None
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          C1P012: Urban Services providers
          • Planning/leading,
          • Construction/implementation
          • Construction/implementation
          • None
          • None
          C1P012: Real Estate developers
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Planning/leading
          • Design/demand aggregation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Design/Construction companies
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          • Design/demand aggregation,
          • Construction/implementation
          • None
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          C1P012: End‐users/Occupants/Energy Citizens
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Social/Civil Society/NGOs
          • Planning/leading
          • Planning/leading
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          C1P012: Industry/SME/eCommerce
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • None
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Other
          C1P012: Other (if any)
          Summary

          Authors (framework concept)

          Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

          Contributors (to the content)

          Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

          Implemented by

          Boutik.pt: Filipe Martins, Jamal Khan
          Marek Suchánek (Czech Technical University in Prague)