Name | Project | Type | Compare |
---|---|---|---|
Örebro-Vivalla | JUST PEPP | PED Relevant Case Study | Compare |
Tiurberget, Kongsvinger | JUST PEPP | PED Relevant Case Study | Compare |
Texel | JUST PEPP | PED Relevant Case Study | Compare |
Hällefors, Sweden | JUST PEPP | PED Relevant Case Study | Compare |
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona | OPEN4CEC | PED Lab | Compare |
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab | OPEN4CEC | PED Lab | Compare |
Pamplona | OPEN4CEC | PED Lab | Compare |
Trondheim, Svartlamon | OPEN4CEC | PED Lab | Compare |
Savona, The University of Genova, Savona Campus | OPEN4CEC | PED Lab | Compare |
Torres Vedras, Encosta de São Vicente | COPPER | PED Lab | Compare |
Malmö, Stadium area (Stadionområdet) | PED StepWise | PED Case Study | Compare |
Utrecht, Utrecht Science Park | PED StepWise | PED Relevant Case Study | Compare |
Vienna, Kriegerheimstätten | PED StepWise | PED Relevant Case Study | Compare |
Vienna, 16. District, Leben am Wilhelminenberg | HeatCOOP | PED Relevant Case Study | Compare |
Vienna, Laxenburgerstraße AH | HeatCOOP | PED Lab | Compare |
Tartu, Annelinn | V2G-QUESTS | PED Relevant Case Study | Compare |
Utrecht, Kanaleneiland | V2G-QUESTS | PED Relevant Case Study | Compare |
Aveiro, Aradas district | V2G-QUESTS | PED Relevant Case Study | Uncompare |
Győr Geothermal District Heating Project | PED Relevant Case Study | Compare | |
Jacobs Borchs Gate, Drammen | PED Relevant Case Study | Compare | |
Dietenbach, Freiburg im Breisgau | PED Relevant Case Study | Compare | |
Lecce, SmartEnCity | SmartEnCity – Towards Smart Zero CO2 Cities across Europe | PED Relevant Case Study | Compare |
STARDUST, Trento | STARDUST – Holistic and Integrated Urban Model for Smart Cities | PED Relevant Case Study / PED Lab | Compare |
Klimatkontrakt Hyllie, Malmö | PED Relevant Case Study | Compare | |
EnStadt:Pfaff, Kaiserslautern | PED Relevant Case Study / PED Lab | Compare | |
mySMARTlife, Helsinki | PED Relevant Case Study | Compare | |
Firenze, Novoli-Cascine district on “le PIagge” buildings | PED Relevant Case Study | Compare | |
Sinfonia, Bolzano | PED Relevant Case Study | Compare | |
Hunziker Areal, Zürich | PED Relevant Case Study | Compare | |
Hammarby Sjöstad 2.0, | PED Relevant Case Study | Compare | |
Sharing Cities, Milano | PED Relevant Case Study | Compare | |
District Heating Pozo Barredo, Mieres | PED Relevant Case Study | Compare | |
Cityfied (demo Linero), Lund | PED Relevant Case Study | Compare | |
Smart Otaniemi, Espoo | PED Relevant Case Study / PED Lab | Compare | |
Zukunftsquartier, Vienna | PED Case Study | Compare | |
Santa Chiara Open Lab, Trento | PED Case Study | Compare | |
Barrio La Pinada, Paterna | PED Case Study / PED Lab | Compare | |
Zero Village Bergen (ZVB) | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
Võru +CityxChange | PED Case Study | Compare | |
NTNU Campus within the Knowledge Axis, Trondheim | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
Furuset project, Oslo | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
Laser Valley – Land of Lights | PED Case Study | Compare | |
Ydalir project | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
NyBy – Ny Flyplass (New City – New Airport) | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
Fornebu, Bærum | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
Fleuraye west, Carquefou | PED Case Study | Compare | |
Smart Energy Åland | PED Case Study | Compare | |
Romania, Alba Iulia PED | ASCEND – Accelerate poSitive Clean ENergy Districts | PED Case Study | Compare |
Romania, Alba Iulia PED | InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts | PED Case Study | Compare |
Munich, Harthof district | PED Case Study | Compare | |
Lublin | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran | CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings | PED Relevant Case Study | Compare |
Bærum, Eiksveien 116 | CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings | PED Relevant Case Study | Compare |
Findhorn, the Park | InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts | PED Case Study | Compare |
Amsterdam, Buiksloterham PED | ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities | PED Case Study | Compare |
Schönbühel-Aggsbach, Schönbühel an der Donau | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Relevant Case Study | Compare |
Umeå, Ålidhem district | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study | Compare |
Aalborg East | PED Relevant Case Study / PED Lab | Compare | |
Ankara, Çamlık District | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study / PED Relevant Case Study | Compare |
Trenčín | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Luxembourg, Betzdorf | LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes | PED Relevant Case Study | Compare |
Vantaa, Aviapolis | NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts | PED Case Study / PED Relevant Case Study / PED Lab | Compare |
Vidin, Himik and Bononia | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Oslo, Verksbyen | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Compare |
Uden, Loopkantstraat | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Relevant Case Study | Compare |
Zaragoza, Actur | NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts | PED Relevant Case Study | Compare |
Aarhus, Brabrand | BIPED – Building Intelligent Positive Energy Districts | PED Case Study / PED Relevant Case Study / PED Lab | Compare |
Riga, Ķīpsala, RTU smart student city | ExPEDite – Enabling Positive Energy Districts through Digital Twins | PED Case Study | Compare |
Izmir, District of Karşıyaka | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study | Compare |
Istanbul, Ozyegin University Campus | LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes | PED Relevant Case Study | Compare |
Espoo, Kera | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study / PED Relevant Case Study | |
Borlänge, Rymdgatan’s Residential Portfolio | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Relevant Case Study | Uncompare |
Freiburg, Waldsee | PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district | PED Case Study | Compare |
Innsbruck, Campagne-Areal | PED Relevant Case Study | Uncompare | |
Graz, Reininghausgründe | PED Case Study | Compare | |
Stor-Elvdal, Campus Evenstad | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Relevant Case Study | Compare |
Oulu, Kaukovainio | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Halmstad, Fyllinge | PED Relevant Case Study | Compare | |
Lund, Brunnshög district | PED Case Study | Compare | |
Vienna, Am Kempelenpark | PED Case Study | Compare | |
Évora, Portugal | POCITYF – A POsitive Energy CITY Transformation Framework | PED Relevant Case Study / PED Lab | Compare |
Kladno, Sletiště (Sport Area), PED Winter Stadium | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Relevant Case Study | Compare |
Groningen, PED South | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Lab | Compare |
Groningen, PED North | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Lab | Compare |
Maia, Sobreiro Social Housing | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Lab | Compare |
Lubia (Soria), CEDER-CIEMAT | PED Lab | Compare | |
Tampere, Ilokkaanpuisto district | STARDUST – Holistic and Integrated Urban Model for Smart Cities | PED Relevant Case Study | Compare |
Leon, Former Sugar Factory district | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Istanbul, Kadikoy district, Caferaga | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Espoo, Leppävaara district, Sello center | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Compare |
Espoo, Espoonlahti district, Lippulaiva block | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Compare |
Salzburg, Gneis district | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Compare |
Barcelona, Santa Coloma de Gramenet | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Compare |
Tartu, City centre area | SmartEnCity – Towards Smart Zero CO2 Cities across Europe | PED Relevant Case Study / PED Lab | Compare |
Bologna, Pilastro-Roveri district | GRETA – GReen Energy Transition Actions | PED Relevant Case Study | Uncompare |
Barcelona, SEILAB & Energy SmartLab | PED Lab | Compare | |
Leipzig, Baumwollspinnerei district | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Uncompare |
Kifissia, Energy community | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Relevant Case Study | Compare |
Title | Espoo, Kera | Aveiro, Aradas district | Borlänge, Rymdgatan’s Residential Portfolio | Leipzig, Baumwollspinnerei district | Innsbruck, Campagne-Areal | Bologna, Pilastro-Roveri district |
---|---|---|---|---|---|---|
A1P001: Name of the PED case study / PED Lab | ||||||
A1P001: Name of the PED case study / PED Lab | Espoo, Kera | Aveiro, Aradas district | Borlänge, Rymdgatan’s Residential Portfolio | Leipzig, Baumwollspinnerei district | Innsbruck, Campagne-Areal | Bologna, Pilastro-Roveri district |
A1P002: Map / aerial view / photos / graphic details / leaflet | ||||||
A1P002: Map / aerial view / photos / graphic details / leaflet |
|
| ||||
A1P003: Categorisation of the PED site | ||||||
PED case study | yes | no | no | yes | no | no |
PED relevant case study | yes | yes | yes | no | yes | yes |
PED Lab. | no | no | no | no | no | no |
A1P004: Targets of the PED case study / PED Lab | ||||||
Climate neutrality | yes | yes | yes | yes | yes | yes |
Annual energy surplus | no | no | yes | no | no | no |
Energy community | no | yes | yes | no | no | yes |
Circularity | yes | no | no | no | no | no |
Air quality and urban comfort | no | no | no | yes | no | no |
Electrification | no | yes | yes | yes | no | no |
Net-zero energy cost | no | no | no | no | no | no |
Net-zero emission | no | no | no | no | yes | no |
Self-sufficiency (energy autonomous) | no | no | no | no | no | no |
Maximise self-sufficiency | no | no | yes | no | no | no |
Other | no | no | no | yes | no | no |
Other (A1P004) | Net-zero emission; Annual energy surplus | |||||
A1P005: Phase of the PED case study / PED Lab | ||||||
A1P005: Project Phase of your case study/PED Lab | Planning Phase | Planning Phase | Planning Phase | Implementation Phase | Completed | Planning Phase |
A1P006: Start Date | ||||||
A1P006: Start date | 01/15 | 12/23 | 04/16 | 09/19 | ||
A1P007: End Date | ||||||
A1P007: End date | 12/35 | 11/26 | 04/22 | 10/23 | ||
A1P008: Reference Project | ||||||
A1P008: Reference Project | ||||||
A1P009: Data availability | ||||||
A1P009: Data availability |
|
|
| |||
A1P009: Other | ||||||
A1P010: Sources | ||||||
Any publication, link to website, deliverable referring to the PED/PED Lab |
|
| ||||
A1P011: Geographic coordinates | ||||||
X Coordinate (longitude): | 24.75377778 | -8.6595 | 15.394495 | 12.318458 | 11.424346738140256 | 11.397323 |
Y Coordinate (latitude): | 60.21622222 | 40.6353 | 60.486609 | 51.326492 | 47.271470786729104 | 44.507106 |
A1P012: Country | ||||||
A1P012: Country | Finland | Portugal | Sweden | Germany | Austria | Italy |
A1P013: City | ||||||
A1P013: City | Espoo | Alveiro (Aradas) | Borlänge | Leipzig | Innsbruck | Bologna |
A1P014: Climate Zone (Köppen Geiger classification) | ||||||
A1P014: Climate Zone (Köppen Geiger classification). | Dfb | Csb | Dsb | Dfb | Dfb | Cfa |
A1P015: District boundary | ||||||
A1P015: District boundary | Geographic | Geographic | Geographic | Functional | Geographic | Geographic |
Other | Geographic | |||||
A1P016: Ownership of the case study/PED Lab | ||||||
A1P016: Ownership of the case study/PED Lab: | Mixed | Public | Mixed | Mixed | Mixed | |
A1P017: Ownership of the land / physical infrastructure | ||||||
A1P017: Ownership of the land / physical infrastructure: | Multiple Owners | Multiple Owners | Single Owner | Multiple Owners | Multiple Owners | |
A1P018: Number of buildings in PED | ||||||
A1P018: Number of buildings in PED | 10 | 2 | 4 | 1962 | ||
A1P019: Conditioned space | ||||||
A1P019: Conditioned space [m²] | 3700 | 17000 | 22277 | |||
A1P020: Total ground area | ||||||
A1P020: Total ground area [m²] | 580000 | 8930000 | 9945 | 30000 | 11351 | 7800000 |
A1P021: Floor area ratio: Conditioned space / total ground area | ||||||
A1P021: Floor area ratio: Conditioned space / total ground area | 0 | 0 | 0 | 1 | 2 | 0 |
A1P022: Financial schemes | ||||||
A1P022a: Financing - PRIVATE - Real estate | no | no | no | no | no | no |
A1P022a: Add the value in EUR if available [EUR] | ||||||
A1P022b: Financing - PRIVATE - ESCO scheme | no | no | no | no | no | no |
A1P022b: Add the value in EUR if available [EUR] | ||||||
A1P022c: Financing - PRIVATE - Other | no | no | no | no | no | no |
A1P022c: Add the value in EUR if available [EUR] | ||||||
A1P022d: Financing - PUBLIC - EU structural funding | no | no | no | no | no | no |
A1P022d: Add the value in EUR if available [EUR] | ||||||
A1P022e: Financing - PUBLIC - National funding | no | yes | no | no | no | yes |
A1P022e: Add the value in EUR if available [EUR] | ||||||
A1P022f: Financing - PUBLIC - Regional funding | no | no | no | no | no | yes |
A1P022f: Add the value in EUR if available [EUR] | ||||||
A1P022g: Financing - PUBLIC - Municipal funding | no | no | no | no | no | yes |
A1P022g: Add the value in EUR if available [EUR] | ||||||
A1P022h: Financing - PUBLIC - Other | no | no | no | no | no | no |
A1P022h: Add the value in EUR if available [EUR] | ||||||
A1P022i: Financing - RESEARCH FUNDING - EU | no | no | no | no | no | yes |
A1P022i: Add the value in EUR if available [EUR] | ||||||
A1P022j: Financing - RESEARCH FUNDING - National | no | no | no | no | yes | no |
A1P022j: Add the value in EUR if available [EUR] | ||||||
A1P022k: Financing - RESEARCH FUNDING - Local/regional | no | no | no | no | no | yes |
A1P022k: Add the value in EUR if available [EUR] | ||||||
A1P022l: Financing - RESEARCH FUNDING - Other | no | no | no | no | no | no |
A1P022l: Add the value in EUR if available [EUR] | ||||||
A1P022: Other | Multiple different funding schemes depending on the case. | |||||
A1P023: Economic Targets | ||||||
A1P023: Economic Targets |
|
|
|
| ||
A1P023: Other | Circular economy | Sustainable and replicable business models regarding renewable energy systems | Create affordable appartments for the citizens | |||
A1P024: More comments: | ||||||
A1P024: More comments: | Owners are two local social housing companies. The complete district will consist 4 building blocks, from which only the first one with 4 building is ready built and occupied. At the end, it would be a district of ca. 1100 flats in 16 buildings with 78000 m2 | The Pilastro-Roveri area is a large peri-urban district in the northeast of the city of Bologna (about 650 hectares). In particular, the northern area is mainly characterised by the residential sector of Rione Pilastro, a significant complex of social housing built in the 1960s in response to the housing emergency due to migrations from southern Italy and nowadays satisfying more global migrations. The southern area is instead characterised by the presence of the production district called Roveri. The area appears relevant for the research as it has several evolution potentials towards a climate-neutral district. In particular some key factors are interesting: - the presence of one of the largest photovoltaic parks in Europe on the roofs of CAAB, characterised by a production of 11,350,000 Kw/h of primary energy; - the presence of companies attentive to the issues of climate change and energy, able to act as facilitators for the area. This is the case of FIVE, a leader in the production of electric bicycles, whose plant is the first nZEB (nearly Zero Energy Building) productive building in the city; - the high presence of industrial buildings of different sizes needing a reduction in energy consumption; - the presence of obsolete, sometimes in decay, and of general highly energy-intensive buildings in the Pilastro area, accompanied by spread phenomena of energy poverty; - the presence of spaces that could be converted (e.g. unused warehouses, unexploited green areas, etc.); - the presence of an active community, characterised by numerous associations, but also by social challenges linked to multiple vulnerabilities; - the presence of local actors interested in the development of the area (including the Municipality, the University, Confindustria, ENEA, Confartigianato, etc.). Two main research projects are actually ongoing in the area, applying solutions towards energy improvement and transition strategies to guide the area towards climate neutrality: - GECO - Green Energy Community, funded by EIT Climate-KIC and active since 2019, aims to trigger a virtuous path of energy sharing between companies and citizens through the creation of an energy community. - GRETA - Green Energy Transition Actions, funded by the H2020 programme, aims to understand drivers and barriers on the involvement of citizens in the energy transition processes, by formulating Community Transition Pathways and Energy Citizenship Contracts. [from: Boeri, A., Boulanger, S., Turci, G., Pagliula, S. (2021) Strategie e tecnologie abilitanti per PED misti: efficienza tra smart cities e industria 4.0. TECHNE, 22, 180-190] | ||||
A1P025: Estimated PED case study / PED LAB costs | ||||||
A1P025: Estimated PED case study / PED LAB costs [mil. EUR] | ||||||
Contact person for general enquiries | ||||||
A1P026: Name | Joni Mäkinen | Dr. Gonçalo Homem De Almeida Rodriguez Correia | Jingchun Shen | Simon Baum | Georgios Dermentzis | Prof. Danila Longo |
A1P027: Organization | City of Espoo | Delft University of Technology | Högskolan Dalarna | CENERO Energy GmbH | University of Innsbruck | University of Bologna - Architecture Department |
A1P028: Affiliation | Municipality / Public Bodies | Research Center / University | Research Center / University | Other | Research Center / University | Research Center / University |
A1P028: Other | CENERO Energy GmbH | |||||
A1P029: Email | joni.makinen@espoo.fi | g.correia@tudelft.nl | jih@du.se | sib@cenero.de | Georgios.Dermentzis@uibk.ac.at | |
Contact person for other special topics | ||||||
A1P030: Name | Qiaochu Fan | Xingxing Zhang | Simon Baum | |||
A1P031: Email | q.fan-1@tudelft.nl | xza@du.se | sib@cenero.de | |||
Pursuant to the General Data Protection Regulation | Yes | Yes | Yes | Yes | Yes | |
A2P001: Fields of application | ||||||
A2P001: Fields of application |
|
|
|
|
|
|
A2P001: Other | ||||||
A2P002: Tools/strategies/methods applied for each of the above-selected fields | ||||||
A2P002: Tools/strategies/methods applied for each of the above-selected fields | - Kera development commitment (https://www.espoo.fi/en/kera-development-commitment). - SPARCS Co-creation model for sustainable and smart urban areas (www.co-creatingsparcs.fi/en). - Kera area carbon neutrality roadmap (https://static.espoo.fi/cdn/ff/MHDdcMNJ9aYn7CjpoD4zNpo5M-M9HIDLXlJdUrUmf-8/1642756766/public/2022-01/Kera%20carbon%20neutrality%20map_EN.pdf) | Load calculation and system optimisation: City Energy Analyst Identification of stranded assets for asset owners and investors to understand the carbon risks: CRREM | The buildings are designed based on Passive House standards and dynamic building and system simulations are performed to optimise the HVAC systems, that are a ground-water heat pump for space heating and district heating for domestic hot water preparation. Photovoltaic systems are installed in the available roof spaces, however, more renewable sources are required due to very large number of apartments (very high density) to reach PED, and thus, simulation studies are performed. | Energy efficiency: - buildings energy retrofit supported by tax incentives (110%, façade bonus, eco-bonus, sismabonus, renovation bonus, etc.); - several activities - such as Workshops, Webinars, Roundtables, Urban Trekking, etc…- are encouraged in the area to deepen knowledge and raise awareness on energy issues among urban stakeholders (householders, occupants, workers, etc..); - reduction in energy consumption also through every day energy saving actions. The spread of energy poverty phenomena in the area is considered urgent both for the medium-low-income population living in Pilastro and for small and medium-sized enterprises placed in Roveri; - Project for a One-stop-shop to guide residents and enterprises towards more conscious energy behaviours (planned in Bologna SECAP). Energy production: - installation of new photovoltaic (PV) systems for renewable on-site energy production; - presence of a waste to energy plant connected to the district heating system; - presence of a large PV plant in the CAAB area - 11,350,000 Kw/h Energy flexibility: - testing energy community and collective self-consumption feasibility in Pilastro area through an active citizens involvement process; - testing energy community feasibility among SMEs in Roveri industrial area; - testing the potential of complementary energy consumption profiles between residential area (Pilastro) and industrial area (Roveri). Digital technologies: - smart-meters installation in some dwellings in order to monitor consumption and suggest more sustainable energy behaviors; - Blog Pilastro as a tool to inform about the main activities and events ongoing in the area; E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services recovery (in fact during Covid-19 in the area Mobike service was suspended) and implementation. Urban comfort and air quality - Control units for air pollutants concentration (PM2.5, PM10, NO2); - Microclimatic simulation | ||
A2P003: Application of ISO52000 | ||||||
A2P003: Application of ISO52000 | No | No | No | Yes | ||
A2P004: Appliances included in the calculation of the energy balance | ||||||
A2P004: Appliances included in the calculation of the energy balance | No | Yes | Yes | No | ||
A2P005: Mobility included in the calculation of the energy balance | ||||||
A2P005: Mobility included in the calculation of the energy balance | No | No | No | No | ||
A2P006: Description of how mobility is included (or not included) in the calculation | ||||||
A2P006: Description of how mobility is included (or not included) in the calculation | ||||||
A2P007: Annual energy demand in buildings / Thermal demand | ||||||
A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum] | 54.5 | 0.6777 | 1.65 | 0.39 | ||
A2P008: Annual energy demand in buildings / Electric Demand | ||||||
A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum] | 19.4 | 0.03656 | 0.655 | |||
A2P009: Annual energy demand for e-mobility | ||||||
A2P009: Annual energy demand for e-mobility [GWh/annum] | 0 | 0 | 0 | |||
A2P010: Annual energy demand for urban infrastructure | ||||||
A2P010: Annual energy demand for urban infrastructure [GWh/annum] | 0 | |||||
A2P011: Annual renewable electricity production on-site during target year | ||||||
A2P011: PV | yes | no | no | yes | yes | yes |
A2P011: PV - specify production in GWh/annum [GWh/annum] | 4 | 0.42 | ||||
A2P011: Wind | no | no | no | no | no | no |
A2P011: Wind - specify production in GWh/annum [GWh/annum] | ||||||
A2P011: Hydro | no | no | no | no | no | no |
A2P011: Hydro - specify production in GWh/annum [GWh/annum] | ||||||
A2P011: Biomass_el | no | no | no | no | no | no |
A2P011: Biomass_el - specify production in GWh/annum [GWh/annum] | ||||||
A2P011: Biomass_peat_el | no | no | no | no | no | no |
A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum] | ||||||
A2P011: PVT_el | no | no | yes | no | no | no |
A2P011: PVT_el - specify production in GWh/annum [GWh/annum] | 0.01818 | |||||
A2P011: Other | no | no | no | no | no | no |
A2P011: Other - specify production in GWh/annum [GWh/annum] | ||||||
A2P012: Annual renewable thermal production on-site during target year | ||||||
A2P012: Geothermal | no | no | no | no | no | no |
A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum] | ||||||
A2P012: Solar Thermal | no | no | no | no | no | yes |
A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum] | ||||||
A2P012: Biomass_heat | no | no | no | no | no | yes |
A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum] | ||||||
A2P012: Waste heat+HP | yes | no | no | no | no | no |
A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum] | ||||||
A2P012: Biomass_peat_heat | no | no | no | no | no | no |
A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum] | ||||||
A2P012: PVT_th | no | no | yes | no | no | no |
A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum] | 0.0825 | |||||
A2P012: Biomass_firewood_th | no | no | no | no | no | no |
A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum] | ||||||
A2P012: Other | no | no | no | no | no | no |
A2P012 - Other: Please specify production in GWh/annum [GWh/annum] | ||||||
A2P013: Renewable resources on-site - Additional notes | ||||||
A2P013: Renewable resources on-site - Additional notes | Local energy utility will implement district level thermal solution. First, energy will be produced from waste heat from a local data center. Further thermal solutions are under discussion and development. | |||||
A2P014: Annual energy use | ||||||
A2P014: Annual energy use [GWh/annum] | 78.8 | 0.318 | 2.421 | 0.96 | ||
A2P015: Annual energy delivered | ||||||
A2P015: Annual energy delivered [GWh/annum] | 15.4 | 0.2055 | -2 | |||
A2P016: Annual non-renewable electricity production on-site during target year | ||||||
A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum] | 0 | 0 | ||||
A2P017: Annual non-renewable thermal production on-site during target year | ||||||
A2P017: Gas | no | no | no | no | no | no |
A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum] | ||||||
A2P017: Coal | no | no | no | no | no | no |
A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum] | ||||||
A2P017: Oil | no | no | no | no | no | no |
A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum] | ||||||
A2P017: Other | no | no | yes | no | no | no |
A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum] | 0 | |||||
A2P018: Annual renewable electricity imports from outside the boundary during target year | ||||||
A2P018: PV | no | no | no | no | no | no |
A2P018 - PV: specify production in GWh/annum if available [GWh/annum] | ||||||
A2P018: Wind | no | no | no | no | no | no |
A2P018 - Wind: specify production in GWh/annum if available [GWh/annum] | ||||||
A2P018: Hydro | no | no | no | no | no | no |
A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum] | ||||||
A2P018: Biomass_el | no | no | no | no | no | no |
A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum] | ||||||
A2P018: Biomass_peat_el | no | no | no | no | no | no |
A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum] | ||||||
A2P018: PVT_el | no | no | no | no | no | no |
A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum] | ||||||
A2P018: Other | no | no | yes | no | no | no |
A2P018 - Other: specify production in GWh/annum if available [GWh/annum] | 0.187 | |||||
A2P019: Annual renewable thermal imports from outside the boundary during target year | ||||||
A2P019: Geothermal | no | no | no | no | no | no |
A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum] | ||||||
A2P019: Solar Thermal | no | no | no | no | no | no |
A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum] | ||||||
A2P019: Biomass_heat | no | no | no | no | no | no |
A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum] | ||||||
A2P019: Waste heat+HP | no | no | no | no | no | no |
A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum] | ||||||
A2P019: Biomass_peat_heat | no | no | no | no | no | no |
A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum] | ||||||
A2P019: PVT_th | no | no | no | no | no | no |
A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum] | ||||||
A2P019: Biomass_firewood_th | no | no | no | no | no | no |
A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum] | ||||||
A2P019: Other | no | no | yes | no | no | no |
A2P019 Other: Please specify imports in GWh/annum [GWh/annum] | 0 | |||||
A2P020: Share of RES on-site / RES outside the boundary | ||||||
A2P020: Share of RES on-site / RES outside the boundary | 0 | 0 | 0.53839572192513 | 0 | 0 | 0 |
A2P021: GHG-balance calculated for the PED | ||||||
A2P021: GHG-balance calculated for the PED [tCO2/annum] | 450000 | 6.93 | ||||
A2P022: KPIs related to the PED case study / PED Lab | ||||||
A2P022: Safety & Security | none | |||||
A2P022: Health | thermal comfort diagram | indoor air quility (indoor CO2 concentration) - measured on the extract air of the mechanical ventilation system. Relative humidity to avoid mold. | ||||
A2P022: Education | none | |||||
A2P022: Mobility | Improved accessibility to V2G-related transport options, focusing on inclusivity and equitable adoption in urban districts | none | ||||
A2P022: Energy | Target zero greenhouse gas emissions through the adoption of EVs with V2G capabilities, aiming to reduce reliance on fossil fuels and enhance local grid stability | normalized CO2/GHG & Energy intensity | apply | Space heating demand, thermal energy delivered by district heating, electricity of the heat pump, thermal losses of the pipes, and PV production. | ||
A2P022: Water | ||||||
A2P022: Economic development | Development of viable business models for V2G that allow decentralized energy markets to integrate with the grid, enhancing local economic resilience | cost of excess emissions | ||||
A2P022: Housing and Community | ||||||
A2P022: Waste | ||||||
A2P022: Other | ||||||
A2P023: Technological Solutions / Innovations - Energy Generation | ||||||
A2P023: Photovoltaics | yes | yes | yes | no | yes | yes |
A2P023: Solar thermal collectors | no | no | yes | yes | no | yes |
A2P023: Wind Turbines | no | yes | no | no | no | no |
A2P023: Geothermal energy system | no | no | yes | no | no | yes |
A2P023: Waste heat recovery | yes | no | yes | no | no | no |
A2P023: Waste to energy | no | no | no | no | no | yes |
A2P023: Polygeneration | no | no | no | no | no | no |
A2P023: Co-generation | no | no | no | no | no | yes |
A2P023: Heat Pump | yes | no | yes | yes | yes | yes |
A2P023: Hydrogen | no | no | no | no | no | no |
A2P023: Hydropower plant | no | no | no | no | no | no |
A2P023: Biomass | no | no | no | no | no | no |
A2P023: Biogas | no | no | no | no | no | no |
A2P023: Other | ||||||
A2P024: Technological Solutions / Innovations - Energy Flexibility | ||||||
A2P024: A2P024: Information and Communication Technologies (ICT) | yes | no | yes | no | no | yes |
A2P024: Energy management system | yes | yes | no | no | no | no |
A2P024: Demand-side management | yes | yes | no | no | no | no |
A2P024: Smart electricity grid | yes | yes | no | no | no | no |
A2P024: Thermal Storage | no | no | yes | no | yes | no |
A2P024: Electric Storage | no | yes | no | no | no | yes |
A2P024: District Heating and Cooling | yes | no | yes | no | yes | yes |
A2P024: Smart metering and demand-responsive control systems | no | no | no | no | no | no |
A2P024: P2P – buildings | no | no | no | no | yes | no |
A2P024: Other | ||||||
A2P025: Technological Solutions / Innovations - Energy Efficiency | ||||||
A2P025: Deep Retrofitting | no | yes | yes | no | no | yes |
A2P025: Energy efficiency measures in historic buildings | no | no | no | no | no | no |
A2P025: High-performance new buildings | yes | no | no | no | yes | yes |
A2P025: Smart Public infrastructure (e.g. smart lighting) | yes | yes | no | no | no | yes |
A2P025: Urban data platforms | yes | yes | no | no | no | no |
A2P025: Mobile applications for citizens | no | no | no | no | no | yes |
A2P025: Building services (HVAC & Lighting) | yes | no | yes | no | yes | yes |
A2P025: Smart irrigation | no | no | no | no | no | no |
A2P025: Digital tracking for waste disposal | no | no | no | no | no | yes |
A2P025: Smart surveillance | no | no | no | yes | no | yes |
A2P025: Other | ||||||
A2P026: Technological Solutions / Innovations - Mobility | ||||||
A2P026: Efficiency of vehicles (public and/or private) | yes | yes | no | no | no | yes |
A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances) | yes | yes | no | yes | no | yes |
A2P026: e-Mobility | yes | yes | no | yes | no | yes |
A2P026: Soft mobility infrastructures and last mile solutions | yes | no | no | no | no | yes |
A2P026: Car-free area | no | no | no | no | no | no |
A2P026: Other | ||||||
A2P027: Mobility strategies - Additional notes | ||||||
A2P027: Mobility strategies - Additional notes | Test-Concept for bidirectional charging. | |||||
A2P028: Energy efficiency certificates | ||||||
A2P028: Energy efficiency certificates | No | No | Yes | Yes | ||
A2P028: If yes, please specify and/or enter notes | Two buildings are certified "Passive House new build" | Energy Performance Certificate for each dwelling | ||||
A2P029: Any other building / district certificates | ||||||
A2P029: Any other building / district certificates | No | No | No | No | ||
A2P029: If yes, please specify and/or enter notes | ||||||
A3P001: Relevant city /national strategy | ||||||
A3P001: Relevant city /national strategy |
|
|
|
| ||
A3P002: Quantitative targets included in the city / national strategy | ||||||
A3P002: Quantitative targets included in the city / national strategy | The study aligns closely with the decarbonisation and energy reduction pathways of residential multi family buildings with 1.5°C global warming target in Sweden. This study will also contribute to the achievement of the carbon neturality of whole Borlänge city by 2030. | City level targets Sustainable Urban Mobility Plan (PUMS) - 2019 | Targets: - by 2030 440,000 daily trips will no longer be made by car but on foot, by bike or by public transport; - by 2030 12% of vehicles will be electric; Sustainable Energy and Climate Action Plan (SECAP) - 2021 | Targets: - by 2025 deep renovation of 3% per year of residential homes (insulation of building envelopes and adoption of heat pump heating system); - by 2030 reduction of electricity consumption at least of 20% compared to 2018; - by 2030 100% coverage of electricity consumption for municipal buildings; - by 2030 increase public green areas by at least 10% Urban General Plan (PUG) - 2021 | Targets: - by 2030 net zero land consumption; National level targets Integrated National Energy and Climate Plan - 2020 | Targets: - by 2030 reduction of 43% for primary energy consumption, with respect to the reference 2007 scenario. - by 2030 increase of 30% of energy production from renewable sources; - by 2025 energy generation for electricity independent from the use of coal; | ||||
A3P003: Strategies towards decarbonization of the gas grid | ||||||
A3P003: Strategies towards decarbonization of the gas grid |
|
|
| |||
A3P003: Other | District heating based mainly on heat pumps and renewable sources | |||||
A3P004: Identification of needs and priorities | ||||||
A3P004: Identification of needs and priorities | In our project, we carried out a comprehensive exploration of strategies to achieve positive energy districts in a Swedish residential portfolio. The focus on urban energy transitions necessitates a holistic approach that integrates building retrofit, solar technology exploration, and heating supply optimisation. Exploration of Local Solar Sources: The analysis reveals varying solar irradiance resources throughout the year, emphasizing the importance of strategic placement. Integration of combined photovoltaic and thermal panels into building envelopes demonstrates the potential to cover a significant portion of the energy demand even in Sweden. Heating Supply Optimisation with Solar Technologies: Despite the surplus energy production from on-site solar technology, challenges arise due to temporal energy asymmetry. The introduction of heat pumps emerges as a feasible solution to balance energy gaps, utilising both rejected and free heat. Optimisation scenarios, utilising a combination of geothermal heat pumps, water source heat pumps, and PVT, showcase remarkable reductions in emissions and primary energy consumption. Urban Form and Energy Infrastructure Design: We realised the importance of returning to urban form and energy infrastructure design to optimise future residential portfolio potential. Building layout design, influenced by zoning regulations and innovative typologies, plays a crucial role in achieving district level energy efficiency. Future challenges, including demographic shifts, e-mobility, and climate change, necessitate a more holistic approach to energy infrastructure design, addressing not only heating and electricity demands but also cooling requirements. | The priority was to eliminate the CO2 emissions by optimizing the building envelope and the heating systems. | Bologna needs to reach the climate neutrality proceeding by ‘part’ of the city. Pilastro-Roveri is a promising district due to the following reasons: - some buildings need to be renovated both to increase the energy performance, the seismic behaviour, spaces liveability and comfort; - Pilastro is a residential area with the presence of a high percentage of vulnerable inhabitants affected by energy poverty phenomenon. This situation needs to be prioritized; - Pilastro is characterized by the presence of large underused green spaces that can represent a valuable resource for social cohesion and for heat island phenomenon mitigation; - Roveri is an industrial area where some small-medium enterprises are investing in order to improve their facilities and to efficiency their production cycle; - Roveri and Pilastro areas present complementary energy consumption curves throughout the day/week with a high potential for energy sharing and flexibility. | |||
A3P005: Sustainable behaviour | ||||||
A3P005: Sustainable behaviour | While our investigation primarily centres on technical optimisation within Positive Energy District (PED) development, it is essential to acknowledge the broader scope encompassing social and governance dimensions. Specifically, understanding stakeholders' willingness to embrace technical recommendations upon project completion is important. Several potential influencing factors merit exploration, including economic considerations, technical optimisation-associated embodied carbon balance, the general public's technical perceptions, and operational feasibility. Evaluating these aspects holistically not only enhances the efficacy of PED initiatives but also fosters greater acceptance and participation within the communities they serve. | Bologna SECAP, as well as the participation to the 100 Climate-Neutral Cities, promotes the PED model as an enabling tool to foster city energy transition process. In Pilastro-Roveri district two main sustainable behaviours approaches can be identified: - bottom-up approach - some citizens are joining forces to create groups of energy self-consumption, in view of energy communities’ implementation and, at the same time, some companies have already undertaken some efficiency intervention on the production system by leveraging highly energy-efficient technologies; - top-down approach - GECO and GRETA are international ongoing projects on the area that promote innovation and energy transition with important fundings from the European Union, but with a particular focus on citizen engagement and participatory approach. Simultaneously, new and updated planning tools such as PUG, SECAP and SUMP identify in this part of Bologna city a key area to enable an ecological transition process holding together all relevant stakeholders - citizens, small-medium enterprises and Institutions. These two thrusts (bottom-up and top-down) need to be optimized in view of a participatory pathway towards the grounding of a Positive Energy District in Pilastro-Roveri. | ||||
A3P006: Economic strategies | ||||||
A3P006: Economic strategies |
|
|
|
|
| |
A3P006: Other | operational savings through efficiency measures | |||||
A3P007: Social models | ||||||
A3P007: Social models |
|
|
|
|
|
|
A3P007: Other | ||||||
A3P008: Integrated urban strategies | ||||||
A3P008: Integrated urban strategies |
|
|
|
| ||
A3P008: Other | ||||||
A3P009: Environmental strategies | ||||||
A3P009: Environmental strategies |
|
|
|
|
|
|
A3P009: Other | Positive Energy Balance for the demo site | |||||
A3P010: Legal / Regulatory aspects | ||||||
A3P010: Legal / Regulatory aspects | PEDs in Italy are meant as strategies towards climate-neutrality: at national/regional/local level a specific legislation on PEDs development is not yet available. However, the European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). Italy, starting from 2020, has transposed the Directives at national level (‘Milleproroghe’ decree then made effective by ‘Promotion of Renewable sources’ decree 199/2021). At regional level Emilia Romagna in May 2022 developed a law encouraging EC model diffusion (LR 5/2022 ‘Promotion and support of renewable energy communities and renewable energy self-consumers acting collectively’). Energy Community, according to Lindholm et al. 2021, can be considered as ‘a first implementation step towards PEDs.’ | |||||
B1P001: PED/PED relevant concept definition | ||||||
B1P001: PED/PED relevant concept definition | Implementation of district level heating system to make heating energy positive and expanding local renewable electricity production. | The Rymdgatan's Residential Portfolio in Sweden presents a compelling case study for its classification as a PED-related research, given its alignment with sustainable behaviours and overarching PED development principles as follows: Inclusivity and Social Equity: The residential portfolio situated in Rymdgatan caters primarily to a low-income community. By focusing on this demographic, the project addresses critical aspects of social equity within sustainable urban development. Ensuring access to energy-efficient housing and amenities for economically disadvantaged populations not only fosters social cohesion but also mitigates energy poverty, a pressing concern in many urban contexts. Multifamily Residential Building: The inclusion of multifamily residential buildings within the portfolio underscores a commitment to density and efficient land use, both essential components of sustainable urban design. Such developments promote resource optimisation by consolidating housing units, thereby reducing per capita energy consumption and infrastructure demands. Moreover, multifamily dwellings often facilitate community engagement and shared resource management, fostering a culture of sustainability among residents. Low Carbon Retrofitting and Transition: The overarching initiative to transition the entire Jakobsgårdarna district. The included Rymdgatan portfolio, towards low carbon retrofitting, represents a significant example of decarbonization and climate resilience. By integrating energy-efficient technologies and renewable energy solutions into existing infrastructure, the project not only reduces carbon emissions but also serves as a blueprint for revitalising old urban environments sustainably. This holistic approach to retrofitting demonstrates a systemic commitment to environmental stewardship and long-term sustainability. Climate Adaptation and Renewable Energy Integration: Despite Sweden's climatic challenges, including lower solar resources during winter months, the Rymdgatan project leverages its geographical context to optimize renewable energy utilization. Sweden's greater solar resource availability during summer and geothermal potentials complement the design's emphasis on seasonal energy planning, where surplus energy generated during peak periods can be stored or redistributed efficiently. By embracing climate-responsive design strategies, the project demonstrates resilience in the face of climate variability while harnessing renewable energy potential effectively. | Extremely low building energy demand, the electric energy of the heat pump used for space heating is significantly lower compared to thermal energy for the domestic hot water preparation. | Pilastro-Roveri district can be considered as a PED-relevant area. Even though at the moment the area doesn’t meet annual energy positive balance, it addresses some relevant key aspects listed in the JPI UE PED Framework Definition such as: - high level of aspiration in terms of energy efficiency, energy flexibility and energy production; - integration of different systems and infrastructures; - inclusion of aspects not only related to energy sector, but also connected with social, economic and environmental sustainability. | ||
B1P002: Motivation behind PED/PED relevant project development | ||||||
B1P002: Motivation behind PED/PED relevant project development | Borlänge city has committed to become the carbon-neutral city by 2030. | Since it is an urban area, with high building and apartment density, the need for CO2 reduction is quite relevant and thus, in new built, the minimization of CO2 emissions is crucial. | Pilastro-Roveri district is not actually meant to become a PEDs. However, it can be considered as a PED-relevant case-study since a participatory transition pathway towards a more sustainable, efficient and resilient district is gaining ground, involving the main urban stakeholders. At the same time, the most recent city plan and policies (such as the city SECAPs - updated in 2021) are promoting PED model as a key strategy to guide Bologna towards climate neutrality by 2030. | |||
B1P003: Environment of the case study area | ||||||
B2P003: Environment of the case study area | Urban area | Urban area | Urban area | Urban area | ||
B1P004: Type of district | ||||||
B2P004: Type of district |
|
|
|
| ||
B1P005: Case Study Context | ||||||
B1P005: Case Study Context |
|
|
|
|
| |
B1P006: Year of construction | ||||||
B1P006: Year of construction | 1990 | 2022 | ||||
B1P007: District population before intervention - Residential | ||||||
B1P007: District population before intervention - Residential | 100 | |||||
B1P008: District population after intervention - Residential | ||||||
B1P008: District population after intervention - Residential | 14000 | 100 | 780 | |||
B1P009: District population before intervention - Non-residential | ||||||
B1P009: District population before intervention - Non-residential | 6 | |||||
B1P010: District population after intervention - Non-residential | ||||||
B1P010: District population after intervention - Non-residential | 10000 | 6 | ||||
B1P011: Population density before intervention | ||||||
B1P011: Population density before intervention | 0 | 0 | 0 | 0 | 0 | 0 |
B1P012: Population density after intervention | ||||||
B1P012: Population density after intervention | 0.041379310344828 | 0 | 0.010658622423328 | 0 | 0.068716412650868 | 0 |
B1P013: Building and Land Use before intervention | ||||||
B1P013: Residential | yes | no | yes | no | no | yes |
B1P013 - Residential: Specify the sqm [m²] | 4360 | |||||
B1P013: Office | yes | no | no | no | no | yes |
B1P013 - Office: Specify the sqm [m²] | ||||||
B1P013: Industry and Utility | yes | no | no | no | no | yes |
B1P013 - Industry and Utility: Specify the sqm [m²] | ||||||
B1P013: Commercial | no | no | no | no | no | yes |
B1P013 - Commercial: Specify the sqm [m²] | ||||||
B1P013: Institutional | no | no | no | no | no | yes |
B1P013 - Institutional: Specify the sqm [m²] | ||||||
B1P013: Natural areas | no | no | no | no | no | yes |
B1P013 - Natural areas: Specify the sqm [m²] | ||||||
B1P013: Recreational | no | no | no | no | no | yes |
B1P013 - Recreational: Specify the sqm [m²] | ||||||
B1P013: Dismissed areas | yes | no | no | no | no | yes |
B1P013 - Dismissed areas: Specify the sqm [m²] | ||||||
B1P013: Other | no | no | yes | no | no | no |
B1P013 - Other: Specify the sqm [m²] | 706 | |||||
B1P014: Building and Land Use after intervention | ||||||
B1P014: Residential | yes | no | yes | no | yes | yes |
B1P014 - Residential: Specify the sqm [m²] | 4360 | |||||
B1P014: Office | yes | no | no | no | no | yes |
B1P014 - Office: Specify the sqm [m²] | ||||||
B1P014: Industry and Utility | no | no | no | no | no | yes |
B1P014 - Industry and Utility: Specify the sqm [m²] | ||||||
B1P014: Commercial | yes | no | no | no | yes | yes |
B1P014 - Commercial: Specify the sqm [m²] | ||||||
B1P014: Institutional | no | no | no | no | yes | yes |
B1P014 - Institutional: Specify the sqm [m²] | ||||||
B1P014: Natural areas | no | no | no | no | no | yes |
B1P014 - Natural areas: Specify the sqm [m²] | ||||||
B1P014: Recreational | yes | no | no | no | yes | yes |
B1P014 - Recreational: Specify the sqm [m²] | ||||||
B1P014: Dismissed areas | no | no | no | no | no | yes |
B1P014 - Dismissed areas: Specify the sqm [m²] | ||||||
B1P014: Other | no | no | yes | no | no | no |
B1P014 - Other: Specify the sqm [m²] | 706 | |||||
B2P001: PED Lab concept definition | ||||||
B2P001: PED Lab concept definition | ||||||
B2P002: Installation life time | ||||||
B2P002: Installation life time | ||||||
B2P003: Scale of action | ||||||
B2P003: Scale | ||||||
B2P004: Operator of the installation | ||||||
B2P004: Operator of the installation | ||||||
B2P005: Replication framework: Applied strategy to reuse and recycling the materials | ||||||
B2P005: Replication framework: Applied strategy to reuse and recycling the materials | ||||||
B2P006: Circular Economy Approach | ||||||
B2P006: Do you apply any strategy to reuse and recycling the materials? | ||||||
B2P006: Other | ||||||
B2P007: Motivation for developing the PED Lab | ||||||
B2P007: Motivation for developing the PED Lab | ||||||
B2P007: Other | ||||||
B2P008: Lead partner that manages the PED Lab | ||||||
B2P008: Lead partner that manages the PED Lab | ||||||
B2P008: Other | ||||||
B2P009: Collaborative partners that participate in the PED Lab | ||||||
B2P009: Collaborative partners that participate in the PED Lab | ||||||
B2P009: Other | ||||||
B2P010: Synergies between the fields of activities | ||||||
B2P010: Synergies between the fields of activities | ||||||
B2P011: Available facilities to test urban configurations in PED Lab | ||||||
B2P011: Available facilities to test urban configurations in PED Lab | ||||||
B2P011: Other | ||||||
B2P012: Incubation capacities of PED Lab | ||||||
B2P012: Incubation capacities of PED Lab | ||||||
B2P013: Availability of the facilities for external people | ||||||
B2P013: Availability of the facilities for external people | ||||||
B2P014: Monitoring measures | ||||||
B2P014: Monitoring measures | ||||||
B2P015: Key Performance indicators | ||||||
B2P015: Key Performance indicators | ||||||
B2P016: Execution of operations | ||||||
B2P016: Execution of operations | ||||||
B2P017: Capacities | ||||||
B2P017: Capacities | ||||||
B2P018: Relations with stakeholders | ||||||
B2P018: Relations with stakeholders | ||||||
B2P019: Available tools | ||||||
B2P019: Available tools | ||||||
B2P019: Available tools | ||||||
B2P020: External accessibility | ||||||
B2P020: External accessibility | ||||||
C1P001: Unlocking Factors | ||||||
C1P001: Recent technological improvements for on-site RES production | 5 - Very important | 5 - Very important | 4 - Important | 1 - Unimportant | 4 - Important | |
C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock | 4 - Important | 4 - Important | 5 - Very important | 2 - Slightly important | 4 - Important | |
C1P001: Energy Communities, P2P, Prosumers concepts | 3 - Moderately important | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 5 - Very important | |
C1P001: Storage systems and E-mobility market penetration | 4 - Important | 5 - Very important | 3 - Moderately important | 2 - Slightly important | 3 - Moderately important | |
C1P001: Decreasing costs of innovative materials | 3 - Moderately important | 3 - Moderately important | 4 - Important | 1 - Unimportant | 3 - Moderately important | |
C1P001: Financial mechanisms to reduce costs and maximize benefits | 3 - Moderately important | 5 - Very important | 5 - Very important | 1 - Unimportant | 5 - Very important | |
C1P001: The ability to predict Multiple Benefits | 3 - Moderately important | 4 - Important | 4 - Important | 3 - Moderately important | 4 - Important | |
C1P001: The ability to predict the distribution of benefits and impacts | 3 - Moderately important | 4 - Important | 4 - Important | 3 - Moderately important | 1 - Unimportant | |
C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up) | 5 - Very important | 5 - Very important | 5 - Very important | 2 - Slightly important | 5 - Very important | |
C1P001: Social acceptance (top-down) | 3 - Moderately important | 4 - Important | 5 - Very important | 4 - Important | 3 - Moderately important | |
C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.) | 3 - Moderately important | 5 - Very important | 4 - Important | 3 - Moderately important | 4 - Important | |
C1P001: Presence of integrated urban strategies and plans | 4 - Important | 4 - Important | 5 - Very important | 4 - Important | 5 - Very important | |
C1P001: Multidisciplinary approaches available for systemic integration | 5 - Very important | 4 - Important | 5 - Very important | 4 - Important | 4 - Important | |
C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects | 3 - Moderately important | 5 - Very important | 4 - Important | 4 - Important | 4 - Important | |
C1P001: Availability of RES on site (Local RES) | 4 - Important | 5 - Very important | 5 - Very important | 3 - Moderately important | 4 - Important | |
C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders | 5 - Very important | 5 - Very important | 2 - Slightly important | 3 - Moderately important | 3 - Moderately important | |
C1P001: Any other UNLOCKING FACTORS | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P001: Any other UNLOCKING FACTORS (if any) | ||||||
C1P002: Driving Factors | ||||||
C1P002: Climate Change adaptation need | 5 - Very important | 4 - Important | 5 - Very important | 5 - Very important | 4 - Important | |
C1P002: Climate Change mitigation need (local RES production and efficiency) | 5 - Very important | 5 - Very important | 5 - Very important | 4 - Important | 5 - Very important | |
C1P002: Rapid urbanization trend and need of urban expansions | 4 - Important | 3 - Moderately important | 3 - Moderately important | 5 - Very important | 1 - Unimportant | |
C1P002: Urban re-development of existing built environment | 5 - Very important | 4 - Important | 4 - Important | 3 - Moderately important | 5 - Very important | |
C1P002: Economic growth need | 4 - Important | 3 - Moderately important | 4 - Important | 1 - Unimportant | 3 - Moderately important | |
C1P002: Improved local environmental quality (air, noise, aesthetics, etc.) | 4 - Important | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 4 - Important | |
C1P002: Territorial and market attractiveness | 3 - Moderately important | 4 - Important | 1 - Unimportant | 4 - Important | 3 - Moderately important | |
C1P002: Energy autonomy/independence | 2 - Slightly important | 5 - Very important | 2 - Slightly important | 4 - Important | 4 - Important | |
C1P002: Any other DRIVING FACTOR | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P002: Any other DRIVING FACTOR (if any) | ||||||
C1P003: Administrative barriers | ||||||
C1P003: Difficulty in the coordination of high number of partners and authorities | 4 - Important | 4 - Important | 4 - Important | 2 - Slightly important | 4 - Important | |
C1P003: Lack of good cooperation and acceptance among partners | 5 - Very important | 4 - Important | 4 - Important | 2 - Slightly important | 2 - Slightly important | |
C1P003: Lack of public participation | 4 - Important | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 2 - Slightly important | |
C1P003: Lack of institutions/mechanisms to disseminate information | 4 - Important | 3 - Moderately important | 4 - Important | 1 - Unimportant | 3 - Moderately important | |
C1P003:Long and complex procedures for authorization of project activities | 3 - Moderately important | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 5 - Very important | |
C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy | 3 - Moderately important | 3 - Moderately important | 4 - Important | 1 - Unimportant | 4 - Important | |
C1P003: Complicated and non-comprehensive public procurement | 3 - Moderately important | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 4 - Important | |
C1P003: Fragmented and or complex ownership structure | 3 - Moderately important | 2 - Slightly important | 4 - Important | 1 - Unimportant | 5 - Very important | |
C1P003: City administration & cross-sectoral attitude/approaches (silos) | 4 - Important | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 5 - Very important | |
C1P003: Lack of internal capacities to support energy transition | 4 - Important | 4 - Important | 5 - Very important | 1 - Unimportant | 4 - Important | |
C1P003: Any other Administrative BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P003: Any other Administrative BARRIER (if any) | ||||||
C1P004: Policy barriers | ||||||
C1P004: Lack of long-term and consistent energy plans and policies | 4 - Important | 5 - Very important | 5 - Very important | 1 - Unimportant | 1 - Unimportant | |
C1P004: Lacking or fragmented local political commitment and support on the long term | 4 - Important | 4 - Important | 5 - Very important | 1 - Unimportant | 2 - Slightly important | |
C1P004: Lack of Cooperation & support between national-regional-local entities | 3 - Moderately important | 4 - Important | 4 - Important | 1 - Unimportant | 3 - Moderately important | |
C1P004: Any other Political BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P004: Any other Political BARRIER (if any) | ||||||
C1P005: Legal and Regulatory barriers | ||||||
C1P005: Inadequate regulations for new technologies | 3 - Moderately important | 5 - Very important | 4 - Important | 1 - Unimportant | 4 - Important | |
C1P005: Regulatory instability | 3 - Moderately important | 4 - Important | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important | |
C1P005: Non-effective regulations | 3 - Moderately important | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | 4 - Important | |
C1P005: Unfavorable local regulations for innovative technologies | 3 - Moderately important | 4 - Important | 4 - Important | 1 - Unimportant | 2 - Slightly important | |
C1P005: Building code and land-use planning hindering innovative technologies | 4 - Important | 4 - Important | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | |
C1P005: Insufficient or insecure financial incentives | 5 - Very important | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 4 - Important | |
C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation | 2 - Slightly important | 5 - Very important | 2 - Slightly important | 1 - Unimportant | 4 - Important | |
C1P005: Shortage of proven and tested solutions and examples | 2 - Slightly important | 4 - Important | 4 - Important | 1 - Unimportant | 2 - Slightly important | |
C1P005: Any other Legal and Regulatory BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P005: Any other Legal and Regulatory BARRIER (if any) | ||||||
C1P006: Environmental barriers | ||||||
C1P006: Environmental barriers | 2 - Slightly important | Urban area very high buildings (and apartment) density and thus, less available space for renewable sources. | ||||
C1P007: Technical barriers | ||||||
C1P007: Lack of skilled and trained personnel | 3 - Moderately important | 4 - Important | 4 - Important | 2 - Slightly important | 4 - Important | |
C1P007: Deficient planning | 3 - Moderately important | 4 - Important | 4 - Important | 1 - Unimportant | 1 - Unimportant | |
C1P007: Retrofitting work in dwellings in occupied state | 1 - Unimportant | 3 - Moderately important | 4 - Important | 1 - Unimportant | 5 - Very important | |
C1P007: Lack of well-defined process | 3 - Moderately important | 4 - Important | 2 - Slightly important | 1 - Unimportant | 5 - Very important | |
C1P007: Inaccuracy in energy modelling and simulation | 3 - Moderately important | 4 - Important | 2 - Slightly important | 1 - Unimportant | 4 - Important | |
C1P007: Lack/cost of computational scalability | 3 - Moderately important | 4 - Important | 3 - Moderately important | 1 - Unimportant | 4 - Important | |
C1P007: Grid congestion, grid instability | 3 - Moderately important | 5 - Very important | 5 - Very important | 1 - Unimportant | 4 - Important | |
C1P007: Negative effects of project intervention on the natural environment | 3 - Moderately important | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | 2 - Slightly important | |
C1P007: Energy retrofitting work in dense and/or historical urban environment | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | |
C1P007: Difficult definition of system boundaries | 2 - Slightly important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | |
C1P007: Any other Thecnical BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P007: Any other Thecnical BARRIER (if any) | ||||||
C1P008: Social and Cultural barriers | ||||||
C1P008: Inertia | 3 - Moderately important | 4 - Important | 2 - Slightly important | 1 - Unimportant | 2 - Slightly important | |
C1P008: Lack of values and interest in energy optimization measurements | 3 - Moderately important | 5 - Very important | 5 - Very important | 1 - Unimportant | 3 - Moderately important | |
C1P008: Low acceptance of new projects and technologies | 3 - Moderately important | 5 - Very important | 5 - Very important | 1 - Unimportant | 3 - Moderately important | |
C1P008: Difficulty of finding and engaging relevant actors | 4 - Important | 4 - Important | 4 - Important | 1 - Unimportant | 4 - Important | |
C1P008: Lack of trust beyond social network | 3 - Moderately important | 5 - Very important | 5 - Very important | 1 - Unimportant | 5 - Very important | |
C1P008: Rebound effect | 3 - Moderately important | 3 - Moderately important | 4 - Important | 1 - Unimportant | 4 - Important | |
C1P008: Hostile or passive attitude towards environmentalism | 2 - Slightly important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 2 - Slightly important | |
C1P008: Exclusion of socially disadvantaged groups | 4 - Important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | |
C1P008: Non-energy issues are more important and urgent for actors | 2 - Slightly important | 4 - Important | 3 - Moderately important | 1 - Unimportant | 4 - Important | |
C1P008: Hostile or passive attitude towards energy collaboration | 2 - Slightly important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | |
C1P008: Any other Social BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P008: Any other Social BARRIER (if any) | ||||||
C1P009: Information and Awareness barriers | ||||||
C1P009: Insufficient information on the part of potential users and consumers | 4 - Important | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 4 - Important | |
C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts | 4 - Important | 4 - Important | 3 - Moderately important | 1 - Unimportant | 4 - Important | |
C1P009: Lack of awareness among authorities | 3 - Moderately important | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 3 - Moderately important | |
C1P009: Information asymmetry causing power asymmetry of established actors | 3 - Moderately important | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 3 - Moderately important | |
C1P009: High costs of design, material, construction, and installation | 4 - Important | 5 - Very important | 5 - Very important | 5 - Very important | 4 - Important | |
C1P009: Any other Information and Awareness BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P009: Any other Information and Awareness BARRIER (if any) | ||||||
C1P010: Financial barriers | ||||||
C1P010: Hidden costs | 3 - Moderately important | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 4 - Important | |
C1P010: Insufficient external financial support and funding for project activities | 4 - Important | 4 - Important | 5 - Very important | 1 - Unimportant | 4 - Important | |
C1P010: Economic crisis | 4 - Important | 3 - Moderately important | 5 - Very important | 4 - Important | 4 - Important | |
C1P010: Risk and uncertainty | 3 - Moderately important | 4 - Important | 5 - Very important | 1 - Unimportant | 5 - Very important | |
C1P010: Lack of consolidated and tested business models | 3 - Moderately important | 5 - Very important | 5 - Very important | 1 - Unimportant | 5 - Very important | |
C1P010: Limited access to capital and cost disincentives | 3 - Moderately important | 5 - Very important | 5 - Very important | 1 - Unimportant | 3 - Moderately important | |
C1P010: Any other Financial BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P010: Any other Financial BARRIER (if any) | ||||||
C1P011: Market barriers | ||||||
C1P011: Split incentives | 3 - Moderately important | 4 - Important | 4 - Important | 1 - Unimportant | 5 - Very important | |
C1P011: Energy price distortion | 3 - Moderately important | 5 - Very important | 4 - Important | 1 - Unimportant | 5 - Very important | |
C1P011: Energy market concentration, gatekeeper actors (DSOs) | 3 - Moderately important | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 4 - Important | |
C1P011: Any other Market BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P011: Any other Market BARRIER (if any) | ||||||
C1P012: Stakeholders involved | ||||||
C1P012: Government/Public Authorities |
|
|
|
| ||
C1P012: Research & Innovation |
|
|
|
| ||
C1P012: Financial/Funding |
|
|
|
| ||
C1P012: Analyst, ICT and Big Data |
|
|
|
| ||
C1P012: Business process management |
|
|
| |||
C1P012: Urban Services providers |
|
|
|
| ||
C1P012: Real Estate developers |
|
|
|
| ||
C1P012: Design/Construction companies |
|
|
|
| ||
C1P012: End‐users/Occupants/Energy Citizens |
|
|
|
| ||
C1P012: Social/Civil Society/NGOs |
|
|
|
| ||
C1P012: Industry/SME/eCommerce |
|
|
|
| ||
C1P012: Other | ||||||
C1P012: Other (if any) | ||||||
Summary |
Authors (framework concept)
Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)
Contributors (to the content)
Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)
Implemented by
Boutik.pt: Filipe Martins, Jamal Khan
Marek Suchánek (Czech Technical University in Prague)