Filters:
NameProjectTypeCompare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Compare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Uncompare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Uncompare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Uncompare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
Lecce, SmartEnCity SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
Firenze, Novoli-Cascine district on “le PIagge” buildings PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Uncompare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Uncompare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Uncompare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Uncompare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleEspoo, Kera
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona
Riga, Ķīpsala, RTU smart student city
Stor-Elvdal, Campus Evenstad
Halmstad, Fyllinge
Vienna, 16. District, Leben am Wilhelminenberg
Fornebu, Bærum
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabEspoo, KeraCerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de BarcelonaRiga, Ķīpsala, RTU smart student cityStor-Elvdal, Campus EvenstadHalmstad, FyllingeVienna, 16. District, Leben am WilhelminenbergFornebu, BærumBucharest, The Bucharest University of Economic Studies (ASE) PED Lab
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studyyesnoyesnononoyesno
PED relevant case studyyesnonoyesyesyesnono
PED Lab.noyesnononononoyes
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesyesnoyesyesyes
Annual energy surplusnononoyesnononono
Energy communitynonoyesnoyesyesnono
Circularityyesnonononononono
Air quality and urban comfortnononononononono
Electrificationnononononononono
Net-zero energy costnononononononono
Net-zero emissionnonononononoyesno
Self-sufficiency (energy autonomous)nonoyesnonononono
Maximise self-sufficiencynonoyesnonononono
Othernoyesnoyesnonoyesyes
Other (A1P004): PV generation/home consumption behaviour emulation at LABEnergy-flexibilitySustainable neighbourhood; Energy efficientSmart Buildings
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhasePlanning PhasePlanning PhaseIn operationPlanning PhasePlanning PhaseCompletedPlanning Phase
A1P006: Start Date
A1P006: Start date01/1509/2501/2401/1301/2103/2401/1803/25
A1P007: End Date
A1P007: End date12/3512/2612/2612/2401/3012/2712/2312/27
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts,
  • Meteorological open data
  • General statistical datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
          A1P011: Geographic coordinates
          X Coordinate (longitude):24.753777782.11214552443609624.0816833911.07877077353174612.9205416.30311210.61140726.09739432591498
          Y Coordinate (latitude):60.2162222241.5003086008059256.9524595661.4260442039911256.6519448.21850159.89898544.44724967519929
          A1P012: Country
          A1P012: CountryFinlandSpainLatviaNorwaySwedenAustriaNorwayRomania
          A1P013: City
          A1P013: CityEspooCerdanyola del VallesRigaEvenstad, Stor-Elvdal municipalityHalmstadViennaBærumBucharest
          A1P014: Climate Zone (Köppen Geiger classification)
          A1P014: Climate Zone (Köppen Geiger classification).DfbCsaCfbDwcDwbCfbDfbCsa
          A1P015: District boundary
          A1P015: District boundaryGeographicFunctionalGeographicGeographicGeographicVirtualGeographic
          Other
          A1P016: Ownership of the case study/PED Lab
          A1P016: Ownership of the case study/PED Lab:MixedPublicPublicPublicMixedPrivateMixedPublic
          A1P017: Ownership of the land / physical infrastructure
          A1P017: Ownership of the land / physical infrastructure:Multiple OwnersSingle OwnerMultiple OwnersSingle OwnerMultiple OwnersMultiple OwnersSingle OwnerSingle Owner
          A1P018: Number of buildings in PED
          A1P018: Number of buildings in PED1522250
          A1P019: Conditioned space
          A1P019: Conditioned space [m²]17000010000
          A1P020: Total ground area
          A1P020: Total ground area [m²]580000119264485
          A1P021: Floor area ratio: Conditioned space / total ground area
          A1P021: Floor area ratio: Conditioned space / total ground area00100000
          A1P022: Financial schemes
          A1P022a: Financing - PRIVATE - Real estatenonononoyesyesnono
          A1P022a: Add the value in EUR if available [EUR]
          A1P022b: Financing - PRIVATE - ESCO schemenononononononono
          A1P022b: Add the value in EUR if available [EUR]
          A1P022c: Financing - PRIVATE - Othernononononononono
          A1P022c: Add the value in EUR if available [EUR]
          A1P022d: Financing - PUBLIC - EU structural fundingnononononononono
          A1P022d: Add the value in EUR if available [EUR]
          A1P022e: Financing - PUBLIC - National fundingnononoyesnononono
          A1P022e: Add the value in EUR if available [EUR]
          A1P022f: Financing - PUBLIC - Regional fundingnononononononono
          A1P022f: Add the value in EUR if available [EUR]
          A1P022g: Financing - PUBLIC - Municipal fundingnononononononono
          A1P022g: Add the value in EUR if available [EUR]
          A1P022h: Financing - PUBLIC - Othernoyesnononononoyes
          A1P022h: Add the value in EUR if available [EUR]
          A1P022i: Financing - RESEARCH FUNDING - EUnonoyesnoyesnonono
          A1P022i: Add the value in EUR if available [EUR]7500000
          A1P022j: Financing - RESEARCH FUNDING - Nationalnononoyesnononono
          A1P022j: Add the value in EUR if available [EUR]
          A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononononono
          A1P022k: Add the value in EUR if available [EUR]
          A1P022l: Financing - RESEARCH FUNDING - Othernononononononono
          A1P022l: Add the value in EUR if available [EUR]
          A1P022: OtherMultiple different funding schemes depending on the case.
          A1P023: Economic Targets
          A1P023: Economic Targets
          • Job creation,
          • Positive externalities,
          • Boosting local businesses,
          • Boosting local and sustainable production,
          • Boosting consumption of local and sustainable products
          • Boosting local businesses,
          • Boosting local and sustainable production
          • Boosting local businesses,
          • Boosting local and sustainable production
          • Boosting local and sustainable production
          A1P023: OtherCircular economy
          A1P024: More comments:
          A1P024: More comments:
          A1P025: Estimated PED case study / PED LAB costs
          A1P025: Estimated PED case study / PED LAB costs [mil. EUR]
          Contact person for general enquiries
          A1P026: NameJoni MäkinenJose Lopez VicarioJudith StiekemaÅse Lekang SørensenMarkus OlofsgårdRachel Leutgöb (e7)Christoph GollnerAdela Bara
          A1P027: OrganizationCity of EspooUniversitat Autonoma Barcelona (UAB)OASCSINTEF / The Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart CitiesAFRYe7 GmbHFFGThe Bucharest University of Economic Studies
          A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityOtherResearch Center / UniversityOtherResearch Center / UniversityOtherResearch Center / University
          A1P028: Othernot for profit private organisation
          A1P029: Emailjoni.makinen@espoo.fijose.vicario@uab.catjudith@oascities.orgase.sorensen@sintef.nomarkus.olofsgard@afry.comrachel.leutgoeb@e-sieben.atchristoph.gollner@ffg.atBara.adela@ie.ase.ro
          Contact person for other special topics
          A1P030: Name
          A1P031: Email
          Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYes
          A2P001: Fields of application
          A2P001: Fields of application
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies,
          • Waste management,
          • Construction materials
          • Energy efficiency,
          • Energy flexibility,
          • Digital technologies
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies,
          • Construction materials
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies
          • Energy efficiency,
          • Energy production,
          • Urban comfort (pollution, heat island, noise level etc.)
          • Energy efficiency,
          • Energy production,
          • E-mobility
          • Energy efficiency,
          • Energy flexibility,
          • Digital technologies,
          • Indoor air quality
          A2P001: Other
          A2P002: Tools/strategies/methods applied for each of the above-selected fields
          A2P002: Tools/strategies/methods applied for each of the above-selected fields- Kera development commitment (https://www.espoo.fi/en/kera-development-commitment). - SPARCS Co-creation model for sustainable and smart urban areas (www.co-creatingsparcs.fi/en). - Kera area carbon neutrality roadmap (https://static.espoo.fi/cdn/ff/MHDdcMNJ9aYn7CjpoD4zNpo5M-M9HIDLXlJdUrUmf-8/1642756766/public/2022-01/Kera%20carbon%20neutrality%20map_EN.pdf)A suite of replicable modeling tools will enable stakeholders to analyze planning actions towards positive energy in a cost-effective fashion, aiding their evidence based decision-making process. The tools will be able to model the district’s energy production and demand, optimize for flexibility and simulate mobility and transport. By employing gamification and co-creation approaches, the project will enhance public awareness and engagement in energy efficiency. The project will culminate in the publication of practical guidelines, reusable models, algorithms, and training materials to aid other cities to replicate the digital twin for their districts, fostering widespread adoption of sustainable energy practices.Campus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. The vision for Campus Evenstad is an energy-flexible Campus Evenstad in an emission-free Europe. The area consists of approx. 20 buildings managed and owned by Statsbygg; the Norwegian government’s building commissioner, property manager and developer. The oldest building is from the 1700-century and the newest is the administration centre (2017) which is a Zero Emission Building (ZEB) with the highest ambitions (ZEB-COM). Their concept has been to realize Campus Evenstad as an energy pilot, where innovative energy solutions are demonstrated, showing how local areas can become more self-sufficient in energy. The energy system at Evenstad consists of several innovative energy solutions that are new in a Norwegian and European context. They are combined in local infrastructure for electricity and heat, which has led to new knowledge and learning about how the solutions work together, and how the interaction is between the local and the national energy system. The solutions consist of solar cells (PV), solar collectors, combined heat and power plant (CHP) based on wood chips, biofuel boiler, electric boiler, grid connection, district heating, heat storage, stationary battery and bidirectional electric vehicle (EV) charging (V2G). Statsbygg has gained a lot of operational experience from Campus Evenstad - both from individual technologies and from the interaction between these, which benefits Statsbygg's 2,200 buildings and 3 million m2 around Norway. Sharing of experiences is central. Campus Evenstad is a pilot in the Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart Cities were several of the solutions has been developed and studied.link based regulation of electricity grid
          A2P003: Application of ISO52000
          A2P003: Application of ISO52000NoNoNoNo
          A2P004: Appliances included in the calculation of the energy balance
          A2P004: Appliances included in the calculation of the energy balanceNoYesYesNo
          A2P005: Mobility included in the calculation of the energy balance
          A2P005: Mobility included in the calculation of the energy balanceNoYesYesYes
          A2P006: Description of how mobility is included (or not included) in the calculation
          A2P006: Description of how mobility is included (or not included) in the calculationThe university operates a fleet of 13 electric vehicles (EV) (61kW power each). There are 5 EV charging stations on campus.At Campus Evenstad there is infrastructure for EV charging and bidirectional charging (V2G). EV charging is included in the energy balance.
          A2P007: Annual energy demand in buildings / Thermal demand
          A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]54.580000.771
          A2P008: Annual energy demand in buildings / Electric Demand
          A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]19.450000.76
          A2P009: Annual energy demand for e-mobility
          A2P009: Annual energy demand for e-mobility [GWh/annum]
          A2P010: Annual energy demand for urban infrastructure
          A2P010: Annual energy demand for urban infrastructure [GWh/annum]
          A2P011: Annual renewable electricity production on-site during target year
          A2P011: PVyesnonoyesyesnonono
          A2P011: PV - specify production in GWh/annum [GWh/annum]40.065
          A2P011: Windnonoyesnonononono
          A2P011: Wind - specify production in GWh/annum [GWh/annum]
          A2P011: Hydronononononononono
          A2P011: Hydro - specify production in GWh/annum [GWh/annum]
          A2P011: Biomass_elnononoyesnononono
          A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]0.050
          A2P011: Biomass_peat_elnononononononono
          A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
          A2P011: PVT_elnonoyesnonononono
          A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
          A2P011: Othernononononononono
          A2P011: Other - specify production in GWh/annum [GWh/annum]
          A2P012: Annual renewable thermal production on-site during target year
          A2P012: Geothermalnonononoyesnonono
          A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
          A2P012: Solar Thermalnononoyesnononono
          A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.045
          A2P012: Biomass_heatnonoyesyesnononono
          A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.35
          A2P012: Waste heat+HPyesnonononononono
          A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_peat_heatnononononononono
          A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
          A2P012: PVT_thnononononononono
          A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_firewood_thnononononononono
          A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
          A2P012: Othernononononononono
          A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
          A2P013: Renewable resources on-site - Additional notes
          A2P013: Renewable resources on-site - Additional notesLocal energy utility will implement district level thermal solution. First, energy will be produced from waste heat from a local data center. Further thermal solutions are under discussion and development.Conventional power generation: The university’s heat supply is designed as a local centralized heat supply system. Electrical power, generated in combined heat and power (CHP) units, is delivered to the distribution network and sold to energy traders as regulated by local legislation and norms. There are two natural gas burners acting as heat sources (3MW and 6MW capacity), and two CHP units (1.6MW and 0.45MW thermal capacity). All heating is supplied from the CHP plants. Renewable Energy Sources (RES): a wind turbine (3.6 kW) and PV panels (11.7 kW) are connected to the faculty microgrid. In the future it is planned to power the campus entirely from local RES.Listed values are measurements from 2018. Renewable energy share is increasing.
          A2P014: Annual energy use
          A2P014: Annual energy use [GWh/annum]78.81.500
          A2P015: Annual energy delivered
          A2P015: Annual energy delivered [GWh/annum]15.41
          A2P016: Annual non-renewable electricity production on-site during target year
          A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]0
          A2P017: Annual non-renewable thermal production on-site during target year
          A2P017: Gasnonoyesnonononono
          A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Coalnononononononono
          A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Oilnononononononono
          A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Othernononononononono
          A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P018: Annual renewable electricity imports from outside the boundary during target year
          A2P018: PVnononononononono
          A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
          A2P018: Windnononononononono
          A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
          A2P018: Hydronononononononono
          A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_elnononononononono
          A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_peat_elnononononononono
          A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: PVT_elnononononononono
          A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Othernononononononono
          A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
          A2P019: Annual renewable thermal imports from outside the boundary during target year
          A2P019: Geothermalnononononononono
          A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Solar Thermalnononononononono
          A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_heatnononononononono
          A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Waste heat+HPnononononononono
          A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_peat_heatnononononononono
          A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
          A2P019: PVT_thnononononononono
          A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_firewood_thnononononononono
          A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Othernononononononono
          A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
          A2P020: Share of RES on-site / RES outside the boundary
          A2P020: Share of RES on-site / RES outside the boundary00000000
          A2P021: GHG-balance calculated for the PED
          A2P021: GHG-balance calculated for the PED [tCO2/annum]450000
          A2P022: KPIs related to the PED case study / PED Lab
          A2P022: Safety & Security
          A2P022: Health
          A2P022: Education
          A2P022: MobilityMode of transport; Access to public transport
          A2P022: EnergyYesYesEnergy efficiency in buildings (Net energy need; Gross energy need; Total energy need)Yes
          A2P022: Water
          A2P022: Economic development
          A2P022: Housing and CommunityDelivery and proximity to amenities
          A2P022: Waste
          A2P022: OtherGHG emissions; Power/load; Life cycle cost (LCC); Demographic needs and consultation plan; Public Space
          A2P023: Technological Solutions / Innovations - Energy Generation
          A2P023: Photovoltaicsyesyesnoyesyesyesyesno
          A2P023: Solar thermal collectorsnononoyesnononono
          A2P023: Wind Turbinesnononononononono
          A2P023: Geothermal energy systemnononononoyesnono
          A2P023: Waste heat recoveryyesnonononononono
          A2P023: Waste to energynononononononono
          A2P023: Polygenerationnononononononono
          A2P023: Co-generationnononoyesnononono
          A2P023: Heat Pumpyesnonononoyesnono
          A2P023: Hydrogennononononononono
          A2P023: Hydropower plantnononononononono
          A2P023: Biomassnononoyesnononono
          A2P023: Biogasnononononononono
          A2P023: OtherThe Co-generation is biomass based.Photovoltaics are considered for the next years
          A2P024: Technological Solutions / Innovations - Energy Flexibility
          A2P024: A2P024: Information and Communication Technologies (ICT)yesyesyesyesyesnonoyes
          A2P024: Energy management systemyesyesyesyesnononoyes
          A2P024: Demand-side managementyesyesyesyesyesnonoyes
          A2P024: Smart electricity gridyesnoyesnoyesnonono
          A2P024: Thermal Storagenonoyesyesnoyesnono
          A2P024: Electric Storagenonoyesyesnononono
          A2P024: District Heating and Coolingyesnoyesyesnoyesnono
          A2P024: Smart metering and demand-responsive control systemsnonoyesyesyesnonono
          A2P024: P2P – buildingsnononononononono
          A2P024: OtherBidirectional electric vehicle (EV) charging (V2G)
          A2P025: Technological Solutions / Innovations - Energy Efficiency
          A2P025: Deep Retrofittingnoyesnononoyesnoyes
          A2P025: Energy efficiency measures in historic buildingsnononononoyesnoyes
          A2P025: High-performance new buildingsyesnonoyesnononono
          A2P025: Smart Public infrastructure (e.g. smart lighting)yesnonononononono
          A2P025: Urban data platformsyesnoyesnonononono
          A2P025: Mobile applications for citizensnonoyesnonononono
          A2P025: Building services (HVAC & Lighting)yesnoyesnonononoyes
          A2P025: Smart irrigationnononononononono
          A2P025: Digital tracking for waste disposalnononononononono
          A2P025: Smart surveillancenononononononoyes
          A2P025: Other
          A2P026: Technological Solutions / Innovations - Mobility
          A2P026: Efficiency of vehicles (public and/or private)yesnonononononono
          A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)yesnonononononono
          A2P026: e-Mobilityyesnonoyesnononono
          A2P026: Soft mobility infrastructures and last mile solutionsyesnonononononono
          A2P026: Car-free areanononononononono
          A2P026: Other
          A2P027: Mobility strategies - Additional notes
          A2P027: Mobility strategies - Additional notesThe Fornebu area will contain urban structures that will facilitate low and zero carbon mobility within the area, including pedestrian walking, bicycling and electrical vehicles.
          A2P028: Energy efficiency certificates
          A2P028: Energy efficiency certificatesNoNoYesNo
          A2P028: If yes, please specify and/or enter notesPassive house (2 buildings, 4 200 m2, from 2015)
          A2P029: Any other building / district certificates
          A2P029: Any other building / district certificatesNoNoYesNoYes
          A2P029: If yes, please specify and/or enter notesZero Emission Building (ZEB) with the highest ambitions (ZEB-COM) (admin building, 1 141 m2, 2016)All buildings should be certified according to BREEAM-NOR Excellent
          A3P001: Relevant city /national strategy
          A3P001: Relevant city /national strategy
          • Energy master planning (SECAP, etc.),
          • Climate change adaption plan/strategy (e.g. Climate City contract)
          • Smart cities strategies,
          • Promotion of energy communities (REC/CEC),
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Promotion of energy communities (REC/CEC),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Promotion of energy communities (REC/CEC)
          • Smart cities strategies
          A3P002: Quantitative targets included in the city / national strategy
          A3P002: Quantitative targets included in the city / national strategy
          A3P003: Strategies towards decarbonization of the gas grid
          A3P003: Strategies towards decarbonization of the gas grid
          A3P003: Other
          A3P004: Identification of needs and priorities
          A3P004: Identification of needs and priorities
          A3P005: Sustainable behaviour
          A3P005: Sustainable behaviour
          A3P006: Economic strategies
          A3P006: Economic strategies
          • PPP models,
          • Circular economy models
          • Innovative business models
          • Open data business models,
          • Innovative business models,
          • Demand management Living Lab
          • Local trading
          • Innovative business models
          • Innovative business models,
          • Demand management Living Lab
          A3P006: Other
          A3P007: Social models
          A3P007: Social models
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Quality of Life
          • Digital Inclusion,
          • Citizen/owner involvement in planning and maintenance,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies
          • Behavioural Change / End-users engagement,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour),
          • Other
          • Behavioural Change / End-users engagement,
          • Citizen/owner involvement in planning and maintenance
          • Strategies towards (local) community-building
          • Digital Inclusion,
          • Citizen/owner involvement in planning and maintenance,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          A3P007: OtherCampus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. Sharing knowledge is essential: Evenstad has regular visits from Politicians, decision-makers, researchers, environmental organizations, and energy- and building companies.
          A3P008: Integrated urban strategies
          A3P008: Integrated urban strategies
          • Strategic urban planning,
          • Digital twinning and visual 3D models,
          • District Energy plans
          • District Energy plans
          • Digital twinning and visual 3D models
          • Strategic urban planning
          • Digital twinning and visual 3D models
          A3P008: Other
          A3P009: Environmental strategies
          A3P009: Environmental strategies
          • Net zero carbon footprint,
          • Life Cycle approach,
          • Greening strategies,
          • Nature Based Solutions (NBS)
          • Energy Neutral
          • Low Emission Zone
          • Energy Neutral,
          • Carbon-free
          • Carbon-free,
          • Life Cycle approach
          • Energy Neutral,
          • Net zero carbon footprint,
          • Carbon-free
          A3P009: Other
          A3P010: Legal / Regulatory aspects
          A3P010: Legal / Regulatory aspectsCampus Evenstad became a prosumer in 2016, as the first with DSO Eidsiva. Evenstad is also one of the first three PV systems in Norway to receive green certificates.
          B1P001: PED/PED relevant concept definition
          B1P001: PED/PED relevant concept definitionImplementation of district level heating system to make heating energy positive and expanding local renewable electricity production.ExPEDite aims at creating and deploying a novel digital twin, allowing for real-time monitoring, visualization and management of district-level energy flows. Cities consume 65% of the world’s energy supply and are responsible for 70% of the CO² emissions, hence sharing a lot of the responsibility for climate change. We are faced with the challenge of redesigning our existing cities to make them more sustainable, resilient, inclusive and safe. Developing Positive Energy Districts (PEDs), is a breakthrough way to deal with the issue of urban emissions and applying adaptation and mitigation strategies to climate change, while ensuring that these urban areas generate an annual surplus of renewable energy and net zero greenhouse gas emissions. PEDs must address environmental, economic and social issues, providing solutions to energy consumption, production, emissions, transport & mobility and livability. By constantly monitoring and evaluating parameters through existing and/or novel sensor systems (e.g., renewable energy production/supply, transport conditions, air quality, energy demand, meteorological conditions, etc.), unconventional techniques may be applied to provide more sustainable options for the district’s needs.The biggest impact is the demonstration of several new energy solutions for local communities. Statsbygg/Campus Evenstad contributes to the development of innovations, pushing technological development through purchasing and demonstration of the solutions. This is a benefit for both end users, energy service providers and society at large. Evenstad also contribute to developing the local business community. For example, local biomass chip production for CHP, development of V2G-software etc. Several key solutions have been important when aiming to achieve the goals of reduced emissions, increased self-sufficiency in energy, and an energy-flexible campus. Example Vehicle-to-grid (V2G): We realized bidirectional EV charging at Campus Evenstad in 2019, demonstrating V2G for the first time in Norway. The experiences from Evenstad provide increased knowledge and practical experience from purchasing, installing and operating the V2G solution, and can contribute to creating new solutions within the energy system. With the equipment installed, the batteries in EVs can supply power back to buildings or the power grid. Example solar cells (PV): We installed PV in 2013 when there were only a few grid-connected PV systems in Norway. The PV system was an important piece in changing the view on solar energy in Norway, where businesses, the public sector and private individuals started seeing the potential for solar energy also this far north. In 2022, the PV system was expanded with PV cells on the facade of the energy center. Example Solar collector system: Covers 100m2 of the roof surface of dormitories and supplies supplies 117 dormitories with all the hot water they need (4000m2 floor area. The solar collector system is connected to the district heating system, where the main heat source is bioenergy. Solar energy and bioenergy complement each other at different times of the year. Example battery bank: Among the 5 largest electrical batteries in Norway connected to the grid. Example CHP: First of its kind in Norway, generating heat and electricity from biomass. Already in 2010, fossil fuels were phased out by converting from oil to wood-chip heating.
          B1P002: Motivation behind PED/PED relevant project development
          B1P002: Motivation behind PED/PED relevant project developmentExpected outcome 1 Increased number of (tangible) city planning actions for positive clean energy districts using the (proto-)PED design, development and management digital twin tools (based on pre-market research learnings) using open-standards based components which can be reused elsewhere. 2 Increased integration of existing smaller scale management systems (e.g. Building management systems) with open-standards based operational city platforms using sectorial data (e.g. building data, mobility, urban planning, etc.). 3 Enhanced data gathering approaches with identification of relevant multidimensional data sets (e.g. meteorological, load profile, social, geo-spatial, etc.) high-resolution real-time data streams (e.g. renewable energy production, energy consumption), and relevant forecasting data, drawing also on the work of common European data spaces. 4 Increased number of city planning departments / approaches using common data and (replicable) elements and processes. 5 Consolidated city sensor network specifications, complemented by appropriate data gathering approaches for soft data. 6 Improved performance of AI based self-learning systems for optimization of positive clean energy districts and bottom-up complex models. 7 Enhanced innovation capacity of local/regional administrations and accelerated uptake of shared, smart and sustainable zero emission solutions.In line with the EU's vision of "local energy communities", Campus Evenstad demonstrates energy actions that contribute to the clean energy transition. The campus has been developed over several years, demonstrating several innovative and sustainable technologies and energy solutions in a microgrid, e.g. vehicle to grid (V2G), biomass-based combined heat and power (CHP), solar energy, energy storage and zero emission buildings. It shows how to use new technology to enable zero emissions areas. Dedicated professionals, both Statsbygg's operating staff and researchers from FME ZEN have been central to the realization, together with dedicated management at the University campus, who have shown a great willingness to implement new solutions.
          B1P003: Environment of the case study area
          B2P003: Environment of the case study areaUrban areaUrban areaRuralSuburban area
          B1P004: Type of district
          B2P004: Type of district
          • New construction
          • New construction,
          • Renovation
          • New construction
          • New construction
          B1P005: Case Study Context
          B1P005: Case Study Context
          • Re-use / Transformation Area
          • Retrofitting Area
          • New Development
          • New Development
          B1P006: Year of construction
          B1P006: Year of construction
          B1P007: District population before intervention - Residential
          B1P007: District population before intervention - Residential
          B1P008: District population after intervention - Residential
          B1P008: District population after intervention - Residential14000
          B1P009: District population before intervention - Non-residential
          B1P009: District population before intervention - Non-residential
          B1P010: District population after intervention - Non-residential
          B1P010: District population after intervention - Non-residential10000
          B1P011: Population density before intervention
          B1P011: Population density before intervention000000
          B1P012: Population density after intervention
          B1P012: Population density after intervention0.04137931034482800000
          B1P013: Building and Land Use before intervention
          B1P013: Residentialyesnonononononono
          B1P013 - Residential: Specify the sqm [m²]
          B1P013: Officeyesnonononononono
          B1P013 - Office: Specify the sqm [m²]
          B1P013: Industry and Utilityyesnonononononono
          B1P013 - Industry and Utility: Specify the sqm [m²]
          B1P013: Commercialnononononononono
          B1P013 - Commercial: Specify the sqm [m²]
          B1P013: Institutionalnononononononono
          B1P013 - Institutional: Specify the sqm [m²]
          B1P013: Natural areasnonononoyesnonono
          B1P013 - Natural areas: Specify the sqm [m²]
          B1P013: Recreationalnononononononono
          B1P013 - Recreational: Specify the sqm [m²]
          B1P013: Dismissed areasyesnonononononono
          B1P013 - Dismissed areas: Specify the sqm [m²]
          B1P013: Othernononononononono
          B1P013 - Other: Specify the sqm [m²]
          B1P014: Building and Land Use after intervention
          B1P014: Residentialyesnononononoyesno
          B1P014 - Residential: Specify the sqm [m²]
          B1P014: Officeyesnonononononono
          B1P014 - Office: Specify the sqm [m²]
          B1P014: Industry and Utilitynononononononono
          B1P014 - Industry and Utility: Specify the sqm [m²]
          B1P014: Commercialyesnonononononono
          B1P014 - Commercial: Specify the sqm [m²]
          B1P014: Institutionalnononononononono
          B1P014 - Institutional: Specify the sqm [m²]
          B1P014: Natural areasnononononononono
          B1P014 - Natural areas: Specify the sqm [m²]
          B1P014: Recreationalyesnononononoyesno
          B1P014 - Recreational: Specify the sqm [m²]
          B1P014: Dismissed areasnononononononono
          B1P014 - Dismissed areas: Specify the sqm [m²]
          B1P014: Othernononononononono
          B1P014 - Other: Specify the sqm [m²]
          B2P001: PED Lab concept definition
          B2P001: PED Lab concept definition
          B2P002: Installation life time
          B2P002: Installation life time
          B2P003: Scale of action
          B2P003: ScaleDistrict
          B2P004: Operator of the installation
          B2P004: Operator of the installation
          B2P005: Replication framework: Applied strategy to reuse and recycling the materials
          B2P005: Replication framework: Applied strategy to reuse and recycling the materials
          B2P006: Circular Economy Approach
          B2P006: Do you apply any strategy to reuse and recycling the materials?
          B2P006: Other
          B2P007: Motivation for developing the PED Lab
          B2P007: Motivation for developing the PED Lab
          B2P007: Other
          B2P008: Lead partner that manages the PED Lab
          B2P008: Lead partner that manages the PED Lab
          B2P008: Other
          B2P009: Collaborative partners that participate in the PED Lab
          B2P009: Collaborative partners that participate in the PED Lab
          B2P009: Other
          B2P010: Synergies between the fields of activities
          B2P010: Synergies between the fields of activities
          B2P011: Available facilities to test urban configurations in PED Lab
          B2P011: Available facilities to test urban configurations in PED Lab
          B2P011: Other
          B2P012: Incubation capacities of PED Lab
          B2P012: Incubation capacities of PED Lab
          B2P013: Availability of the facilities for external people
          B2P013: Availability of the facilities for external people
          B2P014: Monitoring measures
          B2P014: Monitoring measures
          B2P015: Key Performance indicators
          B2P015: Key Performance indicators
          B2P016: Execution of operations
          B2P016: Execution of operations
          B2P017: Capacities
          B2P017: Capacities
          B2P018: Relations with stakeholders
          B2P018: Relations with stakeholders
          B2P019: Available tools
          B2P019: Available tools
          B2P019: Available tools
          B2P020: External accessibility
          B2P020: External accessibility
          C1P001: Unlocking Factors
          C1P001: Recent technological improvements for on-site RES production5 - Very important4 - Important5 - Very important5 - Very important3 - Moderately important5 - Very important1 - Unimportant4 - Important
          C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
          C1P001: Energy Communities, P2P, Prosumers concepts3 - Moderately important4 - Important5 - Very important5 - Very important5 - Very important3 - Moderately important1 - Unimportant4 - Important
          C1P001: Storage systems and E-mobility market penetration4 - Important3 - Moderately important4 - Important5 - Very important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
          C1P001: Decreasing costs of innovative materials3 - Moderately important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P001: Financial mechanisms to reduce costs and maximize benefits3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant3 - Moderately important
          C1P001: The ability to predict Multiple Benefits3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant2 - Slightly important
          C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant3 - Moderately important
          C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important3 - Moderately important5 - Very important4 - Important4 - Important2 - Slightly important1 - Unimportant3 - Moderately important
          C1P001: Social acceptance (top-down)3 - Moderately important4 - Important4 - Important4 - Important4 - Important5 - Very important1 - Unimportant4 - Important
          C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important4 - Important5 - Very important4 - Important4 - Important3 - Moderately important1 - Unimportant4 - Important
          C1P001: Presence of integrated urban strategies and plans4 - Important3 - Moderately important4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
          C1P001: Multidisciplinary approaches available for systemic integration5 - Very important4 - Important5 - Very important1 - Unimportant4 - Important4 - Important1 - Unimportant4 - Important
          C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects3 - Moderately important5 - Very important5 - Very important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important
          C1P001: Availability of RES on site (Local RES)4 - Important5 - Very important4 - Important5 - Very important5 - Very important4 - Important1 - Unimportant5 - Very important
          C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders5 - Very important4 - Important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
          C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P001: Any other UNLOCKING FACTORS (if any)
          C1P002: Driving Factors
          C1P002: Climate Change adaptation need5 - Very important4 - Important5 - Very important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant4 - Important
          C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important4 - Important4 - Important5 - Very important3 - Moderately important5 - Very important1 - Unimportant4 - Important
          C1P002: Rapid urbanization trend and need of urban expansions4 - Important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant
          C1P002: Urban re-development of existing built environment5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
          C1P002: Economic growth need4 - Important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important
          C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)4 - Important5 - Very important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important
          C1P002: Territorial and market attractiveness3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P002: Energy autonomy/independence2 - Slightly important5 - Very important4 - Important4 - Important2 - Slightly important4 - Important1 - Unimportant5 - Very important
          C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P002: Any other DRIVING FACTOR (if any)
          C1P003: Administrative barriers
          C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important
          C1P003: Lack of good cooperation and acceptance among partners5 - Very important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important
          C1P003: Lack of public participation4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
          C1P003: Lack of institutions/mechanisms to disseminate information4 - Important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant4 - Important
          C1P003:Long and complex procedures for authorization of project activities3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important
          C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy3 - Moderately important4 - Important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
          C1P003: Complicated and non-comprehensive public procurement3 - Moderately important4 - Important3 - Moderately important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant4 - Important
          C1P003: Fragmented and or complex ownership structure3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important
          C1P003: City administration & cross-sectoral attitude/approaches (silos)4 - Important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important
          C1P003: Lack of internal capacities to support energy transition4 - Important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important
          C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P003: Any other Administrative BARRIER (if any)
          C1P004: Policy barriers
          C1P004: Lack of long-term and consistent energy plans and policies4 - Important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important5 - Very important1 - Unimportant3 - Moderately important
          C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important4 - Important1 - Unimportant3 - Moderately important
          C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
          C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P004: Any other Political BARRIER (if any)
          C1P005: Legal and Regulatory barriers
          C1P005: Inadequate regulations for new technologies3 - Moderately important2 - Slightly important4 - Important5 - Very important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important
          C1P005: Regulatory instability3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important
          C1P005: Non-effective regulations3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important
          C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important2 - Slightly important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important
          C1P005: Building code and land-use planning hindering innovative technologies4 - Important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important
          C1P005: Insufficient or insecure financial incentives5 - Very important2 - Slightly important3 - Moderately important4 - Important3 - Moderately important4 - Important1 - Unimportant2 - Slightly important
          C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important
          C1P005: Shortage of proven and tested solutions and examples2 - Slightly important2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important
          C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P005: Any other Legal and Regulatory BARRIER (if any)
          C1P006: Environmental barriers
          C1P006: Environmental barriers
          C1P007: Technical barriers
          C1P007: Lack of skilled and trained personnel3 - Moderately important2 - Slightly important4 - Important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important
          C1P007: Deficient planning3 - Moderately important2 - Slightly important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important
          C1P007: Retrofitting work in dwellings in occupied state1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important
          C1P007: Lack of well-defined process3 - Moderately important2 - Slightly important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important
          C1P007: Inaccuracy in energy modelling and simulation3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important
          C1P007: Lack/cost of computational scalability3 - Moderately important2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important
          C1P007: Grid congestion, grid instability3 - Moderately important2 - Slightly important4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important
          C1P007: Negative effects of project intervention on the natural environment3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important
          C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important
          C1P007: Difficult definition of system boundaries2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant2 - Slightly important
          C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P007: Any other Thecnical BARRIER (if any)Energy management systems of different new technologies does not "talk together" (e.g. solar inverter, V2G inverter). This creates challenges.
          C1P008: Social and Cultural barriers
          C1P008: Inertia3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important
          C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important
          C1P008: Low acceptance of new projects and technologies3 - Moderately important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important
          C1P008: Difficulty of finding and engaging relevant actors4 - Important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
          C1P008: Lack of trust beyond social network3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important
          C1P008: Rebound effect3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important
          C1P008: Hostile or passive attitude towards environmentalism2 - Slightly important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important
          C1P008: Exclusion of socially disadvantaged groups4 - Important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
          C1P008: Non-energy issues are more important and urgent for actors2 - Slightly important2 - Slightly important3 - Moderately important4 - Important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important
          C1P008: Hostile or passive attitude towards energy collaboration2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important
          C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P008: Any other Social BARRIER (if any)
          C1P009: Information and Awareness barriers
          C1P009: Insufficient information on the part of potential users and consumers4 - Important2 - Slightly important3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant2 - Slightly important
          C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts4 - Important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
          C1P009: Lack of awareness among authorities3 - Moderately important4 - Important3 - Moderately important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important
          C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important
          C1P009: High costs of design, material, construction, and installation4 - Important2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important
          C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P009: Any other Information and Awareness BARRIER (if any)Different interests - Grid/energy stakeholders and building stakeholders
          C1P010: Financial barriers
          C1P010: Hidden costs3 - Moderately important2 - Slightly important4 - Important5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important
          C1P010: Insufficient external financial support and funding for project activities4 - Important2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important
          C1P010: Economic crisis4 - Important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
          C1P010: Risk and uncertainty3 - Moderately important4 - Important3 - Moderately important5 - Very important2 - Slightly important5 - Very important1 - Unimportant4 - Important
          C1P010: Lack of consolidated and tested business models3 - Moderately important4 - Important3 - Moderately important5 - Very important4 - Important3 - Moderately important1 - Unimportant4 - Important
          C1P010: Limited access to capital and cost disincentives3 - Moderately important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important
          C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P010: Any other Financial BARRIER (if any)
          C1P011: Market barriers
          C1P011: Split incentives3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
          C1P011: Energy price distortion3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
          C1P011: Energy market concentration, gatekeeper actors (DSOs)3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
          C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P011: Any other Market BARRIER (if any)
          C1P012: Stakeholders involved
          C1P012: Government/Public Authorities
          • Planning/leading,
          • Design/demand aggregation
          • Planning/leading
          • Planning/leading
          • Design/demand aggregation
          C1P012: Research & Innovation
          • Planning/leading,
          • Design/demand aggregation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Monitoring/operation/management
          C1P012: Financial/Funding
          • Design/demand aggregation,
          • Construction/implementation
          • Planning/leading,
          • Design/demand aggregation,
          • Monitoring/operation/management
          • Construction/implementation
          C1P012: Analyst, ICT and Big Data
          • Planning/leading,
          • Monitoring/operation/management
          • Planning/leading,
          • Monitoring/operation/management
          • Monitoring/operation/management
          • Monitoring/operation/management
          C1P012: Business process management
          • Design/demand aggregation,
          • Construction/implementation
          • Monitoring/operation/management
          • Planning/leading
          • Design/demand aggregation
          C1P012: Urban Services providers
          • Planning/leading,
          • Construction/implementation
          • Planning/leading,
          • Monitoring/operation/management
          • Design/demand aggregation
          C1P012: Real Estate developers
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Construction/implementation
          • Planning/leading,
          • Monitoring/operation/management
          • Construction/implementation
          C1P012: Design/Construction companies
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          • Construction/implementation
          • Construction/implementation
          • Design/demand aggregation
          C1P012: End‐users/Occupants/Energy Citizens
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Design/demand aggregation
          • Monitoring/operation/management
          • Monitoring/operation/management
          C1P012: Social/Civil Society/NGOs
          • Planning/leading
          • Design/demand aggregation
          • None
          • Design/demand aggregation
          C1P012: Industry/SME/eCommerce
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          • Construction/implementation
          • Construction/implementation
          • Construction/implementation
          C1P012: Other
          C1P012: Other (if any)
          Summary

          Authors (framework concept)

          Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

          Contributors (to the content)

          Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

          Implemented by

          Boutik.pt: Filipe Martins, Jamal Khan
          Marek Suchánek (Czech Technical University in Prague)