Filters:
NameProjectTypeCompare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Compare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Uncompare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Compare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Uncompare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Uncompare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr, Geothermal District Heating Project PED Relevant Case Study Compare
Drammen, Jacobs Borchs Gate PED Relevant Case Study Compare
Freiburg im Breisgau, Dietenbach PED Relevant Case Study Compare
Lecce, SmartEnCity SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
Trento, STARDUST STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Malmö, Klimatkontrakt Hyllie PED Relevant Case Study Compare
Kaiserslautern, EnStadt:Pfaff PED Relevant Case Study / PED Lab Uncompare
Helsinki, mySMARTlife PED Relevant Case Study Compare
Firenze, Novoli-Cascine district on “le PIagge” buildings PED Relevant Case Study Compare
Bolzano, Sinfonia PED Relevant Case Study Compare
Zürich, Hunziker Areal PED Relevant Case Study Compare
Hammarby Sjöstad, Hammarby Sjöstad 2.0 PED Relevant Case Study Compare
Milano, Sharing Cities PED Relevant Case Study Compare
Mieres, District Heating Pozo Barredo PED Relevant Case Study Compare
Lund, Cityfied (demo Linero) PED Relevant Case Study Compare
Espoo, Smart Otaniemi PED Relevant Case Study / PED Lab Compare
Vienna, Zukunftsquartier PED Case Study Compare
Trento, Santa Chiara Open Lab PED Case Study Compare
Paterna, Barrio La Pinada PED Case Study / PED Lab Compare
Bergen, Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru, +CityxChange PED Case Study Compare
Trondheim, NTNU Campus within the Knowledge Axis ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Oslo, Furuset project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Măgurele, Laser Valley – Land of Lights PED Case Study Compare
Elverum, Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bodø, Airport, NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bærum, Fornebu ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Carquefou, Fleuraye west PED Case Study Compare
Åland, Smart Energy PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Uncompare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Uncompare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleEspoo, Kera
Kaiserslautern, EnStadt:Pfaff
Barcelona, SEILAB & Energy SmartLab
Lund, Brunnshög district
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona
Savona, The University of Genova, Savona Campus
Tartu, Annelinn
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabEspoo, KeraKaiserslautern, EnStadt:PfaffBarcelona, SEILAB & Energy SmartLabLund, Brunnshög districtCerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de BarcelonaSavona, The University of Genova, Savona CampusTartu, Annelinn
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studyyesnonoyesnonono
PED relevant case studyyesyesnonononoyes
PED Lab.noyesyesnoyesyesno
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesnoyesyesyesyes
Annual energy surplusnononoyesnonono
Energy communitynonoyesyesnoyesyes
Circularityyesnonoyesnonono
Air quality and urban comfortnononoyesnonono
Electrificationnonoyesyesnonoyes
Net-zero energy costnonononononono
Net-zero emissionnonoyesyesnonono
Self-sufficiency (energy autonomous)nonoyesnononono
Maximise self-sufficiencynonononononono
Othernonoyesyesyesyesno
Other (A1P004)Green ITHolistic approach on city planning; Minimise car traffic - walkability; Local service; Climate neutral buildings 2030;: PV generation/home consumption behaviour emulation at LABThe case study can be representative as a small-scale district with multi-vector energy systems
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhaseIn operationIn operationIn operationPlanning PhaseIn operationPlanning Phase
A1P006: Start Date
A1P006: Start date01/1510/1701/2011201509/2502/1412/23
A1P007: End Date
A1P007: End date12/3502/2013204012/2611/26
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • General statistical datasets
A1P009: OtherGIS open dataset is under construction
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
        A1P011: Geographic coordinates
        X Coordinate (longitude):24.753777787.7516842.113.2324694007695992.1121455244360968.45236071159282626.7481
        Y Coordinate (latitude):60.2162222249.43606241.355.7198979220719341.5003086008059244.2990045129586158.3708
        A1P012: Country
        A1P012: CountryFinlandGermanySpainSwedenSpainItalyEstonia
        A1P013: City
        A1P013: CityEspooKaiserslauternBarcelona and TarragonaLundCerdanyola del VallesSavonaTartu
        A1P014: Climate Zone (Köppen Geiger classification)
        A1P014: Climate Zone (Köppen Geiger classification).DfbCfbCsaDfbCsaCsaDfb
        A1P015: District boundary
        A1P015: District boundaryGeographicVirtualGeographicFunctionalGeographicGeographic
        Other
        A1P016: Ownership of the case study/PED Lab
        A1P016: Ownership of the case study/PED Lab:MixedPublicPublicPublicPublicMixedPublic
        A1P017: Ownership of the land / physical infrastructure
        A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersSingle OwnerMultiple OwnersSingle OwnerSingle OwnerMultiple Owners
        A1P018: Number of buildings in PED
        A1P018: Number of buildings in PED0200
        A1P019: Conditioned space
        A1P019: Conditioned space [m²]1500000
        A1P020: Total ground area
        A1P020: Total ground area [m²]5800001500000600005400000
        A1P021: Floor area ratio: Conditioned space / total ground area
        A1P021: Floor area ratio: Conditioned space / total ground area0001000
        A1P022: Financial schemes
        A1P022a: Financing - PRIVATE - Real estatenononoyesnonono
        A1P022a: Add the value in EUR if available [EUR]99999999
        A1P022b: Financing - PRIVATE - ESCO schemenonononononono
        A1P022b: Add the value in EUR if available [EUR]
        A1P022c: Financing - PRIVATE - Othernonononononono
        A1P022c: Add the value in EUR if available [EUR]
        A1P022d: Financing - PUBLIC - EU structural fundingnononoyesnonono
        A1P022d: Add the value in EUR if available [EUR]1000000
        A1P022e: Financing - PUBLIC - National fundingnononoyesnoyesyes
        A1P022e: Add the value in EUR if available [EUR]30000000
        A1P022f: Financing - PUBLIC - Regional fundingnoyesnoyesnonono
        A1P022f: Add the value in EUR if available [EUR]30000000
        A1P022g: Financing - PUBLIC - Municipal fundingnoyesnoyesnonono
        A1P022g: Add the value in EUR if available [EUR]180000000
        A1P022h: Financing - PUBLIC - Othernonononoyesnono
        A1P022h: Add the value in EUR if available [EUR]
        A1P022i: Financing - RESEARCH FUNDING - EUnononoyesnonono
        A1P022i: Add the value in EUR if available [EUR]2000000
        A1P022j: Financing - RESEARCH FUNDING - Nationalnonononononono
        A1P022j: Add the value in EUR if available [EUR]
        A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononono
        A1P022k: Add the value in EUR if available [EUR]
        A1P022l: Financing - RESEARCH FUNDING - Othernoyesnonononono
        A1P022l: Add the value in EUR if available [EUR]
        A1P022: OtherMultiple different funding schemes depending on the case.
        A1P023: Economic Targets
        A1P023: Economic Targets
        • Job creation,
        • Positive externalities,
        • Boosting local businesses,
        • Boosting local and sustainable production,
        • Boosting consumption of local and sustainable products
        • Job creation,
        • Boosting local and sustainable production
        • Other
        A1P023: OtherCircular economyWorld class sustainable living and research environments
        A1P024: More comments:
        A1P024: More comments:Semi-Virtual Energy Integration Laboratory (SEILAB) The Energy Smart Lab is an infrastructure conceived as a flexible and versatile platform for innovative technological developments for both industry and competitive R+D projects. The areas of expertise of this laboratory pivot around the following technologies: – Power Electronics for the integration and control of the elements within a building or community: Renewable Energy Sources (RES), Energy Storage Systems and Electric Vehicles (EV) – ICT Platform for smart communications and energy management of systems, building, networks and communities. – Energy System Integration technologies for smart and flexible buildings and grids including RES and EV. The laboratory operation is based on the hardware emulation approach, which allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation. The laboratory is pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.
        A1P025: Estimated PED case study / PED LAB costs
        A1P025: Estimated PED case study / PED LAB costs [mil. EUR]5.4
        Contact person for general enquiries
        A1P026: NameJoni MäkinenChristoph GollnerDr. Jaume Salom, Dra. Cristina CorcheroMarkus PaulssonJose Lopez VicarioMichela RobbaDr. Gonçalo Homem De Almeida Rodriguez Correia
        A1P027: OrganizationCity of EspooFFGIRECCity of LundUniversitat Autonoma Barcelona (UAB)University of GenovaDelft University of Technology
        A1P028: AffiliationMunicipality / Public BodiesOtherResearch Center / UniversityMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversityResearch Center / University
        A1P028: Other
        A1P029: Emailjoni.makinen@espoo.fichristoph.gollner@ffg.atJsalom@irec.catmarkus.paulsson@lund.sejose.vicario@uab.catMichela.robba@unige.itg.correia@tudelft.nl
        Contact person for other special topics
        A1P030: NameEva DalmanYassine EnnassiriQiaochu Fan
        A1P031: Emaileva.dalman@lund.seYassine.ennassiri@edu.unige.itq.fan-1@tudelft.nl
        Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYes
        A2P001: Fields of application
        A2P001: Fields of application
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies,
        • Waste management,
        • Construction materials
        • Energy efficiency,
        • Energy production
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies,
        • Water use,
        • Waste management,
        • Construction materials,
        • Other
        • Energy efficiency,
        • Energy flexibility,
        • Digital technologies
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies
        • Energy efficiency,
        • Energy flexibility,
        • E-mobility,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies
        A2P001: OtherWalkability and biking
        A2P002: Tools/strategies/methods applied for each of the above-selected fields
        A2P002: Tools/strategies/methods applied for each of the above-selected fields- Kera development commitment (https://www.espoo.fi/en/kera-development-commitment). - SPARCS Co-creation model for sustainable and smart urban areas (www.co-creatingsparcs.fi/en). - Kera area carbon neutrality roadmap (https://static.espoo.fi/cdn/ff/MHDdcMNJ9aYn7CjpoD4zNpo5M-M9HIDLXlJdUrUmf-8/1642756766/public/2022-01/Kera%20carbon%20neutrality%20map_EN.pdf)Energy SmartLab capacities - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. Energy SmartLab systems - SAFT Li-ion battery: maximum stored energy 20000 Wh, rated power 150 kW, rated discharge current 200 A, rated charge current 34 A, operating voltage 189 V – 227 V – 254 V, capacity 82 Ah. – Ultracapacitors: maximum stored energy 57 Wh, rated power 10 kW, rated current 20 A, peak current (<1s) 200 Apk, operating voltage 250 V – 500 V, capacity 1,65 F. – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah - 5 microgrid emulators (emulated power 5.5 kVA, max generation connected 10kVA, max consumption connected 10 kVA) - 1 grid emulator (Rated power: 200 kVA, Rated current per phase: 350 A, Rated current per neutral conductor: 35)LundaMaTs methodology for traffic and city planning. LundaEko - Lund's programme for ecological sustainability. Municipally owned land is sold to property developers on environmental conditions.
        A2P003: Application of ISO52000
        A2P003: Application of ISO52000NoNo
        A2P004: Appliances included in the calculation of the energy balance
        A2P004: Appliances included in the calculation of the energy balanceNoYesYes
        A2P005: Mobility included in the calculation of the energy balance
        A2P005: Mobility included in the calculation of the energy balanceNoYesYes
        A2P006: Description of how mobility is included (or not included) in the calculation
        A2P006: Description of how mobility is included (or not included) in the calculation– Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 AhToday electrically charged vehicles are included in the energy balance. In the future also other fuels should be included.
        A2P007: Annual energy demand in buildings / Thermal demand
        A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]54.5251.426
        A2P008: Annual energy demand in buildings / Electric Demand
        A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]19.4300.962
        A2P009: Annual energy demand for e-mobility
        A2P009: Annual energy demand for e-mobility [GWh/annum]
        A2P010: Annual energy demand for urban infrastructure
        A2P010: Annual energy demand for urban infrastructure [GWh/annum]
        A2P011: Annual renewable electricity production on-site during target year
        A2P011: PVyesnoyesyesnonono
        A2P011: PV - specify production in GWh/annum [GWh/annum]4
        A2P011: Windnononoyesnonono
        A2P011: Wind - specify production in GWh/annum [GWh/annum]
        A2P011: Hydrononononononono
        A2P011: Hydro - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_elnonononononono
        A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_peat_elnonononononono
        A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
        A2P011: PVT_elnonononononono
        A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
        A2P011: Othernonononononono
        A2P011: Other - specify production in GWh/annum [GWh/annum]
        A2P012: Annual renewable thermal production on-site during target year
        A2P012: Geothermalnonononononono
        A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Solar Thermalnonononononono
        A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_heatnonononononono
        A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: Waste heat+HPyesnonoyesnonono
        A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]200
        A2P012: Biomass_peat_heatnonononononono
        A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: PVT_thnonononononono
        A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_firewood_thnonononononono
        A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Othernonononononono
        A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
        A2P013: Renewable resources on-site - Additional notes
        A2P013: Renewable resources on-site - Additional notesLocal energy utility will implement district level thermal solution. First, energy will be produced from waste heat from a local data center. Further thermal solutions are under discussion and development.
        A2P014: Annual energy use
        A2P014: Annual energy use [GWh/annum]78.8
        A2P015: Annual energy delivered
        A2P015: Annual energy delivered [GWh/annum]15.4
        A2P016: Annual non-renewable electricity production on-site during target year
        A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]00
        A2P017: Annual non-renewable thermal production on-site during target year
        A2P017: Gasnonoyesnononono
        A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Coalnonononononono
        A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Oilnonononononono
        A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Othernonononononono
        A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P018: Annual renewable electricity imports from outside the boundary during target year
        A2P018: PVnononoyesnonono
        A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
        A2P018: Windnononoyesnonono
        A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
        A2P018: Hydronononoyesnonono
        A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_elnononoyesnonono
        A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_peat_elnonononononono
        A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: PVT_elnonononononono
        A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Othernonononononono
        A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
        A2P019: Annual renewable thermal imports from outside the boundary during target year
        A2P019: Geothermalnonononononono
        A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Solar Thermalnonononononono
        A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_heatnonononononono
        A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Waste heat+HPnonononononono
        A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_peat_heatnonononononono
        A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: PVT_thnonononononono
        A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_firewood_thnonononononono
        A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Othernonononononono
        A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
        A2P020: Share of RES on-site / RES outside the boundary
        A2P020: Share of RES on-site / RES outside the boundary0000000
        A2P021: GHG-balance calculated for the PED
        A2P021: GHG-balance calculated for the PED [tCO2/annum]450000
        A2P022: KPIs related to the PED case study / PED Lab
        A2P022: Safety & Security
        A2P022: Health
        A2P022: Education
        A2P022: MobilityMaximum 1/3 transport with carImproved accessibility to V2G-related transport options, focusing on inclusivity and equitable adoption in urban districts
        A2P022: EnergyLocal energy production 150% of energy needYesCost of energy; emissions linked to energy productionTarget zero greenhouse gas emissions through the adoption of EVs with V2G capabilities, aiming to reduce reliance on fossil fuels and enhance local grid stability
        A2P022: Water
        A2P022: Economic developmentDevelopment of viable business models for V2G that allow decentralized energy markets to integrate with the grid, enhancing local economic resilience
        A2P022: Housing and Community50% rental apartments and 50% owner apartments
        A2P022: Waste
        A2P022: Other
        A2P023: Technological Solutions / Innovations - Energy Generation
        A2P023: Photovoltaicsyesyesyesyesyesyesyes
        A2P023: Solar thermal collectorsnononoyesnoyesno
        A2P023: Wind Turbinesnononoyesnonoyes
        A2P023: Geothermal energy systemnononoyesnoyesno
        A2P023: Waste heat recoveryyesyesnoyesnonono
        A2P023: Waste to energynonononononono
        A2P023: Polygenerationnononoyesnoyesno
        A2P023: Co-generationnonononononono
        A2P023: Heat Pumpyesyesnoyesnonono
        A2P023: Hydrogennononoyesnoyesno
        A2P023: Hydropower plantnonononononono
        A2P023: Biomassnonononononono
        A2P023: Biogasnonononononono
        A2P023: Other
        A2P024: Technological Solutions / Innovations - Energy Flexibility
        A2P024: A2P024: Information and Communication Technologies (ICT)yesnoyesyesyesyesno
        A2P024: Energy management systemyesnoyesyesyesyesyes
        A2P024: Demand-side managementyesnonoyesyesnoyes
        A2P024: Smart electricity gridyesnoyesyesnoyesyes
        A2P024: Thermal Storagenononoyesnoyesno
        A2P024: Electric Storagenonoyesyesnoyesyes
        A2P024: District Heating and Coolingyesnonoyesnoyesno
        A2P024: Smart metering and demand-responsive control systemsnononoyesnoyesno
        A2P024: P2P – buildingsnonononononono
        A2P024: Other
        A2P025: Technological Solutions / Innovations - Energy Efficiency
        A2P025: Deep Retrofittingnoyesnonoyesnoyes
        A2P025: Energy efficiency measures in historic buildingsnonononononono
        A2P025: High-performance new buildingsyesnonoyesnoyesno
        A2P025: Smart Public infrastructure (e.g. smart lighting)yesnonoyesnonoyes
        A2P025: Urban data platformsyesnonoyesnonoyes
        A2P025: Mobile applications for citizensnonononononono
        A2P025: Building services (HVAC & Lighting)yesnoyesyesnonono
        A2P025: Smart irrigationnonononononono
        A2P025: Digital tracking for waste disposalnononoyesnonono
        A2P025: Smart surveillancenonononononono
        A2P025: Other
        A2P026: Technological Solutions / Innovations - Mobility
        A2P026: Efficiency of vehicles (public and/or private)yesnoyesnononoyes
        A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)yesnonoyesnonoyes
        A2P026: e-Mobilityyesnonoyesnoyesyes
        A2P026: Soft mobility infrastructures and last mile solutionsyesnonoyesnonono
        A2P026: Car-free areanononoyesnonono
        A2P026: Other
        A2P027: Mobility strategies - Additional notes
        A2P027: Mobility strategies - Additional notesWalkability
        A2P028: Energy efficiency certificates
        A2P028: Energy efficiency certificatesNoYes
        A2P028: If yes, please specify and/or enter notesMiljöbyggnad silver/guld
        A2P029: Any other building / district certificates
        A2P029: Any other building / district certificatesNoNo
        A2P029: If yes, please specify and/or enter notes
        A3P001: Relevant city /national strategy
        A3P001: Relevant city /national strategy
        • Energy master planning (SECAP, etc.),
        • Climate change adaption plan/strategy (e.g. Climate City contract)
        • Energy master planning (SECAP, etc.)
        • Smart cities strategies,
        • New development strategies
        • Climate change adaption plan/strategy (e.g. Climate City contract)
        A3P002: Quantitative targets included in the city / national strategy
        A3P002: Quantitative targets included in the city / national strategyCity strategy: Net climate neutrality 2030
        A3P003: Strategies towards decarbonization of the gas grid
        A3P003: Strategies towards decarbonization of the gas grid
        A3P003: OtherNo gas grid in Brunnshög
        A3P004: Identification of needs and priorities
        A3P004: Identification of needs and priorities-Allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation -Pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.Local waste heat is utlized to a very large extent. More local electricity production is needed. Need to minimise the use of private cars.
        A3P005: Sustainable behaviour
        A3P005: Sustainable behaviour-Improving the development of Net Zero Energy Buildings and Flexible Energy buildings.Need to minimise the use of private cars. Need to provide efficient methods for sorce separated waste collection.
        A3P006: Economic strategies
        A3P006: Economic strategies
        • PPP models,
        • Circular economy models
        • Demand management Living Lab
        • PPP models,
        • Other
        • Innovative business models
        • Demand management Living Lab
        • Innovative business models,
        • Local trading,
        • Existing incentives
        A3P006: OtherAttractivenes
        A3P007: Social models
        A3P007: Social models
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Quality of Life
        • Digital Inclusion,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Quality of Life,
        • Strategies towards social mix
        • Digital Inclusion,
        • Citizen/owner involvement in planning and maintenance,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Co-creation / Citizen engagement strategies
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Social incentives,
        • Prevention of energy poverty,
        • Digital Inclusion
        A3P007: Other
        A3P008: Integrated urban strategies
        A3P008: Integrated urban strategies
        • Strategic urban planning,
        • Digital twinning and visual 3D models,
        • District Energy plans
        • Strategic urban planning,
        • Digital twinning and visual 3D models,
        • City Vision 2050,
        • SECAP Updates
        • District Energy plans
        • District Energy plans
        • Strategic urban planning,
        • District Energy plans
        A3P008: Other
        A3P009: Environmental strategies
        A3P009: Environmental strategies
        • Net zero carbon footprint,
        • Life Cycle approach,
        • Greening strategies,
        • Nature Based Solutions (NBS)
        • Energy Neutral,
        • Carbon-free
        • Energy Neutral,
        • Low Emission Zone,
        • Pollutants Reduction,
        • Greening strategies
        • Net zero carbon footprint,
        • Greening strategies,
        • Sustainable Urban drainage systems (SUDS),
        • Nature Based Solutions (NBS)
        • Low Emission Zone
        • Energy Neutral,
        • Low Emission Zone,
        • Nature Based Solutions (NBS)
        A3P009: Other
        A3P010: Legal / Regulatory aspects
        A3P010: Legal / Regulatory aspects- European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.The municipality cannot demand a specific energy solution to private property owners. It has to be voluntary and market based solutions.
        B1P001: PED/PED relevant concept definition
        B1P001: PED/PED relevant concept definitionImplementation of district level heating system to make heating energy positive and expanding local renewable electricity production.Vision: The city as a power plant. The ultimate goal is that more energy is produced within the distric boundaries than is being used (heating, electricity & mobility). Energy efficient buildings, efficient mobility, reuse of residual heat and solar electricity are the main methods.
        B1P002: Motivation behind PED/PED relevant project development
        B1P002: Motivation behind PED/PED relevant project developmentThe aim is to build a sustainable city with minimal climate impact and maximum quality of life. PED is an important step to acheive the aims of a very ambitious city development.
        B1P003: Environment of the case study area
        B2P003: Environment of the case study areaUrban areaUrban area
        B1P004: Type of district
        B2P004: Type of district
        • New construction
        • New construction,
        • Renovation
        • New construction
        B1P005: Case Study Context
        B1P005: Case Study Context
        • Re-use / Transformation Area
        • Re-use / Transformation Area,
        • New Development,
        • Retrofitting Area
        • New Development
        B1P006: Year of construction
        B1P006: Year of construction
        B1P007: District population before intervention - Residential
        B1P007: District population before intervention - Residential0
        B1P008: District population after intervention - Residential
        B1P008: District population after intervention - Residential1400018000
        B1P009: District population before intervention - Non-residential
        B1P009: District population before intervention - Non-residential2000
        B1P010: District population after intervention - Non-residential
        B1P010: District population after intervention - Non-residential1000022000
        B1P011: Population density before intervention
        B1P011: Population density before intervention00000
        B1P012: Population density after intervention
        B1P012: Population density after intervention0.041379310344828000.0266666666666670
        B1P013: Building and Land Use before intervention
        B1P013: Residentialyesnononononono
        B1P013 - Residential: Specify the sqm [m²]
        B1P013: Officeyesnonoyesnonono
        B1P013 - Office: Specify the sqm [m²]60000
        B1P013: Industry and Utilityyesyesnonononono
        B1P013 - Industry and Utility: Specify the sqm [m²]
        B1P013: Commercialnonononononono
        B1P013 - Commercial: Specify the sqm [m²]
        B1P013: Institutionalnonononononono
        B1P013 - Institutional: Specify the sqm [m²]
        B1P013: Natural areasnononoyesnonono
        B1P013 - Natural areas: Specify the sqm [m²]2000000
        B1P013: Recreationalnonononononono
        B1P013 - Recreational: Specify the sqm [m²]
        B1P013: Dismissed areasyesnononononono
        B1P013 - Dismissed areas: Specify the sqm [m²]
        B1P013: Othernononoyesnonono
        B1P013 - Other: Specify the sqm [m²]Outdoor parking: 100000
        B1P014: Building and Land Use after intervention
        B1P014: Residentialyesyesnoyesnonono
        B1P014 - Residential: Specify the sqm [m²]600000
        B1P014: Officeyesyesnoyesnonono
        B1P014 - Office: Specify the sqm [m²]650000
        B1P014: Industry and Utilitynoyesnonononono
        B1P014 - Industry and Utility: Specify the sqm [m²]
        B1P014: Commercialyesnononononono
        B1P014 - Commercial: Specify the sqm [m²]
        B1P014: Institutionalnononoyesnonono
        B1P014 - Institutional: Specify the sqm [m²]50000
        B1P014: Natural areasnonononononono
        B1P014 - Natural areas: Specify the sqm [m²]
        B1P014: Recreationalyesyesnoyesnonono
        B1P014 - Recreational: Specify the sqm [m²]400000
        B1P014: Dismissed areasnonononononono
        B1P014 - Dismissed areas: Specify the sqm [m²]
        B1P014: Othernoyesnonononono
        B1P014 - Other: Specify the sqm [m²]
        B2P001: PED Lab concept definition
        B2P001: PED Lab concept definitionaddressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation
        B2P002: Installation life time
        B2P002: Installation life time
        B2P003: Scale of action
        B2P003: ScaleVirtual
        B2P004: Operator of the installation
        B2P004: Operator of the installationIREC
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P006: Circular Economy Approach
        B2P006: Do you apply any strategy to reuse and recycling the materials?No
        B2P006: Other
        B2P007: Motivation for developing the PED Lab
        B2P007: Motivation for developing the PED Lab
        • Strategic,
        • Private
        B2P007: Other
        B2P008: Lead partner that manages the PED Lab
        B2P008: Lead partner that manages the PED LabResearch center/University
        B2P008: Other
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Other
        B2P010: Synergies between the fields of activities
        B2P010: Synergies between the fields of activities
        B2P011: Available facilities to test urban configurations in PED Lab
        B2P011: Available facilities to test urban configurations in PED Lab
        • Demand-side management,
        • Energy storage,
        • Energy networks,
        • Efficiency measures,
        • Information and Communication Technologies (ICT)
        B2P011: Other
        B2P012: Incubation capacities of PED Lab
        B2P012: Incubation capacities of PED Lab
        • Monitoring and evaluation infrastructure,
        • Tools for prototyping and modelling,
        • Tools, spaces, events for testing and validation
        B2P013: Availability of the facilities for external people
        B2P013: Availability of the facilities for external people
        B2P014: Monitoring measures
        B2P014: Monitoring measures
        • Equipment
        B2P015: Key Performance indicators
        B2P015: Key Performance indicators
        • Energy,
        • Environmental
        B2P016: Execution of operations
        B2P016: Execution of operations
        B2P017: Capacities
        B2P017: Capacities- Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network.
        B2P018: Relations with stakeholders
        B2P018: Relations with stakeholdersStakeholder participation supported by socio-economic research
        B2P019: Available tools
        B2P019: Available tools
        • Energy modelling
        B2P019: Available tools
        B2P020: External accessibility
        B2P020: External accessibility
        C1P001: Unlocking Factors
        C1P001: Recent technological improvements for on-site RES production5 - Very important1 - Unimportant1 - Unimportant5 - Very important4 - Important4 - Important5 - Very important
        C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important4 - Important
        C1P001: Energy Communities, P2P, Prosumers concepts3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important4 - Important4 - Important5 - Very important
        C1P001: Storage systems and E-mobility market penetration4 - Important1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important4 - Important5 - Very important
        C1P001: Decreasing costs of innovative materials3 - Moderately important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P001: Financial mechanisms to reduce costs and maximize benefits3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important4 - Important5 - Very important
        C1P001: The ability to predict Multiple Benefits3 - Moderately important1 - Unimportant4 - Important2 - Slightly important2 - Slightly important4 - Important4 - Important
        C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important4 - Important4 - Important
        C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important3 - Moderately important5 - Very important
        C1P001: Social acceptance (top-down)3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important3 - Moderately important4 - Important
        C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant5 - Very important
        C1P001: Presence of integrated urban strategies and plans4 - Important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant4 - Important
        C1P001: Multidisciplinary approaches available for systemic integration5 - Very important1 - Unimportant4 - Important5 - Very important4 - Important5 - Very important4 - Important
        C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important5 - Very important3 - Moderately important5 - Very important
        C1P001: Availability of RES on site (Local RES)4 - Important1 - Unimportant4 - Important5 - Very important5 - Very important3 - Moderately important5 - Very important
        C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders5 - Very important1 - Unimportant5 - Very important2 - Slightly important4 - Important4 - Important5 - Very important
        C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P001: Any other UNLOCKING FACTORS (if any)
        C1P002: Driving Factors
        C1P002: Climate Change adaptation need5 - Very important1 - Unimportant4 - Important5 - Very important4 - Important4 - Important4 - Important
        C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important1 - Unimportant4 - Important5 - Very important4 - Important4 - Important5 - Very important
        C1P002: Rapid urbanization trend and need of urban expansions4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P002: Urban re-development of existing built environment5 - Very important1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant4 - Important
        C1P002: Economic growth need4 - Important1 - Unimportant4 - Important4 - Important2 - Slightly important1 - Unimportant3 - Moderately important
        C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)4 - Important1 - Unimportant4 - Important5 - Very important5 - Very important3 - Moderately important5 - Very important
        C1P002: Territorial and market attractiveness3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important4 - Important
        C1P002: Energy autonomy/independence2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant5 - Very important4 - Important5 - Very important
        C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P002: Any other DRIVING FACTOR (if any)
        C1P003: Administrative barriers
        C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important1 - Unimportant4 - Important5 - Very important2 - Slightly important2 - Slightly important4 - Important
        C1P003: Lack of good cooperation and acceptance among partners5 - Very important1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important2 - Slightly important4 - Important
        C1P003: Lack of public participation4 - Important1 - Unimportant2 - Slightly important2 - Slightly important4 - Important2 - Slightly important5 - Very important
        C1P003: Lack of institutions/mechanisms to disseminate information4 - Important1 - Unimportant3 - Moderately important3 - Moderately important4 - Important2 - Slightly important3 - Moderately important
        C1P003:Long and complex procedures for authorization of project activities3 - Moderately important1 - Unimportant5 - Very important4 - Important1 - Unimportant2 - Slightly important3 - Moderately important
        C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant4 - Important2 - Slightly important3 - Moderately important
        C1P003: Complicated and non-comprehensive public procurement3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important4 - Important2 - Slightly important3 - Moderately important
        C1P003: Fragmented and or complex ownership structure3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important2 - Slightly important2 - Slightly important2 - Slightly important
        C1P003: City administration & cross-sectoral attitude/approaches (silos)4 - Important1 - Unimportant4 - Important5 - Very important2 - Slightly important2 - Slightly important3 - Moderately important
        C1P003: Lack of internal capacities to support energy transition4 - Important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important2 - Slightly important4 - Important
        C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P003: Any other Administrative BARRIER (if any)
        C1P004: Policy barriers
        C1P004: Lack of long-term and consistent energy plans and policies4 - Important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important5 - Very important
        C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important4 - Important
        C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important3 - Moderately important3 - Moderately important4 - Important
        C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P004: Any other Political BARRIER (if any)
        C1P005: Legal and Regulatory barriers
        C1P005: Inadequate regulations for new technologies3 - Moderately important1 - Unimportant5 - Very important5 - Very important2 - Slightly important2 - Slightly important5 - Very important
        C1P005: Regulatory instability3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important2 - Slightly important2 - Slightly important4 - Important
        C1P005: Non-effective regulations3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important2 - Slightly important2 - Slightly important3 - Moderately important
        C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important1 - Unimportant4 - Important3 - Moderately important2 - Slightly important2 - Slightly important4 - Important
        C1P005: Building code and land-use planning hindering innovative technologies4 - Important1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important2 - Slightly important4 - Important
        C1P005: Insufficient or insecure financial incentives5 - Very important1 - Unimportant5 - Very important5 - Very important2 - Slightly important2 - Slightly important5 - Very important
        C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important5 - Very important
        C1P005: Shortage of proven and tested solutions and examples2 - Slightly important1 - Unimportant4 - Important4 - Important2 - Slightly important2 - Slightly important4 - Important
        C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER (if any)
        C1P006: Environmental barriers
        C1P006: Environmental barriers?
        C1P007: Technical barriers
        C1P007: Lack of skilled and trained personnel3 - Moderately important1 - Unimportant5 - Very important5 - Very important2 - Slightly important1 - Unimportant4 - Important
        C1P007: Deficient planning3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important2 - Slightly important1 - Unimportant4 - Important
        C1P007: Retrofitting work in dwellings in occupied state1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important
        C1P007: Lack of well-defined process3 - Moderately important1 - Unimportant4 - Important4 - Important2 - Slightly important1 - Unimportant4 - Important
        C1P007: Inaccuracy in energy modelling and simulation3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important2 - Slightly important1 - Unimportant4 - Important
        C1P007: Lack/cost of computational scalability3 - Moderately important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important
        C1P007: Grid congestion, grid instability3 - Moderately important1 - Unimportant5 - Very important4 - Important2 - Slightly important1 - Unimportant5 - Very important
        C1P007: Negative effects of project intervention on the natural environment3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant3 - Moderately important
        C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important
        C1P007: Difficult definition of system boundaries2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant3 - Moderately important
        C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Any other Thecnical BARRIER (if any)
        C1P008: Social and Cultural barriers
        C1P008: Inertia3 - Moderately important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important4 - Important4 - Important
        C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important1 - Unimportant5 - Very important4 - Important5 - Very important4 - Important5 - Very important
        C1P008: Low acceptance of new projects and technologies3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important3 - Moderately important3 - Moderately important5 - Very important
        C1P008: Difficulty of finding and engaging relevant actors4 - Important1 - Unimportant5 - Very important5 - Very important3 - Moderately important3 - Moderately important4 - Important
        C1P008: Lack of trust beyond social network3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important2 - Slightly important5 - Very important
        C1P008: Rebound effect3 - Moderately important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important
        C1P008: Hostile or passive attitude towards environmentalism2 - Slightly important1 - Unimportant5 - Very important4 - Important4 - Important2 - Slightly important3 - Moderately important
        C1P008: Exclusion of socially disadvantaged groups4 - Important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important3 - Moderately important3 - Moderately important
        C1P008: Non-energy issues are more important and urgent for actors2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important2 - Slightly important4 - Important
        C1P008: Hostile or passive attitude towards energy collaboration2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important2 - Slightly important3 - Moderately important
        C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Any other Social BARRIER (if any)
        C1P009: Information and Awareness barriers
        C1P009: Insufficient information on the part of potential users and consumers4 - Important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important2 - Slightly important5 - Very important
        C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts4 - Important1 - Unimportant5 - Very important4 - Important3 - Moderately important3 - Moderately important4 - Important
        C1P009: Lack of awareness among authorities3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important4 - Important3 - Moderately important3 - Moderately important
        C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important2 - Slightly important3 - Moderately important
        C1P009: High costs of design, material, construction, and installation4 - Important1 - Unimportant5 - Very important5 - Very important2 - Slightly important3 - Moderately important5 - Very important
        C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P009: Any other Information and Awareness BARRIER (if any)
        C1P010: Financial barriers
        C1P010: Hidden costs3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important
        C1P010: Insufficient external financial support and funding for project activities4 - Important1 - Unimportant5 - Very important2 - Slightly important2 - Slightly important3 - Moderately important4 - Important
        C1P010: Economic crisis4 - Important1 - Unimportant4 - Important5 - Very important3 - Moderately important3 - Moderately important3 - Moderately important
        C1P010: Risk and uncertainty3 - Moderately important1 - Unimportant5 - Very important5 - Very important4 - Important3 - Moderately important4 - Important
        C1P010: Lack of consolidated and tested business models3 - Moderately important1 - Unimportant5 - Very important4 - Important4 - Important3 - Moderately important5 - Very important
        C1P010: Limited access to capital and cost disincentives3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important5 - Very important
        C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P010: Any other Financial BARRIER (if any)
        C1P011: Market barriers
        C1P011: Split incentives3 - Moderately important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important3 - Moderately important4 - Important
        C1P011: Energy price distortion3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important3 - Moderately important5 - Very important
        C1P011: Energy market concentration, gatekeeper actors (DSOs)3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important3 - Moderately important3 - Moderately important5 - Very important
        C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P011: Any other Market BARRIER (if any)
        C1P012: Stakeholders involved
        C1P012: Government/Public Authorities
        • Planning/leading,
        • Design/demand aggregation
        • Planning/leading,
        • Monitoring/operation/management
        C1P012: Research & Innovation
        • Planning/leading,
        • Design/demand aggregation
        • Design/demand aggregation
        C1P012: Financial/Funding
        • Design/demand aggregation,
        • Construction/implementation
        • Construction/implementation
        C1P012: Analyst, ICT and Big Data
        • Planning/leading,
        • Monitoring/operation/management
        • Monitoring/operation/management
        C1P012: Business process management
        • Design/demand aggregation,
        • Construction/implementation
        • Design/demand aggregation,
        • Construction/implementation
        C1P012: Urban Services providers
        • Planning/leading,
        • Construction/implementation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Real Estate developers
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Design/Construction companies
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        • Design/demand aggregation,
        • Construction/implementation
        C1P012: End‐users/Occupants/Energy Citizens
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Monitoring/operation/management
        C1P012: Social/Civil Society/NGOs
        • Planning/leading
        • None
        C1P012: Industry/SME/eCommerce
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Other
        C1P012: Other (if any)
        Summary

        Authors (framework concept)

        Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

        Contributors (to the content)

        Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

        Implemented by

        Boutik.pt: Filipe Martins, Jamal Khan
        Marek Suchánek (Czech Technical University in Prague)