Filters:
NameProjectTypeCompare
Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna/16. District HeatCOOP PED Relevant Case Study Compare
Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Uncompare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Uncompare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Uncompare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Uncompare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Uncompare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleEspoo, Kera
Aveiro, Portugal
Utrecht, the Netherlands (District of Kanaleneiland)
Borlänge, Rymdgatan’s Residential Portfolio
Findhorn, the Park
Oslo, Verksbyen
Klimatkontrakt Hyllie, Malmö
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabEspoo, KeraAveiro, PortugalUtrecht, the Netherlands (District of Kanaleneiland)Borlänge, Rymdgatan’s Residential PortfolioFindhorn, the ParkOslo, VerksbyenKlimatkontrakt Hyllie, Malmö
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studyyesnononoyesyesno
PED relevant case studyyesyesyesyesnonoyes
PED Lab.nonononononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesyesyesyesyes
Annual energy surplusnononoyesyesyesno
Energy communitynoyesyesyesyesnono
Circularityyesnononoyesnono
Air quality and urban comfortnononononoyesno
Electrificationnoyesyesyesyesnono
Net-zero energy costnonononononono
Net-zero emissionnonononoyesyesyes
Self-sufficiency (energy autonomous)nonononononono
Maximise self-sufficiencynononoyesyesnono
Othernonononononoyes
Other (A1P004)Carbon-free; Sustainable neighbourhood
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhasePlanning PhasePlanning PhasePlanning PhaseIn operationImplementation PhaseIn operation
A1P006: Start Date
A1P006: Start date01/1512/2311/2301/6207/1801/11
A1P007: End Date
A1P007: End date12/3511/2611/2608/24
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Open data city platform – different dashboards
  • Monitoring data available within the districts,
  • Meteorological open data
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
          A1P011: Geographic coordinates
          X Coordinate (longitude):24.75377778-8.65955.087515.394495-3.609910.98617335443299212.975181
          Y Coordinate (latitude):60.2162222240.635352.065360.48660957.653059.2242971664204655.561504
          A1P012: Country
          A1P012: CountryFinlandPortugalNetherlandsSwedenUnited KingdomNorwaySweden
          A1P013: City
          A1P013: CityEspooAlveiro (Aradas)Utrecht (Kanaleneiland)BorlängeFindhornFredrikstadMalmö
          A1P014: Climate Zone (Köppen Geiger classification)
          A1P014: Climate Zone (Köppen Geiger classification).DfbCsbCfbDsbDwcCfbCfb
          A1P015: District boundary
          A1P015: District boundaryGeographicGeographicGeographicGeographicGeographicGeographic
          Other
          A1P016: Ownership of the case study/PED Lab
          A1P016: Ownership of the case study/PED Lab:MixedPublicPrivateMixedMixedPrivateMixed
          A1P017: Ownership of the land / physical infrastructure
          A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersMultiple OwnersSingle OwnerMultiple OwnersSingle OwnerMultiple Owners
          A1P018: Number of buildings in PED
          A1P018: Number of buildings in PED101602
          A1P019: Conditioned space
          A1P019: Conditioned space [m²]37003550
          A1P020: Total ground area
          A1P020: Total ground area [m²]580000893000029100009945180000
          A1P021: Floor area ratio: Conditioned space / total ground area
          A1P021: Floor area ratio: Conditioned space / total ground area0000000
          A1P022: Financial schemes
          A1P022a: Financing - PRIVATE - Real estatenonononoyesyesno
          A1P022a: Add the value in EUR if available [EUR]
          A1P022b: Financing - PRIVATE - ESCO schemenonononononono
          A1P022b: Add the value in EUR if available [EUR]
          A1P022c: Financing - PRIVATE - Othernonononononono
          A1P022c: Add the value in EUR if available [EUR]
          A1P022d: Financing - PUBLIC - EU structural fundingnonononononono
          A1P022d: Add the value in EUR if available [EUR]
          A1P022e: Financing - PUBLIC - National fundingnoyesyesnoyesnono
          A1P022e: Add the value in EUR if available [EUR]
          A1P022f: Financing - PUBLIC - Regional fundingnonononononono
          A1P022f: Add the value in EUR if available [EUR]
          A1P022g: Financing - PUBLIC - Municipal fundingnonononononono
          A1P022g: Add the value in EUR if available [EUR]
          A1P022h: Financing - PUBLIC - Othernonononononono
          A1P022h: Add the value in EUR if available [EUR]
          A1P022i: Financing - RESEARCH FUNDING - EUnonononoyesnono
          A1P022i: Add the value in EUR if available [EUR]
          A1P022j: Financing - RESEARCH FUNDING - Nationalnonononononono
          A1P022j: Add the value in EUR if available [EUR]
          A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononono
          A1P022k: Add the value in EUR if available [EUR]
          A1P022l: Financing - RESEARCH FUNDING - Othernonononononono
          A1P022l: Add the value in EUR if available [EUR]
          A1P022: OtherMultiple different funding schemes depending on the case.
          A1P023: Economic Targets
          A1P023: Economic Targets
          • Job creation,
          • Positive externalities,
          • Boosting local businesses,
          • Boosting local and sustainable production,
          • Boosting consumption of local and sustainable products
          • Positive externalities,
          • Boosting local businesses,
          • Boosting consumption of local and sustainable products
          A1P023: OtherCircular economy
          A1P024: More comments:
          A1P024: More comments:The total development consists of more than 1500 dwellings, a kindergarten, a school, and commercial buildings. Two of the residential blocks are included as demonstration projects in syn.ikia. The two blocks have 20 dwellings in each and are 6 stories high.
          A1P025: Estimated PED case study / PED LAB costs
          A1P025: Estimated PED case study / PED LAB costs [mil. EUR]
          Contact person for general enquiries
          A1P026: NameJoni MäkinenDr. Gonçalo Homem De Almeida Rodriguez CorreiaDr. Gonçalo Homem De Almeida Rodriguez CorreiaJingchun ShenStefano NebioloTonje Healey TrulsrudChristoph Gollner
          A1P027: OrganizationCity of EspooDelft University of TechnologyDelft University of TechnologyHögskolan DalarnaFindhorn Innovation Research and Education CICNorwegian University of Science and technology (NTNU)FFG
          A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversityResearch Center / UniversityResearch Center / UniversityResearch Center / UniversityOther
          A1P028: Other
          A1P029: Emailjoni.makinen@espoo.fig.correia@tudelft.nlg.correia@tudelft.nljih@du.sestefanonebiolo@gmail.comtonje.h.trulsrud@ntnu.nochristoph.gollner@ffg.at
          Contact person for other special topics
          A1P030: NameQiaochu FanQiaochu FanXingxing Zhang
          A1P031: Emailq.fan-1@tudelft.nlq.fan-1@tudelft.nlxza@du.se
          Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYes
          A2P001: Fields of application
          A2P001: Fields of application
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies,
          • Waste management,
          • Construction materials
          • Energy efficiency,
          • Energy flexibility,
          • E-mobility,
          • Urban comfort (pollution, heat island, noise level etc.),
          • Digital technologies
          • Energy efficiency,
          • Energy flexibility,
          • E-mobility,
          • Urban comfort (pollution, heat island, noise level etc.),
          • Digital technologies
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Construction materials
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Waste management
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Urban comfort (pollution, heat island, noise level etc.),
          • Digital technologies,
          • Indoor air quality
          • Energy production,
          • Waste management
          A2P001: Other
          A2P002: Tools/strategies/methods applied for each of the above-selected fields
          A2P002: Tools/strategies/methods applied for each of the above-selected fields- Kera development commitment (https://www.espoo.fi/en/kera-development-commitment). - SPARCS Co-creation model for sustainable and smart urban areas (www.co-creatingsparcs.fi/en). - Kera area carbon neutrality roadmap (https://static.espoo.fi/cdn/ff/MHDdcMNJ9aYn7CjpoD4zNpo5M-M9HIDLXlJdUrUmf-8/1642756766/public/2022-01/Kera%20carbon%20neutrality%20map_EN.pdf)Load calculation and system optimisation: City Energy Analyst Identification of stranded assets for asset owners and investors to understand the carbon risks: CRREMEnergy efficiency: energy-efficient buildings that comply with the Norwegian Passive House standard. Energy Flexibility: sharing of PV energy between the dwellings Energy production: BIPV on the roof and facades, and a ground source heat pump for thermal energy. E-mobility: EV charging Urban comfort: a large green park in the neighbourhood with a small lake and recreational areas Digital technologies: Smart Home Systems for lighting, heating and ventilation Indoor air quality: balanced ventilation
          A2P003: Application of ISO52000
          A2P003: Application of ISO52000NoNoYes
          A2P004: Appliances included in the calculation of the energy balance
          A2P004: Appliances included in the calculation of the energy balanceNoYesNo
          A2P005: Mobility included in the calculation of the energy balance
          A2P005: Mobility included in the calculation of the energy balanceNoNoNo
          A2P006: Description of how mobility is included (or not included) in the calculation
          A2P006: Description of how mobility is included (or not included) in the calculation
          A2P007: Annual energy demand in buildings / Thermal demand
          A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]54.50.67770.16
          A2P008: Annual energy demand in buildings / Electric Demand
          A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]19.40.036561.20.053
          A2P009: Annual energy demand for e-mobility
          A2P009: Annual energy demand for e-mobility [GWh/annum]0
          A2P010: Annual energy demand for urban infrastructure
          A2P010: Annual energy demand for urban infrastructure [GWh/annum]0
          A2P011: Annual renewable electricity production on-site during target year
          A2P011: PVyesnononoyesyesno
          A2P011: PV - specify production in GWh/annum [GWh/annum]40.18
          A2P011: Windnonononoyesnono
          A2P011: Wind - specify production in GWh/annum [GWh/annum]
          A2P011: Hydrononononononono
          A2P011: Hydro - specify production in GWh/annum [GWh/annum]
          A2P011: Biomass_elnonononononono
          A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
          A2P011: Biomass_peat_elnonononononono
          A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
          A2P011: PVT_elnononoyesnonono
          A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.01818
          A2P011: Othernonononononono
          A2P011: Other - specify production in GWh/annum [GWh/annum]
          A2P012: Annual renewable thermal production on-site during target year
          A2P012: Geothermalnonononononono
          A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
          A2P012: Solar Thermalnonononoyesnono
          A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_heatnonononoyesnono
          A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
          A2P012: Waste heat+HPyesnononoyesnono
          A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_peat_heatnonononononono
          A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
          A2P012: PVT_thnononoyesnonono
          A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]0.0825
          A2P012: Biomass_firewood_thnonononoyesnono
          A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
          A2P012: Othernonononononono
          A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
          A2P013: Renewable resources on-site - Additional notes
          A2P013: Renewable resources on-site - Additional notesLocal energy utility will implement district level thermal solution. First, energy will be produced from waste heat from a local data center. Further thermal solutions are under discussion and development.3x225 kW wind turbines + 100 kW PV
          A2P014: Annual energy use
          A2P014: Annual energy use [GWh/annum]78.80.3181.2
          A2P015: Annual energy delivered
          A2P015: Annual energy delivered [GWh/annum]15.40.20551.2
          A2P016: Annual non-renewable electricity production on-site during target year
          A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]000
          A2P017: Annual non-renewable thermal production on-site during target year
          A2P017: Gasnonononononono
          A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Coalnonononononono
          A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Oilnonononononono
          A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Othernononoyesnonono
          A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]0
          A2P018: Annual renewable electricity imports from outside the boundary during target year
          A2P018: PVnonononononono
          A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
          A2P018: Windnonononononono
          A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
          A2P018: Hydrononononononono
          A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_elnonononononono
          A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_peat_elnonononononono
          A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: PVT_elnonononononono
          A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Othernononoyesnonono
          A2P018 - Other: specify production in GWh/annum if available [GWh/annum]0.187
          A2P019: Annual renewable thermal imports from outside the boundary during target year
          A2P019: Geothermalnonononononono
          A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Solar Thermalnonononononono
          A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_heatnonononononono
          A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Waste heat+HPnonononononono
          A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_peat_heatnonononononono
          A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
          A2P019: PVT_thnonononononono
          A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_firewood_thnonononononono
          A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Othernononoyesnonono
          A2P019 Other: Please specify imports in GWh/annum [GWh/annum]0
          A2P020: Share of RES on-site / RES outside the boundary
          A2P020: Share of RES on-site / RES outside the boundary0000.53839572192513000
          A2P021: GHG-balance calculated for the PED
          A2P021: GHG-balance calculated for the PED [tCO2/annum]4500006.93-6.035
          A2P022: KPIs related to the PED case study / PED Lab
          A2P022: Safety & SecuritynonePersonal Safety
          A2P022: Healththermal comfort diagramHealthy community + Indoor Evironmental Quality (indoor air quality, thermal comfort, lighting and visual comfort)
          A2P022: Educationnone
          A2P022: MobilityImproved accessibility to V2G-related transport options, focusing on inclusivity and equitable adoption in urban districtsImproved accessibility to V2G-related transport options, focusing on inclusivity and equitable adoption in urban districtsnoneSustainable mobility
          A2P022: EnergyTarget zero greenhouse gas emissions through the adoption of EVs with V2G capabilities, aiming to reduce reliance on fossil fuels and enhance local grid stabilityTarget zero greenhouse gas emissions through the adoption of EVs with V2G capabilities, aiming to reduce reliance on fossil fuels and enhance local grid stabilitynormalized CO2/GHG & Energy intensityEnergy and environmental performance (non-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/ self-consumption, net energy/net power. peak delivered(peak exported power, connection capacity credit, total greenhouse gas emissions
          A2P022: Water
          A2P022: Economic developmentDevelopment of viable business models for V2G that allow decentralized energy markets to integrate with the grid, enhancing local economic resilienceDevelopment of viable business models for V2G that allow decentralized energy markets to integrate with the grid, enhancing local economic resiliencecost of excess emissionsEconomic Performance: capital costs, operational costs, overall performance
          A2P022: Housing and Communitydemopraphic composiiton, diverse community, social cohesion access to amenities, access to services, afordability of energy, affordability of shousing, living conditions, universal design, energy consciousness
          A2P022: Waste
          A2P022: OtherSmartness and Flexibility
          A2P023: Technological Solutions / Innovations - Energy Generation
          A2P023: Photovoltaicsyesyesyesyesyesyesyes
          A2P023: Solar thermal collectorsnononoyesyesnoyes
          A2P023: Wind Turbinesnoyesyesnoyesnono
          A2P023: Geothermal energy systemnononoyesnoyesyes
          A2P023: Waste heat recoveryyesnonoyesyesnoyes
          A2P023: Waste to energynonononononono
          A2P023: Polygenerationnonononononono
          A2P023: Co-generationnonononononono
          A2P023: Heat Pumpyesnonoyesyesyesyes
          A2P023: Hydrogennonononononono
          A2P023: Hydropower plantnonononononono
          A2P023: Biomassnonononoyesnono
          A2P023: Biogasnonononononono
          A2P023: Other
          A2P024: Technological Solutions / Innovations - Energy Flexibility
          A2P024: A2P024: Information and Communication Technologies (ICT)yesnonoyesnoyesno
          A2P024: Energy management systemyesyesyesnoyesyesno
          A2P024: Demand-side managementyesyesnononoyesno
          A2P024: Smart electricity gridyesyesyesnononono
          A2P024: Thermal Storagenononoyesyesnono
          A2P024: Electric Storagenoyesyesnoyesnono
          A2P024: District Heating and Coolingyesnonoyesyesnoyes
          A2P024: Smart metering and demand-responsive control systemsnononononoyesno
          A2P024: P2P – buildingsnonononononono
          A2P024: Other
          A2P025: Technological Solutions / Innovations - Energy Efficiency
          A2P025: Deep Retrofittingnoyesyesyesnonono
          A2P025: Energy efficiency measures in historic buildingsnonononononono
          A2P025: High-performance new buildingsyesnononoyesyesno
          A2P025: Smart Public infrastructure (e.g. smart lighting)yesyesyesnononono
          A2P025: Urban data platformsyesyesyesnononono
          A2P025: Mobile applications for citizensnonononononono
          A2P025: Building services (HVAC & Lighting)yesnonoyesnoyesno
          A2P025: Smart irrigationnonononononono
          A2P025: Digital tracking for waste disposalnonononononono
          A2P025: Smart surveillancenonononononono
          A2P025: Other
          A2P026: Technological Solutions / Innovations - Mobility
          A2P026: Efficiency of vehicles (public and/or private)yesyesyesnononono
          A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)yesyesyesnononono
          A2P026: e-Mobilityyesyesyesnoyesnono
          A2P026: Soft mobility infrastructures and last mile solutionsyesnononononono
          A2P026: Car-free areanonononononono
          A2P026: Other
          A2P027: Mobility strategies - Additional notes
          A2P027: Mobility strategies - Additional notes
          A2P028: Energy efficiency certificates
          A2P028: Energy efficiency certificatesNoNoYes
          A2P028: If yes, please specify and/or enter notesNS3700 Norwegian Passive House
          A2P029: Any other building / district certificates
          A2P029: Any other building / district certificatesNoNo
          A2P029: If yes, please specify and/or enter notes
          A3P001: Relevant city /national strategy
          A3P001: Relevant city /national strategy
          • Energy master planning (SECAP, etc.),
          • Climate change adaption plan/strategy (e.g. Climate City contract)
          • Promotion of energy communities (REC/CEC),
          • Climate change adaption plan/strategy (e.g. Climate City contract)
          • Urban Renewal Strategies,
          • Energy master planning (SECAP, etc.)
          A3P002: Quantitative targets included in the city / national strategy
          A3P002: Quantitative targets included in the city / national strategyThe study aligns closely with the decarbonisation and energy reduction pathways of residential multi family buildings with 1.5°C global warming target in Sweden. This study will also contribute to the achievement of the carbon neturality of whole Borlänge city by 2030.
          A3P003: Strategies towards decarbonization of the gas grid
          A3P003: Strategies towards decarbonization of the gas grid
          • Electrification of Heating System based on Heat Pumps
          A3P003: Other
          A3P004: Identification of needs and priorities
          A3P004: Identification of needs and prioritiesIn our project, we carried out a comprehensive exploration of strategies to achieve positive energy districts in a Swedish residential portfolio. The focus on urban energy transitions necessitates a holistic approach that integrates building retrofit, solar technology exploration, and heating supply optimisation. Exploration of Local Solar Sources: The analysis reveals varying solar irradiance resources throughout the year, emphasizing the importance of strategic placement. Integration of combined photovoltaic and thermal panels into building envelopes demonstrates the potential to cover a significant portion of the energy demand even in Sweden. Heating Supply Optimisation with Solar Technologies: Despite the surplus energy production from on-site solar technology, challenges arise due to temporal energy asymmetry. The introduction of heat pumps emerges as a feasible solution to balance energy gaps, utilising both rejected and free heat. Optimisation scenarios, utilising a combination of geothermal heat pumps, water source heat pumps, and PVT, showcase remarkable reductions in emissions and primary energy consumption. Urban Form and Energy Infrastructure Design: We realised the importance of returning to urban form and energy infrastructure design to optimise future residential portfolio potential. Building layout design, influenced by zoning regulations and innovative typologies, plays a crucial role in achieving district level energy efficiency. Future challenges, including demographic shifts, e-mobility, and climate change, necessitate a more holistic approach to energy infrastructure design, addressing not only heating and electricity demands but also cooling requirements.
          A3P005: Sustainable behaviour
          A3P005: Sustainable behaviourWhile our investigation primarily centres on technical optimisation within Positive Energy District (PED) development, it is essential to acknowledge the broader scope encompassing social and governance dimensions. Specifically, understanding stakeholders' willingness to embrace technical recommendations upon project completion is important. Several potential influencing factors merit exploration, including economic considerations, technical optimisation-associated embodied carbon balance, the general public's technical perceptions, and operational feasibility. Evaluating these aspects holistically not only enhances the efficacy of PED initiatives but also fosters greater acceptance and participation within the communities they serve.
          A3P006: Economic strategies
          A3P006: Economic strategies
          • PPP models,
          • Circular economy models
          • Innovative business models,
          • Local trading,
          • Existing incentives
          • Innovative business models,
          • Local trading,
          • Existing incentives
          • Open data business models,
          • Life Cycle Cost,
          • Circular economy models,
          • Local trading
          A3P006: Other
          A3P007: Social models
          A3P007: Social models
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Quality of Life
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Behavioural Change / End-users engagement,
          • Social incentives,
          • Prevention of energy poverty,
          • Digital Inclusion
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Behavioural Change / End-users engagement,
          • Social incentives,
          • Prevention of energy poverty,
          • Digital Inclusion
          • Strategies towards (local) community-building,
          • Behavioural Change / End-users engagement,
          • Social incentives,
          • Affordability,
          • Digital Inclusion
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Quality of Life
          A3P007: Other
          A3P008: Integrated urban strategies
          A3P008: Integrated urban strategies
          • Strategic urban planning,
          • Digital twinning and visual 3D models,
          • District Energy plans
          • Strategic urban planning,
          • District Energy plans
          • Strategic urban planning,
          • District Energy plans
          • Strategic urban planning,
          • Digital twinning and visual 3D models,
          • District Energy plans,
          • Building / district Certification
          A3P008: Other
          A3P009: Environmental strategies
          A3P009: Environmental strategies
          • Net zero carbon footprint,
          • Life Cycle approach,
          • Greening strategies,
          • Nature Based Solutions (NBS)
          • Energy Neutral,
          • Low Emission Zone,
          • Nature Based Solutions (NBS)
          • Energy Neutral,
          • Low Emission Zone,
          • Nature Based Solutions (NBS)
          • Low Emission Zone,
          • Net zero carbon footprint,
          • Life Cycle approach,
          • Sustainable Urban drainage systems (SUDS)
          • Energy Neutral,
          • Net zero carbon footprint
          A3P009: Other
          A3P010: Legal / Regulatory aspects
          A3P010: Legal / Regulatory aspects
          B1P001: PED/PED relevant concept definition
          B1P001: PED/PED relevant concept definitionImplementation of district level heating system to make heating energy positive and expanding local renewable electricity production.The Rymdgatan's Residential Portfolio in Sweden presents a compelling case study for its classification as a PED-related research, given its alignment with sustainable behaviours and overarching PED development principles as follows: Inclusivity and Social Equity: The residential portfolio situated in Rymdgatan caters primarily to a low-income community. By focusing on this demographic, the project addresses critical aspects of social equity within sustainable urban development. Ensuring access to energy-efficient housing and amenities for economically disadvantaged populations not only fosters social cohesion but also mitigates energy poverty, a pressing concern in many urban contexts. Multifamily Residential Building: The inclusion of multifamily residential buildings within the portfolio underscores a commitment to density and efficient land use, both essential components of sustainable urban design. Such developments promote resource optimisation by consolidating housing units, thereby reducing per capita energy consumption and infrastructure demands. Moreover, multifamily dwellings often facilitate community engagement and shared resource management, fostering a culture of sustainability among residents. Low Carbon Retrofitting and Transition: The overarching initiative to transition the entire Jakobsgårdarna district. The included Rymdgatan portfolio, towards low carbon retrofitting, represents a significant example of decarbonization and climate resilience. By integrating energy-efficient technologies and renewable energy solutions into existing infrastructure, the project not only reduces carbon emissions but also serves as a blueprint for revitalising old urban environments sustainably. This holistic approach to retrofitting demonstrates a systemic commitment to environmental stewardship and long-term sustainability. Climate Adaptation and Renewable Energy Integration: Despite Sweden's climatic challenges, including lower solar resources during winter months, the Rymdgatan project leverages its geographical context to optimize renewable energy utilization. Sweden's greater solar resource availability during summer and geothermal potentials complement the design's emphasis on seasonal energy planning, where surplus energy generated during peak periods can be stored or redistributed efficiently. By embracing climate-responsive design strategies, the project demonstrates resilience in the face of climate variability while harnessing renewable energy potential effectively.The case study follows the concept of syn.ikia with sustainable plus energy neighbourhoods (SPEN) and aims to reach a plus energy balance based on EPB uses on an annual basis.
          B1P002: Motivation behind PED/PED relevant project development
          B1P002: Motivation behind PED/PED relevant project developmentBorlänge city has committed to become the carbon-neutral city by 2030.The developers call their concept for Future Living, where the neighbourhood consist of highly energy-efficient buildings, is supplied with renewable energy onsite and includes green areas for well-being.
          B1P003: Environment of the case study area
          B2P003: Environment of the case study areaUrban areaUrban areaRuralSuburban areaSuburban area
          B1P004: Type of district
          B2P004: Type of district
          • New construction
          • Renovation
          • New construction
          • New construction
          • New construction
          B1P005: Case Study Context
          B1P005: Case Study Context
          • Re-use / Transformation Area
          • Re-use / Transformation Area,
          • Retrofitting Area
          • New Development
          • New Development
          • New Development
          B1P006: Year of construction
          B1P006: Year of construction1990
          B1P007: District population before intervention - Residential
          B1P007: District population before intervention - Residential100
          B1P008: District population after intervention - Residential
          B1P008: District population after intervention - Residential14000100
          B1P009: District population before intervention - Non-residential
          B1P009: District population before intervention - Non-residential6
          B1P010: District population after intervention - Non-residential
          B1P010: District population after intervention - Non-residential100006
          B1P011: Population density before intervention
          B1P011: Population density before intervention0000000
          B1P012: Population density after intervention
          B1P012: Population density after intervention0.041379310344828000.010658622423328000
          B1P013: Building and Land Use before intervention
          B1P013: Residentialyesnonoyesnonono
          B1P013 - Residential: Specify the sqm [m²]4360
          B1P013: Officeyesnononononono
          B1P013 - Office: Specify the sqm [m²]
          B1P013: Industry and Utilityyesnonononoyesno
          B1P013 - Industry and Utility: Specify the sqm [m²]whole site was used for idustry and excavation
          B1P013: Commercialnonononononono
          B1P013 - Commercial: Specify the sqm [m²]
          B1P013: Institutionalnonononononono
          B1P013 - Institutional: Specify the sqm [m²]
          B1P013: Natural areasnonononoyesnono
          B1P013 - Natural areas: Specify the sqm [m²]
          B1P013: Recreationalnonononononono
          B1P013 - Recreational: Specify the sqm [m²]
          B1P013: Dismissed areasyesnononononono
          B1P013 - Dismissed areas: Specify the sqm [m²]
          B1P013: Othernononoyesnonono
          B1P013 - Other: Specify the sqm [m²]706
          B1P014: Building and Land Use after intervention
          B1P014: Residentialyesnonoyesyesyesno
          B1P014 - Residential: Specify the sqm [m²]4360
          B1P014: Officeyesnononoyesnono
          B1P014 - Office: Specify the sqm [m²]
          B1P014: Industry and Utilitynonononononono
          B1P014 - Industry and Utility: Specify the sqm [m²]
          B1P014: Commercialyesnononononono
          B1P014 - Commercial: Specify the sqm [m²]
          B1P014: Institutionalnonononononono
          B1P014 - Institutional: Specify the sqm [m²]
          B1P014: Natural areasnonononoyesnono
          B1P014 - Natural areas: Specify the sqm [m²]
          B1P014: Recreationalyesnononononono
          B1P014 - Recreational: Specify the sqm [m²]
          B1P014: Dismissed areasnonononononono
          B1P014 - Dismissed areas: Specify the sqm [m²]
          B1P014: Othernononoyesnonono
          B1P014 - Other: Specify the sqm [m²]706
          B2P001: PED Lab concept definition
          B2P001: PED Lab concept definition
          B2P002: Installation life time
          B2P002: Installation life time
          B2P003: Scale of action
          B2P003: ScaleDistrict
          B2P004: Operator of the installation
          B2P004: Operator of the installation
          B2P005: Replication framework: Applied strategy to reuse and recycling the materials
          B2P005: Replication framework: Applied strategy to reuse and recycling the materials
          B2P006: Circular Economy Approach
          B2P006: Do you apply any strategy to reuse and recycling the materials?
          B2P006: Other
          B2P007: Motivation for developing the PED Lab
          B2P007: Motivation for developing the PED Lab
          B2P007: Other
          B2P008: Lead partner that manages the PED Lab
          B2P008: Lead partner that manages the PED Lab
          B2P008: Other
          B2P009: Collaborative partners that participate in the PED Lab
          B2P009: Collaborative partners that participate in the PED Lab
          B2P009: Other
          B2P010: Synergies between the fields of activities
          B2P010: Synergies between the fields of activities
          B2P011: Available facilities to test urban configurations in PED Lab
          B2P011: Available facilities to test urban configurations in PED Lab
          B2P011: Other
          B2P012: Incubation capacities of PED Lab
          B2P012: Incubation capacities of PED Lab
          B2P013: Availability of the facilities for external people
          B2P013: Availability of the facilities for external people
          B2P014: Monitoring measures
          B2P014: Monitoring measures
          B2P015: Key Performance indicators
          B2P015: Key Performance indicators
          B2P016: Execution of operations
          B2P016: Execution of operations
          B2P017: Capacities
          B2P017: Capacities
          B2P018: Relations with stakeholders
          B2P018: Relations with stakeholders
          B2P019: Available tools
          B2P019: Available tools
          B2P019: Available tools
          B2P020: External accessibility
          B2P020: External accessibility
          C1P001: Unlocking Factors
          C1P001: Recent technological improvements for on-site RES production5 - Very important5 - Very important5 - Very important4 - Important1 - Unimportant5 - Very important1 - Unimportant
          C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock4 - Important4 - Important4 - Important5 - Very important1 - Unimportant4 - Important1 - Unimportant
          C1P001: Energy Communities, P2P, Prosumers concepts3 - Moderately important5 - Very important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P001: Storage systems and E-mobility market penetration4 - Important5 - Very important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P001: Decreasing costs of innovative materials3 - Moderately important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P001: Financial mechanisms to reduce costs and maximize benefits3 - Moderately important5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P001: The ability to predict Multiple Benefits3 - Moderately important4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P001: Social acceptance (top-down)3 - Moderately important4 - Important4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important5 - Very important5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P001: Presence of integrated urban strategies and plans4 - Important4 - Important4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P001: Multidisciplinary approaches available for systemic integration5 - Very important4 - Important4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects3 - Moderately important5 - Very important5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P001: Availability of RES on site (Local RES)4 - Important5 - Very important5 - Very important5 - Very important1 - Unimportant5 - Very important1 - Unimportant
          C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders5 - Very important5 - Very important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P001: Any other UNLOCKING FACTORS (if any)
          C1P002: Driving Factors
          C1P002: Climate Change adaptation need5 - Very important4 - Important4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important5 - Very important5 - Very important5 - Very important1 - Unimportant5 - Very important1 - Unimportant
          C1P002: Rapid urbanization trend and need of urban expansions4 - Important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant
          C1P002: Urban re-development of existing built environment5 - Very important4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P002: Economic growth need4 - Important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)4 - Important5 - Very important5 - Very important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
          C1P002: Territorial and market attractiveness3 - Moderately important4 - Important4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
          C1P002: Energy autonomy/independence2 - Slightly important5 - Very important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P002: Any other DRIVING FACTOR (if any)
          C1P003: Administrative barriers
          C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P003: Lack of good cooperation and acceptance among partners5 - Very important4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P003: Lack of public participation4 - Important5 - Very important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P003: Lack of institutions/mechanisms to disseminate information4 - Important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P003:Long and complex procedures for authorization of project activities3 - Moderately important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy3 - Moderately important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P003: Complicated and non-comprehensive public procurement3 - Moderately important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P003: Fragmented and or complex ownership structure3 - Moderately important2 - Slightly important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P003: City administration & cross-sectoral attitude/approaches (silos)4 - Important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P003: Lack of internal capacities to support energy transition4 - Important4 - Important4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P003: Any other Administrative BARRIER (if any)
          C1P004: Policy barriers
          C1P004: Lack of long-term and consistent energy plans and policies4 - Important5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important4 - Important4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P004: Any other Political BARRIER (if any)
          C1P005: Legal and Regulatory barriers
          C1P005: Inadequate regulations for new technologies3 - Moderately important5 - Very important5 - Very important4 - Important1 - Unimportant5 - Very important1 - Unimportant
          C1P005: Regulatory instability3 - Moderately important4 - Important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P005: Non-effective regulations3 - Moderately important3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant
          C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P005: Building code and land-use planning hindering innovative technologies4 - Important4 - Important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P005: Insufficient or insecure financial incentives5 - Very important5 - Very important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation2 - Slightly important5 - Very important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P005: Shortage of proven and tested solutions and examples2 - Slightly important4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P005: Any other Legal and Regulatory BARRIER (if any)
          C1P006: Environmental barriers
          C1P006: Environmental barriers2 - Slightly important
          C1P007: Technical barriers
          C1P007: Lack of skilled and trained personnel3 - Moderately important4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P007: Deficient planning3 - Moderately important4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P007: Retrofitting work in dwellings in occupied state1 - Unimportant3 - Moderately important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P007: Lack of well-defined process3 - Moderately important4 - Important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P007: Inaccuracy in energy modelling and simulation3 - Moderately important4 - Important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P007: Lack/cost of computational scalability3 - Moderately important4 - Important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P007: Grid congestion, grid instability3 - Moderately important5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P007: Negative effects of project intervention on the natural environment3 - Moderately important3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P007: Difficult definition of system boundaries2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P007: Any other Thecnical BARRIER (if any)
          C1P008: Social and Cultural barriers
          C1P008: Inertia3 - Moderately important4 - Important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P008: Low acceptance of new projects and technologies3 - Moderately important5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P008: Difficulty of finding and engaging relevant actors4 - Important4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P008: Lack of trust beyond social network3 - Moderately important5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P008: Rebound effect3 - Moderately important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P008: Hostile or passive attitude towards environmentalism2 - Slightly important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P008: Exclusion of socially disadvantaged groups4 - Important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P008: Non-energy issues are more important and urgent for actors2 - Slightly important4 - Important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P008: Hostile or passive attitude towards energy collaboration2 - Slightly important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P008: Any other Social BARRIER (if any)
          C1P009: Information and Awareness barriers
          C1P009: Insufficient information on the part of potential users and consumers4 - Important5 - Very important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts4 - Important4 - Important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P009: Lack of awareness among authorities3 - Moderately important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P009: High costs of design, material, construction, and installation4 - Important5 - Very important5 - Very important5 - Very important1 - Unimportant4 - Important1 - Unimportant
          C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P009: Any other Information and Awareness BARRIER (if any)
          C1P010: Financial barriers
          C1P010: Hidden costs3 - Moderately important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P010: Insufficient external financial support and funding for project activities4 - Important4 - Important4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P010: Economic crisis4 - Important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P010: Risk and uncertainty3 - Moderately important4 - Important4 - Important5 - Very important1 - Unimportant4 - Important1 - Unimportant
          C1P010: Lack of consolidated and tested business models3 - Moderately important5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P010: Limited access to capital and cost disincentives3 - Moderately important5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P010: Any other Financial BARRIER (if any)
          C1P011: Market barriers
          C1P011: Split incentives3 - Moderately important4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P011: Energy price distortion3 - Moderately important5 - Very important5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P011: Energy market concentration, gatekeeper actors (DSOs)3 - Moderately important5 - Very important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P011: Any other Market BARRIER (if any)
          C1P012: Stakeholders involved
          C1P012: Government/Public Authorities
          • Planning/leading,
          • Design/demand aggregation
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          C1P012: Research & Innovation
          • Planning/leading,
          • Design/demand aggregation
          • Planning/leading
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Financial/Funding
          • Design/demand aggregation,
          • Construction/implementation
          • None
          C1P012: Analyst, ICT and Big Data
          • Planning/leading,
          • Monitoring/operation/management
          • None
          C1P012: Business process management
          • Design/demand aggregation,
          • Construction/implementation
          • None
          C1P012: Urban Services providers
          • Planning/leading,
          • Construction/implementation
          • None
          C1P012: Real Estate developers
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Design/demand aggregation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Design/Construction companies
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          • None
          • Design/demand aggregation,
          • Construction/implementation
          C1P012: End‐users/Occupants/Energy Citizens
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Monitoring/operation/management
          C1P012: Social/Civil Society/NGOs
          • Planning/leading
          • Monitoring/operation/management
          C1P012: Industry/SME/eCommerce
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          • None
          C1P012: Other
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          C1P012: Other (if any)
          Summary

          Authors (framework concept)

          Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

          Contributors (to the content)

          Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

          Implemented by

          Boutik.pt: Filipe Martins, Jamal Khan
          Marek Suchánek (Czech Technical University in Prague)