Filters:
NameProjectTypeCompare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Compare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Uncompare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Uncompare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Uncompare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Uncompare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
Lecce, SmartEnCity SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
Firenze, Novoli-Cascine district on “le PIagge” buildings PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Uncompare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Uncompare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Uncompare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleEspoo, Kera
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona
Graz, Reininghausgründe
Aveiro, Aradas district
Vienna, 16. District, Leben am Wilhelminenberg
Groningen, PED South
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab
Oslo, Verksbyen
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabEspoo, KeraCerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de BarcelonaGraz, ReininghausgründeAveiro, Aradas districtVienna, 16. District, Leben am WilhelminenbergGroningen, PED SouthBucharest, The Bucharest University of Economic Studies (ASE) PED LabOslo, Verksbyen
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studyyesnoyesnonononoyes
PED relevant case studyyesnonoyesyesnonono
PED Lab.noyesnononoyesyesno
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesyesyesyesyesyes
Annual energy surplusnononononoyesnoyes
Energy communitynononoyesyesyesnono
Circularityyesnonononoyesnono
Air quality and urban comfortnononononononoyes
Electrificationnononoyesnononono
Net-zero energy costnononononononono
Net-zero emissionnononononoyesnoyes
Self-sufficiency (energy autonomous)nononononononono
Maximise self-sufficiencynononononononono
Othernoyesnonononoyesno
Other (A1P004): PV generation/home consumption behaviour emulation at LABSmart Buildings
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhasePlanning PhaseImplementation PhasePlanning PhasePlanning PhaseImplementation PhasePlanning PhaseImplementation Phase
A1P006: Start Date
A1P006: Start date01/1509/25201912/2303/2412/1803/2507/18
A1P007: End Date
A1P007: End date12/3512/26202511/2612/2712/2312/2708/24
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • GIS open datasets
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
    • E. Rainer, H. Schnitzer, T. Mach, T. Wieland, M. Reiter, L. Fickert, E. Schmautzer, A. Passer, H. Oblak, H. Kreiner, R. Lazar, M. Duschek, et al. (2015): Rahmenplan Energy City Graz-Reininghaus – Subprojekt 2 des Leitprojektes „ECR Energy City Graz – Reininghaus Online: Rahmenplan Energy City Graz-Reininghaus - Haus der Zukunft (nachhaltigwirtschaften.at),
    • H.Schnitzer et al. (2016): Arbeiten und Wohnen in der Smart City Reininghaus, Online: Arbeiten und Wohnen in Graz Reininghaus - Smartcities
        • TNO, Hanze, RUG,
        • Ped noord book
          A1P011: Geographic coordinates
          X Coordinate (longitude):24.753777782.11214552443609615.407440-8.659516.3031126.59065526.0973943259149810.986173354432992
          Y Coordinate (latitude):60.2162222241.5003086008059247.060740.635348.21850153.20408744.4472496751992959.22429716642046
          A1P012: Country
          A1P012: CountryFinlandSpainAustriaPortugalAustriaNetherlandsRomaniaNorway
          A1P013: City
          A1P013: CityEspooCerdanyola del VallesGrazAlveiro (Aradas)ViennaGroningenBucharestFredrikstad
          A1P014: Climate Zone (Köppen Geiger classification)
          A1P014: Climate Zone (Köppen Geiger classification).DfbCsaDfbCsbCfbCfaCsaCfb
          A1P015: District boundary
          A1P015: District boundaryGeographicFunctionalGeographicGeographicVirtualFunctionalGeographicGeographic
          Other
          A1P016: Ownership of the case study/PED Lab
          A1P016: Ownership of the case study/PED Lab:MixedPublicMixedPublicPrivateMixedPublicPrivate
          A1P017: Ownership of the land / physical infrastructure
          A1P017: Ownership of the land / physical infrastructure:Multiple OwnersSingle OwnerMultiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersSingle OwnerSingle Owner
          A1P018: Number of buildings in PED
          A1P018: Number of buildings in PED10042
          A1P019: Conditioned space
          A1P019: Conditioned space [m²]7.863550
          A1P020: Total ground area
          A1P020: Total ground area [m²]5800001000000893000045.093485
          A1P021: Floor area ratio: Conditioned space / total ground area
          A1P021: Floor area ratio: Conditioned space / total ground area00000000
          A1P022: Financial schemes
          A1P022a: Financing - PRIVATE - Real estatenonoyesnoyesyesnoyes
          A1P022a: Add the value in EUR if available [EUR]
          A1P022b: Financing - PRIVATE - ESCO schemenononononononono
          A1P022b: Add the value in EUR if available [EUR]
          A1P022c: Financing - PRIVATE - Othernononononoyesnono
          A1P022c: Add the value in EUR if available [EUR]
          A1P022d: Financing - PUBLIC - EU structural fundingnononononononono
          A1P022d: Add the value in EUR if available [EUR]
          A1P022e: Financing - PUBLIC - National fundingnonoyesyesnoyesnono
          A1P022e: Add the value in EUR if available [EUR]
          A1P022f: Financing - PUBLIC - Regional fundingnononononononono
          A1P022f: Add the value in EUR if available [EUR]
          A1P022g: Financing - PUBLIC - Municipal fundingnonoyesnonoyesnono
          A1P022g: Add the value in EUR if available [EUR]
          A1P022h: Financing - PUBLIC - Othernoyesnonononoyesno
          A1P022h: Add the value in EUR if available [EUR]
          A1P022i: Financing - RESEARCH FUNDING - EUnononononoyesnono
          A1P022i: Add the value in EUR if available [EUR]
          A1P022j: Financing - RESEARCH FUNDING - Nationalnononononononono
          A1P022j: Add the value in EUR if available [EUR]
          A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononononono
          A1P022k: Add the value in EUR if available [EUR]
          A1P022l: Financing - RESEARCH FUNDING - Othernononononononono
          A1P022l: Add the value in EUR if available [EUR]
          A1P022: OtherMultiple different funding schemes depending on the case.
          A1P023: Economic Targets
          A1P023: Economic Targets
          • Job creation,
          • Positive externalities,
          • Boosting local businesses,
          • Boosting local and sustainable production,
          • Boosting consumption of local and sustainable products
          • Job creation,
          • Boosting local businesses,
          • Boosting consumption of local and sustainable products
          • Boosting local businesses,
          • Boosting local and sustainable production
          A1P023: OtherCircular economy
          A1P024: More comments:
          A1P024: More comments:The “Reininghausgründe” are a new quarter near the centre of the City of Graz. In the area of a former brewery, close to more, still working industries, a new town centre is being established. It will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the city centre by bike paths, busses and a tram. Car sharing is provided as well. Some key-energy aspects: • characteristic 1: For the heat supply in the innovative Reininghaus energy model, low-temperature waste heat from a nearby steel plant is harnessed through the use of heat pumps. • characteristic 2: The district heating system operates at low temperatures. • characteristic 3: Generated heat that is not used immediately is stored in the power tower and supplied on demand. Other important aspects of the project are the following: • characteristic 1: Most houses are low-energy houses, some of the certified with the “Klima Aktiv” label • characteristic 2: There are extremely few parking possibilities for residents and visitors; this will foster the use of public transport and bikes • characteristic 3: All the necessary infrastructure for the “daily need” can be reached within walking distance The area of the project is going to be very “green” when finished. Featuring a big district parc, lots of other green spaces are in planning.The total development consists of more than 1500 dwellings, a kindergarten, a school, and commercial buildings. Two of the residential blocks are included as demonstration projects in syn.ikia. The two blocks have 20 dwellings in each and are 6 stories high.
          A1P025: Estimated PED case study / PED LAB costs
          A1P025: Estimated PED case study / PED LAB costs [mil. EUR]
          Contact person for general enquiries
          A1P026: NameJoni MäkinenJose Lopez VicarioKatharina SchwarzDr. Gonçalo Homem De Almeida Rodriguez CorreiaRachel Leutgöb (e7)Jasper Tonen, Elisabeth KoopsAdela BaraTonje Healey Trulsrud
          A1P027: OrganizationCity of EspooUniversitat Autonoma Barcelona (UAB)StadtLABOR, Innovationen für urbane Lebensqualität GmbHDelft University of Technologye7 GmbHMunicipality of GroningenThe Bucharest University of Economic StudiesNorwegian University of Science and technology (NTNU)
          A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversitySME / IndustryResearch Center / UniversityResearch Center / UniversityMunicipality / Public BodiesResearch Center / UniversityResearch Center / University
          A1P028: Other
          A1P029: Emailjoni.makinen@espoo.fijose.vicario@uab.catkatharina.schwarz@stadtlaborgraz.atg.correia@tudelft.nlrachel.leutgoeb@e-sieben.atJasper.tonen@groningen.nlBara.adela@ie.ase.rotonje.h.trulsrud@ntnu.no
          Contact person for other special topics
          A1P030: NameHans SchnitzerQiaochu Fan
          A1P031: Emailhans.schnitzer@stadtlaborgraz.atq.fan-1@tudelft.nl
          Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYes
          A2P001: Fields of application
          A2P001: Fields of application
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies,
          • Waste management,
          • Construction materials
          • Energy efficiency,
          • Energy flexibility,
          • Digital technologies
          • Energy efficiency,
          • Urban comfort (pollution, heat island, noise level etc.),
          • Water use,
          • Indoor air quality,
          • Other
          • Energy efficiency,
          • Energy flexibility,
          • E-mobility,
          • Urban comfort (pollution, heat island, noise level etc.),
          • Digital technologies
          • Energy efficiency,
          • Energy production,
          • Urban comfort (pollution, heat island, noise level etc.)
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Urban comfort (pollution, heat island, noise level etc.),
          • Waste management
          • Energy efficiency,
          • Energy flexibility,
          • Digital technologies,
          • Indoor air quality
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Urban comfort (pollution, heat island, noise level etc.),
          • Digital technologies,
          • Indoor air quality
          A2P001: OtherUrban Management; Air Quality
          A2P002: Tools/strategies/methods applied for each of the above-selected fields
          A2P002: Tools/strategies/methods applied for each of the above-selected fields- Kera development commitment (https://www.espoo.fi/en/kera-development-commitment). - SPARCS Co-creation model for sustainable and smart urban areas (www.co-creatingsparcs.fi/en). - Kera area carbon neutrality roadmap (https://static.espoo.fi/cdn/ff/MHDdcMNJ9aYn7CjpoD4zNpo5M-M9HIDLXlJdUrUmf-8/1642756766/public/2022-01/Kera%20carbon%20neutrality%20map_EN.pdf)Energy efficiency: o Several activities: Workshops, Webinars to deepen the knowledge and raise awareness renewable energies o for example rooftop Photovoltaics green & blue infrastructures o Parks, Rooftop Gardens, Quarter Parks, Water elements included in the parks rooftop farming o To produce vegetables in the quarter stormwater management mobility o less parking and less cars in the district. Solutions for boosting public transport with sponsored public transport tickets; building of better bike and pedestrian infrastructure social aspects o district management was established in the district local supply of goods of daily need o Schools within 15 minutes walking distance Supermarkets and other shops within the districtEnergy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streamsEnergy efficiency: energy-efficient buildings that comply with the Norwegian Passive House standard. Energy Flexibility: sharing of PV energy between the dwellings Energy production: BIPV on the roof and facades, and a ground source heat pump for thermal energy. E-mobility: EV charging Urban comfort: a large green park in the neighbourhood with a small lake and recreational areas Digital technologies: Smart Home Systems for lighting, heating and ventilation Indoor air quality: balanced ventilation
          A2P003: Application of ISO52000
          A2P003: Application of ISO52000NoNoNoYes
          A2P004: Appliances included in the calculation of the energy balance
          A2P004: Appliances included in the calculation of the energy balanceNoYesNoNo
          A2P005: Mobility included in the calculation of the energy balance
          A2P005: Mobility included in the calculation of the energy balanceNoYesNoNo
          A2P006: Description of how mobility is included (or not included) in the calculation
          A2P006: Description of how mobility is included (or not included) in the calculation- Number of cars per household - Fraction of electric cars - Number of public transport tickets (week/ annual tickets)Mobility, till now, is not included in the energy model.
          A2P007: Annual energy demand in buildings / Thermal demand
          A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]54.511.860.16
          A2P008: Annual energy demand in buildings / Electric Demand
          A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]19.41.450.053
          A2P009: Annual energy demand for e-mobility
          A2P009: Annual energy demand for e-mobility [GWh/annum]
          A2P010: Annual energy demand for urban infrastructure
          A2P010: Annual energy demand for urban infrastructure [GWh/annum]
          A2P011: Annual renewable electricity production on-site during target year
          A2P011: PVyesnoyesnonononoyes
          A2P011: PV - specify production in GWh/annum [GWh/annum]40.18
          A2P011: Windnononononononono
          A2P011: Wind - specify production in GWh/annum [GWh/annum]
          A2P011: Hydronononononononono
          A2P011: Hydro - specify production in GWh/annum [GWh/annum]
          A2P011: Biomass_elnononononononono
          A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
          A2P011: Biomass_peat_elnononononononono
          A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
          A2P011: PVT_elnononononononono
          A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
          A2P011: Othernononononononono
          A2P011: Other - specify production in GWh/annum [GWh/annum]
          A2P012: Annual renewable thermal production on-site during target year
          A2P012: Geothermalnonoyesnonoyesnono
          A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
          A2P012: Solar Thermalnonoyesnonoyesnono
          A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_heatnononononoyesnono
          A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
          A2P012: Waste heat+HPyesnoyesnonoyesnono
          A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_peat_heatnononononononono
          A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
          A2P012: PVT_thnononononoyesnono
          A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_firewood_thnononononononono
          A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
          A2P012: Othernononononononono
          A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
          A2P013: Renewable resources on-site - Additional notes
          A2P013: Renewable resources on-site - Additional notesLocal energy utility will implement district level thermal solution. First, energy will be produced from waste heat from a local data center. Further thermal solutions are under discussion and development.Groundwater (used for heat pumps)Geothermal heatpump systems, Waste heat from data centers
          A2P014: Annual energy use
          A2P014: Annual energy use [GWh/annum]78.8
          A2P015: Annual energy delivered
          A2P015: Annual energy delivered [GWh/annum]15.4
          A2P016: Annual non-renewable electricity production on-site during target year
          A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]0
          A2P017: Annual non-renewable thermal production on-site during target year
          A2P017: Gasnononononononono
          A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Coalnononononononono
          A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Oilnononononononono
          A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Othernononononononono
          A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P018: Annual renewable electricity imports from outside the boundary during target year
          A2P018: PVnonoyesnonononono
          A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
          A2P018: Windnonoyesnonononono
          A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
          A2P018: Hydrononoyesnonononono
          A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_elnononononononono
          A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_peat_elnononononononono
          A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: PVT_elnononononononono
          A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Othernononononononono
          A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
          A2P019: Annual renewable thermal imports from outside the boundary during target year
          A2P019: Geothermalnononononononono
          A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Solar Thermalnonoyesnonononono
          A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_heatnonoyesnonononono
          A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Waste heat+HPnonoyesnonononono
          A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_peat_heatnononononononono
          A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
          A2P019: PVT_thnononononononono
          A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_firewood_thnononononononono
          A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Othernononononononono
          A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
          A2P020: Share of RES on-site / RES outside the boundary
          A2P020: Share of RES on-site / RES outside the boundary00000000
          A2P021: GHG-balance calculated for the PED
          A2P021: GHG-balance calculated for the PED [tCO2/annum]4500000.036-6.035
          A2P022: KPIs related to the PED case study / PED Lab
          A2P022: Safety & SecurityPersonal Safety
          A2P022: HealthHealthy community + Indoor Evironmental Quality (indoor air quality, thermal comfort, lighting and visual comfort)
          A2P022: Education
          A2P022: MobilityxImproved accessibility to V2G-related transport options, focusing on inclusivity and equitable adoption in urban districtsSustainable mobility
          A2P022: EnergyYesxTarget zero greenhouse gas emissions through the adoption of EVs with V2G capabilities, aiming to reduce reliance on fossil fuels and enhance local grid stabilityYesYesEnergy and environmental performance (non-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/ self-consumption, net energy/net power. peak delivered(peak exported power, connection capacity credit, total greenhouse gas emissions
          A2P022: Waterx
          A2P022: Economic developmentxDevelopment of viable business models for V2G that allow decentralized energy markets to integrate with the grid, enhancing local economic resilienceEconomic Performance: capital costs, operational costs, overall performance
          A2P022: Housing and Communityxdemopraphic composiiton, diverse community, social cohesion access to amenities, access to services, afordability of energy, affordability of shousing, living conditions, universal design, energy consciousness
          A2P022: Waste
          A2P022: OtherSmartness and Flexibility
          A2P023: Technological Solutions / Innovations - Energy Generation
          A2P023: Photovoltaicsyesyesyesyesyesyesnoyes
          A2P023: Solar thermal collectorsnononononoyesnono
          A2P023: Wind Turbinesnononoyesnononono
          A2P023: Geothermal energy systemnonononoyesyesnoyes
          A2P023: Waste heat recoveryyesnoyesnonoyesnono
          A2P023: Waste to energynononononoyesnono
          A2P023: Polygenerationnononononononono
          A2P023: Co-generationnononononononono
          A2P023: Heat Pumpyesnoyesnoyesyesnoyes
          A2P023: Hydrogennononononononono
          A2P023: Hydropower plantnononononononono
          A2P023: Biomassnononononononono
          A2P023: Biogasnononononononono
          A2P023: OtherPhotovoltaics are considered for the next years
          A2P024: Technological Solutions / Innovations - Energy Flexibility
          A2P024: A2P024: Information and Communication Technologies (ICT)yesyesyesnonoyesyesyes
          A2P024: Energy management systemyesyesnoyesnoyesyesyes
          A2P024: Demand-side managementyesyesnoyesnonoyesyes
          A2P024: Smart electricity gridyesnonoyesnononono
          A2P024: Thermal Storagenonoyesnoyesyesnono
          A2P024: Electric Storagenononoyesnoyesnono
          A2P024: District Heating and Coolingyesnoyesnoyesyesnono
          A2P024: Smart metering and demand-responsive control systemsnononononoyesnoyes
          A2P024: P2P – buildingsnononononononono
          A2P024: Other
          A2P025: Technological Solutions / Innovations - Energy Efficiency
          A2P025: Deep Retrofittingnoyesnoyesyesnoyesno
          A2P025: Energy efficiency measures in historic buildingsnonononoyesyesyesno
          A2P025: High-performance new buildingsyesnoyesnonoyesnoyes
          A2P025: Smart Public infrastructure (e.g. smart lighting)yesnoyesyesnoyesnono
          A2P025: Urban data platformsyesnonoyesnoyesnono
          A2P025: Mobile applications for citizensnonoyesnonononono
          A2P025: Building services (HVAC & Lighting)yesnononononoyesyes
          A2P025: Smart irrigationnonoyesnonononono
          A2P025: Digital tracking for waste disposalnononononononono
          A2P025: Smart surveillancenonononononoyesno
          A2P025: Other
          A2P026: Technological Solutions / Innovations - Mobility
          A2P026: Efficiency of vehicles (public and/or private)yesnoyesyesnononono
          A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)yesnoyesyesnononono
          A2P026: e-Mobilityyesnoyesyesnoyesnono
          A2P026: Soft mobility infrastructures and last mile solutionsyesnoyesnonononono
          A2P026: Car-free areanonoyesnonononono
          A2P026: Other
          A2P027: Mobility strategies - Additional notes
          A2P027: Mobility strategies - Additional notes- Multimodal mobility nodes - Support of public transport tickets - Mobility consulting - District management
          A2P028: Energy efficiency certificates
          A2P028: Energy efficiency certificatesNoYesYesYes
          A2P028: If yes, please specify and/or enter notesEnergieausweis mandatory if buildings/ flats/ apartments are soldEnergy Performance CertificateNS3700 Norwegian Passive House
          A2P029: Any other building / district certificates
          A2P029: Any other building / district certificatesNoYes
          A2P029: If yes, please specify and/or enter notesKlimaaktiv standard  Voluntary! Certification can be for buildings and/or quarters. The different quarters are built in different standards. Ranging from bronze/silver/gold
          A3P001: Relevant city /national strategy
          A3P001: Relevant city /national strategy
          • Energy master planning (SECAP, etc.),
          • Climate change adaption plan/strategy (e.g. Climate City contract)
          • Smart cities strategies,
          • Energy master planning (SECAP, etc.),
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Energy master planning (SECAP, etc.),
          • New development strategies,
          • National / international city networks addressing sustainable urban development and climate neutrality
          A3P002: Quantitative targets included in the city / national strategy
          A3P002: Quantitative targets included in the city / national strategyCity level targets Klimaschutzplan Graz - 2022 | Targets: - Climate neutrality until 2040 - Social justice and high quality of life - High innovation levels Mobilitätsplan Graz 2040 – under development | Targets: - Modal Split 80:20 until 2040 80% Public transport, bike, walking | 20% cars Kommunales Energiekonzept (2017) | Targets: - Increase of district heating Energiemasterplan Graz (2018) | Targets: - Energy efficiency of urban dwellings and infrastructures - District heating and solar energy - Energy efficiency of private dwellings - Climate conscious mobility National level targets Klimaschutzplan Österreich -draft, expected by 2024 | Targets: - Decarbonisation (reduction of GHG, renewable energies, - Climate neutrality until 2040 - Energy efficiency - Security of energy supply
          A3P003: Strategies towards decarbonization of the gas grid
          A3P003: Strategies towards decarbonization of the gas grid
          • Electrification of Heating System based on Heat Pumps,
          • Electrification of Cooking Methods,
          • Biogas
          • Electrification of Heating System based on Heat Pumps,
          • Electrification of Cooking Methods,
          • Biogas
          A3P003: Other
          A3P004: Identification of needs and priorities
          A3P004: Identification of needs and prioritiesReininghaus needs green spaces and places Sector coupling of water, waste water, electricity ICT and demand side management Mobility - Reininghaus needs better infrastructure for bikes and pedestrians - Public transportation should be more affordable and Sharing should be implemented in the district Infrastructure should cover daily needs within walking distance Infrastructure for local jobs and shared offices
          A3P005: Sustainable behaviour
          A3P005: Sustainable behaviour- citizen participation and promotion of functioning neighbourhoods (e.g., through city district management) As of today, solutions for the energy transition in the residential sector have focused on the construction of energy-efficient buildings and on the energy-efficient refurbishment of existing buildings. Measures to influence user behaviour and to directly address residents and neighbourhoods as actors of the energy transition play a minor role and are also not formalized. At the same time, moving into a new apartment offers a ‘window of opportunity’ to establish new everyday practices and behaviour. In already inhabited housing developments, well-functioning neighbourhoods or existing, ‘sustainability pioneers’ are key to motivating people to adopt more resource-efficient lifestyles. In order to prepare such agents of change towards more climate protection and sustainability in the context of housing, Austria launched the BAREWO project. The aim is to develop a kit of formats, methods, and interventions for resource-efficient housing. This toolkit will be tested in six testbeds, among which quarter 12 (Q12) of Graz- Reininghaus, as soon as first residents move in (approx. 2024). Austrian TRANS-PED partner StadtLABOR, which is also a partner in the BAREWO project, will support Q12 in this process. In parallel, a monitoring system will be developed to make the (climate) effects of the kit measurable. In addition, a guideline for property managers will be developed, which will serve as an orientation for them on how their residents can be coached in matters of climate protection and sustainability in everyday (residential) life. From the very beginning, (communication) measures are implemented and relevant stakeholders are involved in the project (project advisory board) to ensure the multiplicability, financing and broad application of the toolkit. If successful, the toolkit could also be scaled up to other quarters in Reininghaus.In Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.
          A3P006: Economic strategies
          A3P006: Economic strategies
          • PPP models,
          • Circular economy models
          • Innovative business models
          • PPP models,
          • Local trading
          • Innovative business models,
          • Local trading,
          • Existing incentives
          • Innovative business models
          • Innovative business models,
          • Blockchain
          • Innovative business models,
          • Demand management Living Lab
          A3P006: Other
          A3P007: Social models
          A3P007: Social models
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Quality of Life
          • Digital Inclusion,
          • Citizen/owner involvement in planning and maintenance,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Behavioural Change / End-users engagement,
          • Social incentives,
          • Quality of Life,
          • Affordability,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Behavioural Change / End-users engagement,
          • Social incentives,
          • Prevention of energy poverty,
          • Digital Inclusion
          • Strategies towards (local) community-building
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Citizen Social Research,
          • Prevention of energy poverty,
          • Citizen/owner involvement in planning and maintenance
          • Digital Inclusion,
          • Citizen/owner involvement in planning and maintenance,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          A3P007: Other
          A3P008: Integrated urban strategies
          A3P008: Integrated urban strategies
          • Strategic urban planning,
          • Digital twinning and visual 3D models,
          • District Energy plans
          • District Energy plans
          • Strategic urban planning,
          • City Vision 2050,
          • Building / district Certification
          • Strategic urban planning,
          • District Energy plans
          • Strategic urban planning,
          • District Energy plans,
          • City Vision 2050,
          • SECAP Updates
          • Digital twinning and visual 3D models
          A3P008: Other
          A3P009: Environmental strategies
          A3P009: Environmental strategies
          • Net zero carbon footprint,
          • Life Cycle approach,
          • Greening strategies,
          • Nature Based Solutions (NBS)
          • Pollutants Reduction,
          • Greening strategies,
          • Sustainable Urban drainage systems (SUDS),
          • Nature Based Solutions (NBS)
          • Energy Neutral,
          • Low Emission Zone,
          • Nature Based Solutions (NBS)
          • Carbon-free,
          • Life Cycle approach
          • Energy Neutral
          A3P009: Other
          A3P010: Legal / Regulatory aspects
          A3P010: Legal / Regulatory aspectsMobility contracts: A mobility contract is concluded between the City of Graz and the property developers in the course of development plans and serves to reduce the motor vehicle traffic to be expected as a result of the construction project. Push & pull measures are agreed: With a lower car parking space key, which is significantly lower than today's usual requirements, offers and information for easier use of public transport, walking and cycling, as well as car sharing and e-mobility are simultaneously created by the property developers, leading to a win-win-win situation for all parties involved. Basic principles - Possibility of combining effective "push & pull" measures => control option (e.g. reduction of car parking spaces, but optimisation of accessibility to public transport and walking and cycling networks, public transport tickets, mobility information, ... etc.) - Changing mobility behaviour in favour of sustainable forms of transport from the moment the flat is handed over ("upheaval" in personal mobility behaviour when changing the residential location) - Reduction in construction and maintenance costs (underground car parks, public road infrastructure) - Easier realisation of larger construction projects in the inner city area with lower generation of vehicle demand Städtebauliche Verträge in Graz / Urban development contracts in Graz Qualitative urban (neighbourhood) development with added value for all stakeholders: urban development contracts are modern instruments in the development of cities and neighbourhoods. As one of the pioneers in this field, the City of Graz also increasingly favours this form of quality assurance. Urban development contracts are a contractual form of regulation between the City of Graz and landowners, which enables flexible control of urban (sub)development in the interests of the common interests while at the same time relieving the public authorities. The contracts make property-related stipulations in accordance with urban planning requirements (e.g. urban development concept, development concept, framework plan, zoning plan) and the specialist planning requirements in particular infrastructure, development, design and mobility. This is intended to infrastructure, services of general interest, building land quality and settlement development required for the (parts of the) city.At national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricity
          B1P001: PED/PED relevant concept definition
          B1P001: PED/PED relevant concept definitionImplementation of district level heating system to make heating energy positive and expanding local renewable electricity production.Reininghaus addresses some relevant key aspects listed in the JPI UE PED Framework Definition such as: - high level of aspiration in terms of energy efficiency, energy flexibility and energy production; - integration of different systems and infrastructures; - inclusion of aspects not only related to energy sector, but also connected with social, economic and environmental sustainability.The case study follows the concept of syn.ikia with sustainable plus energy neighbourhoods (SPEN) and aims to reach a plus energy balance based on EPB uses on an annual basis.
          B1P002: Motivation behind PED/PED relevant project development
          B1P002: Motivation behind PED/PED relevant project developmentThe Reininghausgründe is a new quarter near the centre of the City of Graz. On the area of a former brewery, close to more, still working industries, a new town centre is being established. The quarter will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the historical city centre by bike paths, busses and a tram. Car sharing is provided as well.The developers call their concept for Future Living, where the neighbourhood consist of highly energy-efficient buildings, is supplied with renewable energy onsite and includes green areas for well-being.
          B1P003: Environment of the case study area
          B2P003: Environment of the case study areaUrban areaUrban areaSuburban area
          B1P004: Type of district
          B2P004: Type of district
          • New construction
          • New construction
          • New construction
          B1P005: Case Study Context
          B1P005: Case Study Context
          • Re-use / Transformation Area
          • New Development
          • New Development
          B1P006: Year of construction
          B1P006: Year of construction2025
          B1P007: District population before intervention - Residential
          B1P007: District population before intervention - Residential0
          B1P008: District population after intervention - Residential
          B1P008: District population after intervention - Residential1400010000
          B1P009: District population before intervention - Non-residential
          B1P009: District population before intervention - Non-residential0
          B1P010: District population after intervention - Non-residential
          B1P010: District population after intervention - Non-residential10000
          B1P011: Population density before intervention
          B1P011: Population density before intervention000000
          B1P012: Population density after intervention
          B1P012: Population density after intervention0.0413793103448280.010000
          B1P013: Building and Land Use before intervention
          B1P013: Residentialyesnonononononono
          B1P013 - Residential: Specify the sqm [m²]
          B1P013: Officeyesnonononononono
          B1P013 - Office: Specify the sqm [m²]
          B1P013: Industry and Utilityyesnoyesnonononoyes
          B1P013 - Industry and Utility: Specify the sqm [m²]whole site was used for idustry and excavation
          B1P013: Commercialnononononononono
          B1P013 - Commercial: Specify the sqm [m²]
          B1P013: Institutionalnononononononono
          B1P013 - Institutional: Specify the sqm [m²]
          B1P013: Natural areasnonoyesnonononono
          B1P013 - Natural areas: Specify the sqm [m²]
          B1P013: Recreationalnononononononono
          B1P013 - Recreational: Specify the sqm [m²]
          B1P013: Dismissed areasyesnonononononono
          B1P013 - Dismissed areas: Specify the sqm [m²]
          B1P013: Othernononononononono
          B1P013 - Other: Specify the sqm [m²]
          B1P014: Building and Land Use after intervention
          B1P014: Residentialyesnoyesnonononoyes
          B1P014 - Residential: Specify the sqm [m²]
          B1P014: Officeyesnoyesnonononono
          B1P014 - Office: Specify the sqm [m²]
          B1P014: Industry and Utilitynononononononono
          B1P014 - Industry and Utility: Specify the sqm [m²]
          B1P014: Commercialyesnoyesnonononono
          B1P014 - Commercial: Specify the sqm [m²]
          B1P014: Institutionalnonoyesnonononono
          B1P014 - Institutional: Specify the sqm [m²]
          B1P014: Natural areasnonoyesnonononono
          B1P014 - Natural areas: Specify the sqm [m²]
          B1P014: Recreationalyesnoyesnonononono
          B1P014 - Recreational: Specify the sqm [m²]
          B1P014: Dismissed areasnononononononono
          B1P014 - Dismissed areas: Specify the sqm [m²]
          B1P014: Othernononononononono
          B1P014 - Other: Specify the sqm [m²]
          B2P001: PED Lab concept definition
          B2P001: PED Lab concept definitionGroningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.
          B2P002: Installation life time
          B2P002: Installation life timeThe MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.
          B2P003: Scale of action
          B2P003: ScaleDistrict
          B2P004: Operator of the installation
          B2P004: Operator of the installationThe Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.
          B2P005: Replication framework: Applied strategy to reuse and recycling the materials
          B2P005: Replication framework: Applied strategy to reuse and recycling the materialsGroningen does not have a strategy to reuse and recyle materials
          B2P006: Circular Economy Approach
          B2P006: Do you apply any strategy to reuse and recycling the materials?No
          B2P006: Other
          B2P007: Motivation for developing the PED Lab
          B2P007: Motivation for developing the PED Lab
          • Civic
          B2P007: Other
          B2P008: Lead partner that manages the PED Lab
          B2P008: Lead partner that manages the PED LabMunicipality
          B2P008: Other
          B2P009: Collaborative partners that participate in the PED Lab
          B2P009: Collaborative partners that participate in the PED Lab
          • Academia,
          • Private,
          • Industrial,
          • Other
          B2P009: Otherresearch companies, monitoring company, ict company
          B2P010: Synergies between the fields of activities
          B2P010: Synergies between the fields of activities
          B2P011: Available facilities to test urban configurations in PED Lab
          B2P011: Available facilities to test urban configurations in PED Lab
          • Buildings,
          • Demand-side management,
          • Energy storage,
          • Energy networks,
          • Waste management,
          • Lighting,
          • E-mobility,
          • Information and Communication Technologies (ICT),
          • Social interactions,
          • Business models
          B2P011: Other
          B2P012: Incubation capacities of PED Lab
          B2P012: Incubation capacities of PED Lab
          • Tools for prototyping and modelling
          B2P013: Availability of the facilities for external people
          B2P013: Availability of the facilities for external people
          B2P014: Monitoring measures
          B2P014: Monitoring measures
          • Execution plan,
          • Available data,
          • Type of measured data,
          • Equipment,
          • Level of access
          B2P015: Key Performance indicators
          B2P015: Key Performance indicators
          • Energy,
          • Social,
          • Economical / Financial
          B2P016: Execution of operations
          B2P016: Execution of operations
          B2P017: Capacities
          B2P017: Capacities
          B2P018: Relations with stakeholders
          B2P018: Relations with stakeholders
          B2P019: Available tools
          B2P019: Available tools
          • Energy modelling,
          • Social models,
          • Business and financial models
          B2P019: Available tools
          B2P020: External accessibility
          B2P020: External accessibility
          C1P001: Unlocking Factors
          C1P001: Recent technological improvements for on-site RES production5 - Very important4 - Important3 - Moderately important5 - Very important5 - Very important3 - Moderately important4 - Important5 - Very important
          C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock4 - Important1 - Unimportant2 - Slightly important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important
          C1P001: Energy Communities, P2P, Prosumers concepts3 - Moderately important4 - Important4 - Important5 - Very important3 - Moderately important4 - Important4 - Important1 - Unimportant
          C1P001: Storage systems and E-mobility market penetration4 - Important3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
          C1P001: Decreasing costs of innovative materials3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
          C1P001: Financial mechanisms to reduce costs and maximize benefits3 - Moderately important3 - Moderately important2 - Slightly important5 - Very important4 - Important5 - Very important3 - Moderately important1 - Unimportant
          C1P001: The ability to predict Multiple Benefits3 - Moderately important2 - Slightly important4 - Important4 - Important2 - Slightly important3 - Moderately important2 - Slightly important1 - Unimportant
          C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important3 - Moderately important4 - Important4 - Important2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant
          C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important3 - Moderately important5 - Very important5 - Very important2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant
          C1P001: Social acceptance (top-down)3 - Moderately important4 - Important4 - Important4 - Important5 - Very important3 - Moderately important4 - Important1 - Unimportant
          C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important4 - Important5 - Very important5 - Very important3 - Moderately important4 - Important4 - Important1 - Unimportant
          C1P001: Presence of integrated urban strategies and plans4 - Important3 - Moderately important5 - Very important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
          C1P001: Multidisciplinary approaches available for systemic integration5 - Very important4 - Important5 - Very important4 - Important4 - Important2 - Slightly important4 - Important1 - Unimportant
          C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects3 - Moderately important5 - Very important4 - Important5 - Very important4 - Important3 - Moderately important5 - Very important1 - Unimportant
          C1P001: Availability of RES on site (Local RES)4 - Important5 - Very important3 - Moderately important5 - Very important4 - Important4 - Important5 - Very important5 - Very important
          C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders5 - Very important4 - Important5 - Very important5 - Very important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
          C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P001: Any other UNLOCKING FACTORS (if any)
          C1P002: Driving Factors
          C1P002: Climate Change adaptation need5 - Very important4 - Important5 - Very important4 - Important5 - Very important2 - Slightly important4 - Important1 - Unimportant
          C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important4 - Important5 - Very important5 - Very important5 - Very important3 - Moderately important4 - Important5 - Very important
          C1P002: Rapid urbanization trend and need of urban expansions4 - Important1 - Unimportant4 - Important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important
          C1P002: Urban re-development of existing built environment5 - Very important1 - Unimportant5 - Very important4 - Important5 - Very important4 - Important1 - Unimportant1 - Unimportant
          C1P002: Economic growth need4 - Important2 - Slightly important3 - Moderately important3 - Moderately important2 - Slightly important2 - Slightly important2 - Slightly important1 - Unimportant
          C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)4 - Important5 - Very important5 - Very important5 - Very important3 - Moderately important1 - Unimportant5 - Very important4 - Important
          C1P002: Territorial and market attractiveness3 - Moderately important1 - Unimportant5 - Very important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important
          C1P002: Energy autonomy/independence2 - Slightly important5 - Very important3 - Moderately important5 - Very important4 - Important2 - Slightly important5 - Very important1 - Unimportant
          C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
          C1P002: Any other DRIVING FACTOR (if any)Earthquakes due to gas extraction
          C1P003: Administrative barriers
          C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important2 - Slightly important5 - Very important4 - Important3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant
          C1P003: Lack of good cooperation and acceptance among partners5 - Very important2 - Slightly important2 - Slightly important4 - Important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant
          C1P003: Lack of public participation4 - Important4 - Important4 - Important5 - Very important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
          C1P003: Lack of institutions/mechanisms to disseminate information4 - Important4 - Important2 - Slightly important3 - Moderately important3 - Moderately important2 - Slightly important4 - Important1 - Unimportant
          C1P003:Long and complex procedures for authorization of project activities3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important4 - Important4 - Important1 - Unimportant
          C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy3 - Moderately important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant
          C1P003: Complicated and non-comprehensive public procurement3 - Moderately important4 - Important2 - Slightly important3 - Moderately important4 - Important3 - Moderately important4 - Important1 - Unimportant
          C1P003: Fragmented and or complex ownership structure3 - Moderately important2 - Slightly important5 - Very important2 - Slightly important2 - Slightly important4 - Important2 - Slightly important1 - Unimportant
          C1P003: City administration & cross-sectoral attitude/approaches (silos)4 - Important2 - Slightly important4 - Important3 - Moderately important2 - Slightly important5 - Very important2 - Slightly important1 - Unimportant
          C1P003: Lack of internal capacities to support energy transition4 - Important3 - Moderately important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
          C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P003: Any other Administrative BARRIER (if any)
          C1P004: Policy barriers
          C1P004: Lack of long-term and consistent energy plans and policies4 - Important3 - Moderately important2 - Slightly important5 - Very important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant
          C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important3 - Moderately important2 - Slightly important4 - Important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
          C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important3 - Moderately important3 - Moderately important4 - Important4 - Important2 - Slightly important3 - Moderately important1 - Unimportant
          C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P004: Any other Political BARRIER (if any)
          C1P005: Legal and Regulatory barriers
          C1P005: Inadequate regulations for new technologies3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important4 - Important4 - Important2 - Slightly important5 - Very important
          C1P005: Regulatory instability3 - Moderately important2 - Slightly important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant
          C1P005: Non-effective regulations3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important3 - Moderately important3 - Moderately important2 - Slightly important5 - Very important
          C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important2 - Slightly important4 - Important4 - Important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant
          C1P005: Building code and land-use planning hindering innovative technologies4 - Important2 - Slightly important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
          C1P005: Insufficient or insecure financial incentives5 - Very important2 - Slightly important4 - Important5 - Very important4 - Important3 - Moderately important2 - Slightly important1 - Unimportant
          C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation2 - Slightly important2 - Slightly important2 - Slightly important5 - Very important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant
          C1P005: Shortage of proven and tested solutions and examples2 - Slightly important2 - Slightly important2 - Slightly important4 - Important3 - Moderately important2 - Slightly important2 - Slightly important1 - Unimportant
          C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P005: Any other Legal and Regulatory BARRIER (if any)
          C1P006: Environmental barriers
          C1P006: Environmental barriers
          C1P007: Technical barriers
          C1P007: Lack of skilled and trained personnel3 - Moderately important2 - Slightly important2 - Slightly important4 - Important2 - Slightly important4 - Important2 - Slightly important1 - Unimportant
          C1P007: Deficient planning3 - Moderately important2 - Slightly important2 - Slightly important4 - Important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant
          C1P007: Retrofitting work in dwellings in occupied state1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important2 - Slightly important2 - Slightly important1 - Unimportant
          C1P007: Lack of well-defined process3 - Moderately important2 - Slightly important4 - Important4 - Important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant
          C1P007: Inaccuracy in energy modelling and simulation3 - Moderately important2 - Slightly important2 - Slightly important4 - Important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant
          C1P007: Lack/cost of computational scalability3 - Moderately important2 - Slightly important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
          C1P007: Grid congestion, grid instability3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant
          C1P007: Negative effects of project intervention on the natural environment3 - Moderately important2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
          C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important2 - Slightly important1 - Unimportant
          C1P007: Difficult definition of system boundaries2 - Slightly important2 - Slightly important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant
          C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P007: Any other Thecnical BARRIER (if any)
          C1P008: Social and Cultural barriers
          C1P008: Inertia3 - Moderately important3 - Moderately important3 - Moderately important4 - Important2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant
          C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important5 - Very important4 - Important5 - Very important2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant
          C1P008: Low acceptance of new projects and technologies3 - Moderately important3 - Moderately important3 - Moderately important5 - Very important2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant
          C1P008: Difficulty of finding and engaging relevant actors4 - Important3 - Moderately important4 - Important4 - Important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant
          C1P008: Lack of trust beyond social network3 - Moderately important2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant
          C1P008: Rebound effect3 - Moderately important2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant
          C1P008: Hostile or passive attitude towards environmentalism2 - Slightly important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant
          C1P008: Exclusion of socially disadvantaged groups4 - Important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
          C1P008: Non-energy issues are more important and urgent for actors2 - Slightly important2 - Slightly important4 - Important4 - Important4 - Important4 - Important2 - Slightly important1 - Unimportant
          C1P008: Hostile or passive attitude towards energy collaboration2 - Slightly important2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important2 - Slightly important1 - Unimportant
          C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P008: Any other Social BARRIER (if any)
          C1P009: Information and Awareness barriers
          C1P009: Insufficient information on the part of potential users and consumers4 - Important2 - Slightly important2 - Slightly important5 - Very important2 - Slightly important3 - Moderately important2 - Slightly important1 - Unimportant
          C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts4 - Important3 - Moderately important4 - Important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
          C1P009: Lack of awareness among authorities3 - Moderately important4 - Important2 - Slightly important3 - Moderately important3 - Moderately important2 - Slightly important4 - Important1 - Unimportant
          C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important2 - Slightly important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant
          C1P009: High costs of design, material, construction, and installation4 - Important2 - Slightly important4 - Important5 - Very important5 - Very important4 - Important2 - Slightly important4 - Important
          C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P009: Any other Information and Awareness BARRIER (if any)
          C1P010: Financial barriers
          C1P010: Hidden costs3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important2 - Slightly important2 - Slightly important2 - Slightly important1 - Unimportant
          C1P010: Insufficient external financial support and funding for project activities4 - Important2 - Slightly important2 - Slightly important4 - Important5 - Very important3 - Moderately important2 - Slightly important1 - Unimportant
          C1P010: Economic crisis4 - Important3 - Moderately important4 - Important3 - Moderately important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
          C1P010: Risk and uncertainty3 - Moderately important4 - Important2 - Slightly important4 - Important5 - Very important3 - Moderately important4 - Important4 - Important
          C1P010: Lack of consolidated and tested business models3 - Moderately important4 - Important2 - Slightly important5 - Very important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant
          C1P010: Limited access to capital and cost disincentives3 - Moderately important3 - Moderately important2 - Slightly important5 - Very important3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant
          C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P010: Any other Financial BARRIER (if any)
          C1P011: Market barriers
          C1P011: Split incentives3 - Moderately important3 - Moderately important2 - Slightly important4 - Important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
          C1P011: Energy price distortion3 - Moderately important3 - Moderately important4 - Important5 - Very important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
          C1P011: Energy market concentration, gatekeeper actors (DSOs)3 - Moderately important3 - Moderately important4 - Important5 - Very important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
          C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P011: Any other Market BARRIER (if any)
          C1P012: Stakeholders involved
          C1P012: Government/Public Authorities
          • Planning/leading,
          • Design/demand aggregation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          C1P012: Research & Innovation
          • Planning/leading,
          • Design/demand aggregation
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Monitoring/operation/management
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Financial/Funding
          • Design/demand aggregation,
          • Construction/implementation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Design/demand aggregation,
          • Construction/implementation
          C1P012: Analyst, ICT and Big Data
          • Planning/leading,
          • Monitoring/operation/management
          • Planning/leading,
          • Monitoring/operation/management
          • Design/demand aggregation,
          • Monitoring/operation/management
          C1P012: Business process management
          • Design/demand aggregation,
          • Construction/implementation
          • None
          • Planning/leading
          C1P012: Urban Services providers
          • Planning/leading,
          • Construction/implementation
          • Planning/leading,
          • Construction/implementation,
          • Monitoring/operation/management
          • Design/demand aggregation,
          • Monitoring/operation/management
          C1P012: Real Estate developers
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Construction/implementation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Design/Construction companies
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          • Construction/implementation
          • Design/demand aggregation,
          • Construction/implementation
          C1P012: End‐users/Occupants/Energy Citizens
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Design/demand aggregation
          • None
          C1P012: Social/Civil Society/NGOs
          • Planning/leading
          • Design/demand aggregation,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation
          C1P012: Industry/SME/eCommerce
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Other
          • None
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          C1P012: Other (if any)
          Summary

          Authors (framework concept)

          Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

          Contributors (to the content)

          Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

          Implemented by

          Boutik.pt: Filipe Martins, Jamal Khan
          Marek Suchánek (Czech Technical University in Prague)