Filters:
NameProjectTypeCompare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Compare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Compare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Compare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr, Geothermal District Heating Project PED Relevant Case Study Compare
Drammen, Jacobs Borchs Gate PED Relevant Case Study Compare
Freiburg im Breisgau, Dietenbach PED Relevant Case Study Compare
Lecce, SmartEnCity SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
Trento, STARDUST STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Malmö, Klimatkontrakt Hyllie PED Relevant Case Study Compare
Kaiserslautern, EnStadt:Pfaff PED Relevant Case Study / PED Lab Compare
Helsinki, mySMARTlife PED Relevant Case Study Compare
Firenze, Novoli-Cascine district on “le PIagge” buildings PED Relevant Case Study Compare
Bolzano, Sinfonia PED Relevant Case Study Compare
Zürich, Hunziker Areal PED Relevant Case Study Compare
Hammarby Sjöstad, Hammarby Sjöstad 2.0 PED Relevant Case Study Compare
Milano, Sharing Cities PED Relevant Case Study Compare
Mieres, District Heating Pozo Barredo PED Relevant Case Study Compare
Lund, Cityfied (demo Linero) PED Relevant Case Study Compare
Espoo, Smart Otaniemi PED Relevant Case Study / PED Lab Compare
Vienna, Zukunftsquartier PED Case Study Compare
Trento, Santa Chiara Open Lab PED Case Study Compare
Paterna, Barrio La Pinada PED Case Study / PED Lab Compare
Bergen, Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru, +CityxChange PED Case Study Uncompare
Trondheim, NTNU Campus within the Knowledge Axis ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Oslo, Furuset project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Măgurele, Laser Valley – Land of Lights PED Case Study Compare
Elverum, Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bodø, Airport, NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bærum, Fornebu ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Carquefou, Fleuraye west PED Case Study Compare
Åland, Smart Energy PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Uncompare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Uncompare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Uncompare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Uncompare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Uncompare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleEspoo, Kera
Võru, +CityxChange
Tartu, City centre area
Innsbruck, Campagne-Areal
Oslo, Verksbyen
Schönbühel-Aggsbach, Schönbühel an der Donau
Groningen, PED South
Uden, Loopkantstraat
City of Espoo, Espoonlahti district, Lippulaiva block
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabEspoo, KeraVõru, +CityxChangeTartu, City centre areaInnsbruck, Campagne-ArealOslo, VerksbyenSchönbühel-Aggsbach, Schönbühel an der DonauGroningen, PED SouthUden, LoopkantstraatCity of Espoo, Espoonlahti district, Lippulaiva block
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studyyesyesnonoyesnononoyes
PED relevant case studyyesnoyesyesnoyesnoyesno
PED Lab.nonoyesnononoyesnono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesyesyesyesyesyesno
Annual energy surplusnonononoyesnoyesyesno
Energy communitynononononoyesyesnono
Circularityyesnoyesnononoyesnono
Air quality and urban comfortnonononoyesnononono
Electrificationnonoyesnonononoyesno
Net-zero energy costnononononoyesnonono
Net-zero emissionnoyesyesyesyesnoyesnono
Self-sufficiency (energy autonomous)nonononononononono
Maximise self-sufficiencynonoyesnonoyesnonoyes
Othernoyesnonononononono
Other (A1P004)Sustainable Development; Energy neutral; Energy efficient; Carbon-free; Sustainable neighbourhood; Social aspects/affordability
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhaseCompletedImplementation PhaseCompletedImplementation PhaseImplementation PhaseImplementation PhaseIn operationIn operation
A1P006: Start Date
A1P006: Start date01/1511/1802/1604/1607/1812/1806/1706/18
A1P007: End Date
A1P007: End date12/3511/2307/2204/2208/2412/2305/2303/22
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards
  • Monitoring data available within the districts
  • Monitoring data available within the districts
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
  • General statistical datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
    • TNO, Hanze, RUG,
    • Ped noord book
    • Inger Andresen, Tonje Healey Trulsrud, Luca Finocchiaro, Alessandro Nocente, Meril Tamm, Joana Ortiz, Jaume Salom, Abel Magyari, Linda Hoes-van Oeffelen, Wouter Borsboom, Wim Kornaat, Niki Gaitani, Design and performance predictions of plus energy neighbourhoods – Case studies of demonstration projects in four different European climates, Energy and Buildings, Volume 274, 2022, 112447, ISSN 0378-7788, https://doi.org/10.1016/j.enbuild.2022.112447. (https://www.sciencedirect.com/science/article/pii/S0378778822006181),
    • Deliverable, Report: Integrated Energy Design for Sustainable Plus Energy Neighbourhoods (syn.ikia),
    • Deliverable, Report: DEMONSTRATION CASE OF SUSTAINABLE PLUS ENERGY NEIGHBOURHOODS IN MARINE CLIMATE (syn.ikia),
    • https://www.synikia.eu/no/bibliotek/
    • M. Hukkalainen, F. Zarrin, K. Klobut, O. Lindholm, M. Ranta, P. Hajduk, T. Vainio-Kaila, E. Wanne, J. Tartia, H. Horn, K. Kontu, J. Juhmen, S. Santala, R. Turtiainen, J. Töyräs, T. Koljonen. (2020). Deliverable D3.1 Detailed plan of the Espoo smart city lighthouse demonstrations. Available online: https://www.sparcs.info/sites/default/files/2020-09/SPARCS_D3.1_Detailed_plan_Espoo.pdf,
    • Hukkalainen, Zarrin Fatima, Krzysztof Klobut, Kalevi Piira, Mikaela Ranta, Petr Hajduk, Tiina Vainio-Kaila , Elina Wanne, Jani Tartia, Angela Bartel, Joni Mäkinen, Mia Kaurila, Kaisa Kontu, Jaano Juhmen, Merja Ryöppy, Reetta Turtiainen, Joona Töyräs, Timo Koljonen (2021) Deliverable 3.2 Midterm report on the implemented demonstrations of solutions for energy positive blocks in Espoo. Available online: https://www.sparcs.info/sites/default/files/2022-02/SPARCS_D3.2.pdf,
    • www.lippulaiva.fi
    A1P011: Geographic coordinates
    X Coordinate (longitude):24.7537777826.99594826.72273711.42434673814025610.98617335443299215.39696.5906555.619124.6543
    Y Coordinate (latitude):60.2162222257.84581358.38071347.27147078672910459.2242971664204648.275253.20408751.660660.1491
    A1P012: Country
    A1P012: CountryFinlandEstoniaEstoniaAustriaNorwayAustriaNetherlandsNetherlandsFinland
    A1P013: City
    A1P013: CityEspooVõruTartuInnsbruckFredrikstadSchönbühel an der DonauGroningenUdenEspoo
    A1P014: Climate Zone (Köppen Geiger classification)
    A1P014: Climate Zone (Köppen Geiger classification).DfbDfbDfbDfbCfbDfbCfaCfbDfb
    A1P015: District boundary
    A1P015: District boundaryGeographicFunctionalGeographicGeographicGeographicFunctionalGeographicGeographic
    Other
    A1P016: Ownership of the case study/PED Lab
    A1P016: Ownership of the case study/PED Lab:MixedMixedPrivateMixedPrivatePrivateMixedPrivatePrivate
    A1P017: Ownership of the land / physical infrastructure
    A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersSingle OwnerMultiple OwnersMultiple OwnersSingle OwnerSingle Owner
    A1P018: Number of buildings in PED
    A1P018: Number of buildings in PED18420419
    A1P019: Conditioned space
    A1P019: Conditioned space [m²]352172227735504777.862360112000
    A1P020: Total ground area
    A1P020: Total ground area [m²]58000022000079314411351245045.0933860165000
    A1P021: Floor area ratio: Conditioned space / total ground area
    A1P021: Floor area ratio: Conditioned space / total ground area000200011
    A1P022: Financial schemes
    A1P022a: Financing - PRIVATE - Real estatenonoyesnoyesyesyesyesyes
    A1P022a: Add the value in EUR if available [EUR]65000007804440
    A1P022b: Financing - PRIVATE - ESCO schemenonononononononono
    A1P022b: Add the value in EUR if available [EUR]
    A1P022c: Financing - PRIVATE - Othernonononononoyesnono
    A1P022c: Add the value in EUR if available [EUR]
    A1P022d: Financing - PUBLIC - EU structural fundingnonoyesnononononono
    A1P022d: Add the value in EUR if available [EUR]4000000
    A1P022e: Financing - PUBLIC - National fundingnonoyesnonoyesyesnono
    A1P022e: Add the value in EUR if available [EUR]8000000
    A1P022f: Financing - PUBLIC - Regional fundingnononononoyesnonono
    A1P022f: Add the value in EUR if available [EUR]
    A1P022g: Financing - PUBLIC - Municipal fundingnonononononoyesnono
    A1P022g: Add the value in EUR if available [EUR]
    A1P022h: Financing - PUBLIC - Othernonononononononono
    A1P022h: Add the value in EUR if available [EUR]
    A1P022i: Financing - RESEARCH FUNDING - EUnonononononoyesnoyes
    A1P022i: Add the value in EUR if available [EUR]308875
    A1P022j: Financing - RESEARCH FUNDING - Nationalnononoyesnonononono
    A1P022j: Add the value in EUR if available [EUR]
    A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononononono
    A1P022k: Add the value in EUR if available [EUR]
    A1P022l: Financing - RESEARCH FUNDING - Othernonononononononono
    A1P022l: Add the value in EUR if available [EUR]
    A1P022: OtherMultiple different funding schemes depending on the case.
    A1P023: Economic Targets
    A1P023: Economic Targets
    • Job creation,
    • Positive externalities,
    • Boosting local businesses,
    • Boosting local and sustainable production,
    • Boosting consumption of local and sustainable products
    • Positive externalities
    • Job creation,
    • Other
    • Boosting local businesses,
    • Boosting local and sustainable production
    • Job creation,
    • Positive externalities,
    • Boosting local businesses
    A1P023: OtherCircular economyCreate affordable appartments for the citizens
    A1P024: More comments:
    A1P024: More comments:Owners are two local social housing companies. The complete district will consist 4 building blocks, from which only the first one with 4 building is ready built and occupied. At the end, it would be a district of ca. 1100 flats in 16 buildings with 78000 m2The total development consists of more than 1500 dwellings, a kindergarten, a school, and commercial buildings. Two of the residential blocks are included as demonstration projects in syn.ikia. The two blocks have 20 dwellings in each and are 6 stories high.The project is a follow-up from the “Social Beautiful” concept which was developed in collaboration between Labyrint (Support in sheltered housing), Area (housing company), the municipality of Uden, and Hendriks Coppelmans (developer). The concept aims to provide an answer to changes in various policy areas and the changing demands of society. The Social Beautiful concept consists of the following elements: 1. Living, working, and community services are brought together in one location. A multifunctional residential and service centre is being realized at the location. 2. Housing is shaped by the realization of financially accessible homes suitable for the target group. The housing design is tailored to the target group. it may also include sheltered / protected living. 3. Work takes place at the location or from the same location. The work has a social function within the neighbourhood. Wage-related work must contribute to providing structure in the daily activities of the residents. 4. Neighbourhood management is organized from the location in the surrounding neighbourhood. A service package is provided from the residential and service centre that contributes to the ability of neighbourhood residents to live independently for longer, to strengthen the social network, and to improve the quality of life and safety in the neighbourhood. 5. The houses are suitable for use at all times for regular rental. Communal facilities must be realized within the contours of a regular apartment. The objective is to offer a suitable living and working situation to a group of vulnerable citizens. In this way they become a fully-fledged part of society. They not only make use of the facilities themselves, but also give substance to the level of facilities in the municipality. Due to the integrated approach, they experience a greater sense of well-being and security.The Espoonlahti district is located on the south-western coast of Espoo. With 56,000 inhabitants, it is the second largest of the Espoo city centres. The number of inhabitants is estimated to grow to 70,000 within the next 10 years. Espoonlahti will be a future transit hub of the south-western Espoo, along the metro line, and the increasing stream of passengers provides a huge potential for retail, business and residential developments. E-mobility solutions and last-mile services have strong potential in the area when subway extension is finished and running. The extensive (re)development of the Lippulaiva blocks make a benchmark catering to the everyday needs of residents. The completely new shopping centre is a state-of-the-art cross point with 20,000 daily customers and 10,000 daily commuters (3.5 million/year). The new underground metro line and station, and feeder line bus terminal, are fully integrated. Residential housing of approximately 550 new apartments will be built on top. Lippulaiva is a large traffic hub, directly connected to public transport and right next to the Länsiväylä highway and extensive cycle paths. Lippulaiva offers diverse, mixed-use services, such as a shopping mall, public services, a day care centre, residential apartment buildings, and underground parking facilities. Lippulaiva received the LEED Gold environmental certificate and Smart Building Gold certificate. • Flagship of sustainability • Cooling and heating demand from geothermal energy system (on-site) with energy storage system, 4 MW • PV panels: roof and façade, 630 kWp • Smart control strategies for electricity and thermal energy, smart microgrid-system and battery storage • Charging capacity for 134 EVs
    A1P025: Estimated PED case study / PED LAB costs
    A1P025: Estimated PED case study / PED LAB costs [mil. EUR]257804440
    Contact person for general enquiries
    A1P026: NameJoni MäkinenChristoph GollnerJaanus TammGeorgios DermentzisTonje Healey TrulsrudGhazal EtminanJasper Tonen, Elisabeth KoopsTonje Healey TrulsrudElina Ekelund
    A1P027: OrganizationCity of EspooFFGTartu City GovernmentUniversity of InnsbruckNorwegian University of Science and technology (NTNU)Ghazal.Etminan@ait.ac.atMunicipality of GroningenNorwegian University of Science and Technology (NTNU)Citycon Oyj
    A1P028: AffiliationMunicipality / Public BodiesOtherMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversityResearch Center / UniversityMunicipality / Public BodiesResearch Center / UniversitySME / Industry
    A1P028: Other
    A1P029: Emailjoni.makinen@espoo.fichristoph.gollner@ffg.atJaanus.tamm@tartu.eeGeorgios.Dermentzis@uibk.ac.attonje.h.trulsrud@ntnu.noGhazal.Etminan@ait.ac.atJasper.tonen@groningen.nltonje.h.trulsrud@ntnu.noElina.ekelund@citycon.com
    Contact person for other special topics
    A1P030: NameKaspar AlevElina Ekelund
    A1P031: EmailKaspar.alev@tartu.eeElina.ekelund@citycon.com
    Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYesYes
    A2P001: Fields of application
    A2P001: Fields of application
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Digital technologies,
    • Waste management,
    • Construction materials
    • Energy efficiency,
    • Energy production
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Urban comfort (pollution, heat island, noise level etc.),
    • Digital technologies,
    • Indoor air quality
    • Energy efficiency,
    • Energy production,
    • Indoor air quality
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Urban comfort (pollution, heat island, noise level etc.),
    • Digital technologies,
    • Indoor air quality
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Urban comfort (pollution, heat island, noise level etc.),
    • Waste management
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • Waste management,
    • Indoor air quality,
    • Construction materials
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Digital technologies
    A2P001: Other
    A2P002: Tools/strategies/methods applied for each of the above-selected fields
    A2P002: Tools/strategies/methods applied for each of the above-selected fields- Kera development commitment (https://www.espoo.fi/en/kera-development-commitment). - SPARCS Co-creation model for sustainable and smart urban areas (www.co-creatingsparcs.fi/en). - Kera area carbon neutrality roadmap (https://static.espoo.fi/cdn/ff/MHDdcMNJ9aYn7CjpoD4zNpo5M-M9HIDLXlJdUrUmf-8/1642756766/public/2022-01/Kera%20carbon%20neutrality%20map_EN.pdf)Energy efficiency: - buildings retrofitting - combined public and private financing - low temperature central heating - LED lighting Energy production: - installation of photovoltaic (PV) systems for renewable on-site energy production; Digital technologies: - smart-meters smart home system. Smart city information platform E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services implementation. Urban comfort and air quality - Control units for air pollutants concentration (PM2.5, PM10, NO2) - Sustainable Energy and Climate Action Plan - SECAP)The buildings are designed based on Passive House standards and dynamic building and system simulations are performed to optimise the HVAC systems, that are a ground-water heat pump for space heating and district heating for domestic hot water preparation. Photovoltaic systems are installed in the available roof spaces, however, more renewable sources are required due to very large number of apartments (very high density) to reach PED, and thus, simulation studies are performed.Energy efficiency: energy-efficient buildings that comply with the Norwegian Passive House standard. Energy Flexibility: sharing of PV energy between the dwellings Energy production: BIPV on the roof and facades, and a ground source heat pump for thermal energy. E-mobility: EV charging Urban comfort: a large green park in the neighbourhood with a small lake and recreational areas Digital technologies: Smart Home Systems for lighting, heating and ventilation Indoor air quality: balanced ventilationEnergy modelingEnergy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streamsEnergy efficiency: Energy efficient envelope, with good insulation, triple glazing windows and airtight envelope. (EPC = 0) Energy Flexibility: MCP controls for the heat pump in the apartments. Energy production: PV panels on the roof, Ground source heat pumps Waste management: construction waste was kept to a minimum and sorted and collected separately as much as possible. Indoor air quality: Exhaust ventilation and opening of windows Construction materials: low carbon emission building materialsEnergy efficiency: - eliminating waste energy utilizing smart energy system - utilizing excess heat from grocery stores Energy flexibility: - A battery energy storage system (1,5 MW/1,5MWh); Active participation in Nordpool electricity market (FCR-N) Energy production: - heating and cooling from geothermal heat pump system; 171 energy wells (over 51 km); heat capacity 4 MW - installation of new photovoltaic (PV) systems for renewable on-site energy production; Estimation of annual production is about 540 MWh (630 kWp) E-mobility - Installation of charging stations for electric vehicles (for 134 EVs) - e-bike services (warm storage room, charging cabinets for e-bikes) Digital technologies: - Building Analytics system by Schneider Electric
    A2P003: Application of ISO52000
    A2P003: Application of ISO52000NoNoNoYesNoNoYesYes
    A2P004: Appliances included in the calculation of the energy balance
    A2P004: Appliances included in the calculation of the energy balanceNoYesYesNoYesNoNoYes
    A2P005: Mobility included in the calculation of the energy balance
    A2P005: Mobility included in the calculation of the energy balanceNoNoNoNoNoNoNoNo
    A2P006: Description of how mobility is included (or not included) in the calculation
    A2P006: Description of how mobility is included (or not included) in the calculationMobility, till now, is not included in the energy model.not includedMobility is not included in the energy model.
    A2P007: Annual energy demand in buildings / Thermal demand
    A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]54.59.10.390.160.0661.860.1485.5
    A2P008: Annual energy demand in buildings / Electric Demand
    A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]19.40.6550.0530.0121.450.1095.8
    A2P009: Annual energy demand for e-mobility
    A2P009: Annual energy demand for e-mobility [GWh/annum]0
    A2P010: Annual energy demand for urban infrastructure
    A2P010: Annual energy demand for urban infrastructure [GWh/annum]
    A2P011: Annual renewable electricity production on-site during target year
    A2P011: PVyesnoyesyesyesyesnoyesyes
    A2P011: PV - specify production in GWh/annum [GWh/annum]40.420.180.0580.54
    A2P011: Windnonononononononono
    A2P011: Wind - specify production in GWh/annum [GWh/annum]
    A2P011: Hydrononononononononono
    A2P011: Hydro - specify production in GWh/annum [GWh/annum]
    A2P011: Biomass_elnonononononononono
    A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
    A2P011: Biomass_peat_elnonononononononono
    A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
    A2P011: PVT_elnonononononononono
    A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
    A2P011: Othernonononononononono
    A2P011: Other - specify production in GWh/annum [GWh/annum]
    A2P012: Annual renewable thermal production on-site during target year
    A2P012: Geothermalnonononononoyesyesyes
    A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]5
    A2P012: Solar Thermalnonoyesnononoyesnono
    A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.5
    A2P012: Biomass_heatnonononononoyesnono
    A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
    A2P012: Waste heat+HPyesnononononoyesnono
    A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
    A2P012: Biomass_peat_heatnonononononononono
    A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
    A2P012: PVT_thnonononononoyesnono
    A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
    A2P012: Biomass_firewood_thnonononononononono
    A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
    A2P012: Othernonononononononono
    A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
    A2P013: Renewable resources on-site - Additional notes
    A2P013: Renewable resources on-site - Additional notesLocal energy utility will implement district level thermal solution. First, energy will be produced from waste heat from a local data center. Further thermal solutions are under discussion and development.Geothermal heatpump systems, Waste heat from data centers*Annual energy use below is presentedin primary energy consumption
    A2P014: Annual energy use
    A2P014: Annual energy use [GWh/annum]78.80.960.0790.19411.3
    A2P015: Annual energy delivered
    A2P015: Annual energy delivered [GWh/annum]15.4-20.00110.03685.76
    A2P016: Annual non-renewable electricity production on-site during target year
    A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]00
    A2P017: Annual non-renewable thermal production on-site during target year
    A2P017: Gasnonononononononono
    A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]0
    A2P017: Coalnonononononononono
    A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]0
    A2P017: Oilnonononononononono
    A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]0
    A2P017: Othernonononononononono
    A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P018: Annual renewable electricity imports from outside the boundary during target year
    A2P018: PVnononononoyesnonono
    A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
    A2P018: Windnononononoyesnonono
    A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
    A2P018: Hydronononononoyesnonono
    A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
    A2P018: Biomass_elnononononoyesnonono
    A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: Biomass_peat_elnonononononononono
    A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: PVT_elnonononononononono
    A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: Othernonononononononoyes
    A2P018 - Other: specify production in GWh/annum if available [GWh/annum]5.26
    A2P019: Annual renewable thermal imports from outside the boundary during target year
    A2P019: Geothermalnonononononononono
    A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Solar Thermalnonononononononono
    A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_heatnonononononononono
    A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Waste heat+HPnonononononononono
    A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_peat_heatnonononononononono
    A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
    A2P019: PVT_thnonononononononono
    A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_firewood_thnononononoyesnonono
    A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Othernonononononononono
    A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
    A2P020: Share of RES on-site / RES outside the boundary
    A2P020: Share of RES on-site / RES outside the boundary000000001.0532319391635
    A2P021: GHG-balance calculated for the PED
    A2P021: GHG-balance calculated for the PED [tCO2/annum]450000980-6.0354-0.000430
    A2P022: KPIs related to the PED case study / PED Lab
    A2P022: Safety & SecurityPersonal SafetyPersonal Safety
    A2P022: Healthindoor air quility (indoor CO2 concentration) - measured on the extract air of the mechanical ventilation system. Relative humidity to avoid mold.Healthy community + Indoor Evironmental Quality (indoor air quality, thermal comfort, lighting and visual comfort)Healthy community
    A2P022: Education
    A2P022: MobilitySustainable mobilitySustainable mobility
    A2P022: EnergySpace heating demand, thermal energy delivered by district heating, electricity of the heat pump, thermal losses of the pipes, and PV production.Energy and environmental performance (non-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/ self-consumption, net energy/net power. peak delivered(peak exported power, connection capacity credit, total greenhouse gas emissionsNOn-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/self-consumption, net energy/net power, peak delivered/peak expoted, total greenhouse gas emissionOn-site energy ratio
    A2P022: Water
    A2P022: Economic developmentEconomic Performance: capital costs, operational costs, overall performancecapital costs, operational cots, overall economic performance (5 KPIs)
    A2P022: Housing and Communitydemopraphic composiiton, diverse community, social cohesion access to amenities, access to services, afordability of energy, affordability of shousing, living conditions, universal design, energy consciousnessSpecify the associated KPIsdemographic composition, diverse community, social cohesion
    A2P022: Waste
    A2P022: OtherSmartness and FlexibilitySmartness and flecibility, Indoor Environmental Quality, Social performance - Equity (affordable housing, access to servicees and amenitioes, afforability of energy, living conditions, sustinable mobility, universal design)
    A2P023: Technological Solutions / Innovations - Energy Generation
    A2P023: Photovoltaicsyesnoyesyesyesyesyesyesyes
    A2P023: Solar thermal collectorsnoyesnonononoyesnono
    A2P023: Wind Turbinesnonononononononono
    A2P023: Geothermal energy systemnonononoyesnoyesyesyes
    A2P023: Waste heat recoveryyesnononononoyesnoyes
    A2P023: Waste to energynonononononoyesnono
    A2P023: Polygenerationnonononononononono
    A2P023: Co-generationnonononononononono
    A2P023: Heat Pumpyesnonoyesyesyesyesyesno
    A2P023: Hydrogennonononononononono
    A2P023: Hydropower plantnonononononononono
    A2P023: Biomassnonoyesnononononono
    A2P023: Biogasnonoyesnononononono
    A2P023: Other
    A2P024: Technological Solutions / Innovations - Energy Flexibility
    A2P024: A2P024: Information and Communication Technologies (ICT)yesnoyesnoyesnoyesnoyes
    A2P024: Energy management systemyesnoyesnoyesyesyesyesyes
    A2P024: Demand-side managementyesnononoyesnonoyesno
    A2P024: Smart electricity gridyesnononononononoyes
    A2P024: Thermal Storagenononoyesnonoyesnoyes
    A2P024: Electric Storagenonononononoyesnoyes
    A2P024: District Heating and Coolingyesyesyesyesnonoyesnono
    A2P024: Smart metering and demand-responsive control systemsnonononoyesnoyesyesno
    A2P024: P2P – buildingsnononoyesnoyesnonono
    A2P024: Other
    A2P025: Technological Solutions / Innovations - Energy Efficiency
    A2P025: Deep Retrofittingnonoyesnonoyesnonono
    A2P025: Energy efficiency measures in historic buildingsnononononoyesyesnono
    A2P025: High-performance new buildingsyesnonoyesyesnoyesyesyes
    A2P025: Smart Public infrastructure (e.g. smart lighting)yesnoyesnononoyesnoyes
    A2P025: Urban data platformsyesnoyesnononoyesnono
    A2P025: Mobile applications for citizensnonoyesnononononono
    A2P025: Building services (HVAC & Lighting)yesnonoyesyesnonoyesyes
    A2P025: Smart irrigationnonononononononono
    A2P025: Digital tracking for waste disposalnonononononononono
    A2P025: Smart surveillancenonoyesnononononono
    A2P025: Other
    A2P026: Technological Solutions / Innovations - Mobility
    A2P026: Efficiency of vehicles (public and/or private)yesnoyesnononononono
    A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)yesnoyesnononononoyes
    A2P026: e-Mobilityyesnoyesnononoyesnoyes
    A2P026: Soft mobility infrastructures and last mile solutionsyesnononononononono
    A2P026: Car-free areanonononononononono
    A2P026: OtherLocal transportation hub with direct connection to metro & bus terminal; parking spaces for 1,400 bicycles and for 1,300 cars Promoting e-Mobility: 134 charging stations, A technical reservation for expanding EV charging system 1400 bicycle racks and charging cabinets for 10 e-bicycle batteries
    A2P027: Mobility strategies - Additional notes
    A2P027: Mobility strategies - Additional notes
    A2P028: Energy efficiency certificates
    A2P028: Energy efficiency certificatesNoYesYesYesYesYesYesYes
    A2P028: If yes, please specify and/or enter notesTwo buildings are certified "Passive House new build"NS3700 Norwegian Passive HouseEnergy Performance CertificateEPC = 0, energy neutral buildingEnergy Performance Certificate => Energy efficiency class B (2018 version)
    A2P029: Any other building / district certificates
    A2P029: Any other building / district certificatesNoNoNoNoYes
    A2P029: If yes, please specify and/or enter notesLEED (Core & Shell, v4) GOLD certification, Smart Building certification (GOLD)
    A3P001: Relevant city /national strategy
    A3P001: Relevant city /national strategy
    • Energy master planning (SECAP, etc.),
    • Climate change adaption plan/strategy (e.g. Climate City contract)
    • Smart cities strategies,
    • Urban Renewal Strategies
    • Energy master planning (SECAP, etc.)
    • Smart cities strategies
    • Promotion of energy communities (REC/CEC)
    • Energy master planning (SECAP, etc.),
    • New development strategies,
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Energy master planning (SECAP, etc.),
    • New development strategies,
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    A3P002: Quantitative targets included in the city / national strategy
    A3P002: Quantitative targets included in the city / national strategyRelevant city strategies behind PED development in Espoo include the following: - The Espoo Story: Sustainability is heavily included within the values and goals of the current Espoo city strategy, also known as the Espoo Story, running from 2021 to 2025. For example, the strategy names being a responsible pioneer as one of the main values of the city and has chosen achieving carbon neutrality by 2030 as one of the main goals of the current council term. In addition to the Espoo story, four cross-administrative development programmes act as cooperation platforms that allow the city, together with its partners, to develop innovative solutions through experiments and pilot projects in line with the Espoo Story. The Sustainable Espoo development programme is one of the four programmes, thus putting sustainability on the forefront in city development work. - EU Mission: 100 climate-neutral and smart cities by 2030: Cities selected for the Mission commit to achieving carbon-neutrality in 2030. A key tool in the Mission is the Climate City Contract. Each selected city will prepare and implement its contracts in collaboration with local businesses as well as other stakeholders and residents. - Covenant of Mayors for Climate and Energy: Espoo is committed to the Covenant of Mayors for Climate and Energy, under which the signatories commit to supporting the European Union’s 40% greenhouse gas emission reduction goal by 2030. The Sustainable Energy and Climate Action Plan (SECAP) is a key instrument for implementing the agreement. The Action Plan outlines the key measures the city will take to achieve its carbon neutrality goal. The plan also includes a mapping of climate change risks and vulnerabilities, adaptation measures, emission calculations, emission reduction scenarios and impact estimations of measures. The SECAP of the City of Espoo is available here (only available in Finnish). - UN Sustainable development Goals: The city of Espoo has committed to becoming a forerunner and achieving the UN's Sustainable Development Goals (SDG) by 2025. The goal is to make Espoo financially, ecologically, socially, and culturally sustainable. - The Circular Cities Declaration: At the end of 2020, Espoo signed the Europe-wide circular economy commitment Circular Cities Declaration. The ten goals of the declaration promote the implementation of the city’s circular economy. - Espoo Clean Heat: Fortum and the City of Espoo are committed to producing carbon-neutral district heating in the network operating in the areas of Espoo, Kauniainen and Kirkkonummi during the 2020s. The district heating network provides heating to some 250,000 end-users in homes and offices. Coal will be completely abandoned in the production of district heating by 2025. The main targets related to PED development included in the noted city strategies are the following: - Espoo will achieve carbon neutrality by 2030. To be precise, this carbon neutrality goal is defined as an 80% emission reduction from the 1990 level by the year 2030. The remaining 20% share can be absorbed in carbon sinks or compensated by other means. - District heating in Espoo will be carbon-neutral by 2029, and coal-based production will be phased out from district heating by 2025. - Espoo aims to end the use of fossil fuels in the heating of city-owned buildings by 2025. - Quantitative goals within the Espoo SECAP report: - Espoo aims to reduce total energy consumption within the municipal sector by 7.5% by the end of 2025 in comparison to the 2015 level. The social housing company Espoon Asunnot OY aims to meet the same target. - Espoo aims to cover 10% of the energy consumption of new buildings via on-site production. - Espoo aims to raise the modal split of cycling to 15% by 2024. - Espoo aims to raise the modal split of public transport by 1.1% yearly. - Espoo aims to reduce the emissions of bus transport by 90% by the end of 2025, when compared to 2010 levels.
    A3P003: Strategies towards decarbonization of the gas grid
    A3P003: Strategies towards decarbonization of the gas grid
    • Biogas,
    • Hydrogen
    • Electrification of Heating System based on Heat Pumps,
    • Other
    • Electrification of Heating System based on Heat Pumps,
    • Electrification of Cooking Methods,
    • Biogas
    A3P003: OtherDistrict heating based mainly on heat pumps and renewable sources
    A3P004: Identification of needs and priorities
    A3P004: Identification of needs and prioritiesThe priority was to eliminate the CO2 emissions by optimizing the building envelope and the heating systems.- Citycon (developer and owner of Lippulaiva) aims to be carbon neutral in its energy use by 2030 - Lippulaiva is a unique urban centre with state-of-the-art energy concept. The centre has a smart managing system, which allows for example the temporary reduction of power used in air conditioning and charging stations when energy consumption is at its peak. In addition, a backup generator and a large electric battery will balance the operation of the electricity network. - Lippulaiva is also an important mobility hub for the people of Espoo. Espoonlahti metro station is located under the centre, and the West Metro started to operate to Espoonlahti in December 2022. Lippulaiva also has a bus terminal, which serves the metro’s feeder traffic in the Espoonlahti major district.
    A3P005: Sustainable behaviour
    A3P005: Sustainable behaviourIn Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.For Citycon, it was important to engage local people within the Lippulaiva project. During the construction period as well as after opening of the shopping center, citizens have been engaged in multiple ways, such as informing local citizens of the progress of construction, engaging young people in the design processes of the shopping centre and long-term commitment of youngsters with Lippulaiva Buddy class initiative. Users’ engagement activities are conducted in close co-operation with SPARCS partners.
    A3P006: Economic strategies
    A3P006: Economic strategies
    • PPP models,
    • Circular economy models
    • Innovative business models,
    • PPP models,
    • Life Cycle Cost,
    • Existing incentives
    • Local trading,
    • Existing incentives
    • Innovative business models,
    • Blockchain
    • Innovative business models
    A3P006: Other
    A3P007: Social models
    A3P007: Social models
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Quality of Life
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Behavioural Change / End-users engagement,
    • Citizen Social Research,
    • Policy Forums,
    • Social incentives,
    • Quality of Life,
    • Prevention of energy poverty,
    • Digital Inclusion,
    • Citizen/owner involvement in planning and maintenance,
    • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
    • Co-creation / Citizen engagement strategies,
    • Social incentives,
    • Affordability,
    • Prevention of energy poverty,
    • Citizen/owner involvement in planning and maintenance
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Behavioural Change / End-users engagement,
    • Quality of Life,
    • Citizen/owner involvement in planning and maintenance,
    • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Citizen Social Research,
    • Prevention of energy poverty,
    • Citizen/owner involvement in planning and maintenance
    • Co-creation / Citizen engagement strategies,
    • Social incentives,
    • Quality of Life
    • Co-creation / Citizen engagement strategies
    A3P007: Other
    A3P008: Integrated urban strategies
    A3P008: Integrated urban strategies
    • Strategic urban planning,
    • Digital twinning and visual 3D models,
    • District Energy plans
    • Strategic urban planning,
    • City Vision 2050,
    • SECAP Updates
    • Strategic urban planning,
    • District Energy plans,
    • City Vision 2050,
    • SECAP Updates
    • Building / district Certification
    A3P008: Other
    A3P009: Environmental strategies
    A3P009: Environmental strategies
    • Net zero carbon footprint,
    • Life Cycle approach,
    • Greening strategies,
    • Nature Based Solutions (NBS)
    • Energy Neutral,
    • Carbon-free
    • Net zero carbon footprint,
    • Carbon-free,
    • Pollutants Reduction,
    • Greening strategies,
    • Sustainable Urban drainage systems (SUDS),
    • Nature Based Solutions (NBS)
    • Energy Neutral,
    • Low Emission Zone
    • Low Emission Zone,
    • Net zero carbon footprint,
    • Carbon-free
    • Energy Neutral
    • Other
    A3P009: OtherCarbon free in terms of energy
    A3P010: Legal / Regulatory aspects
    A3P010: Legal / Regulatory aspectsAt national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricity- Energy efficiency regulations (Directive 2006/32/EC and 2009/72/EC) - EU directive 2010/31/EU on the energy performance of buildings => all new buildings should be “nearly zero-energy buildings” (nZEB) from 2021
    B1P001: PED/PED relevant concept definition
    B1P001: PED/PED relevant concept definitionImplementation of district level heating system to make heating energy positive and expanding local renewable electricity production.Extremely low building energy demand, the electric energy of the heat pump used for space heating is significantly lower compared to thermal energy for the domestic hot water preparation.The case study follows the concept of syn.ikia with sustainable plus energy neighbourhoods (SPEN) and aims to reach a plus energy balance based on EPB uses on an annual basis.The demonstration projects is a new residential development, which consists of an apartment complex which includes 39 apartments spread over 3 floors. It is a sustainble plus energy neighbouhood, and has reached a plus energy balance on its first year in operation. It has MPC controls on the individual heat pumps to improve the energy flexibility of the apartments. It includes the "social beatiful" concepts with a strong emphasis on the social sustainability of the project.Lippulaiva is a project with high level goal in terms of energy efficiency, energy flexibility and energy production.
    B1P002: Motivation behind PED/PED relevant project development
    B1P002: Motivation behind PED/PED relevant project developmentSince it is an urban area, with high building and apartment density, the need for CO2 reduction is quite relevant and thus, in new built, the minimization of CO2 emissions is crucial.The developers call their concept for Future Living, where the neighbourhood consist of highly energy-efficient buildings, is supplied with renewable energy onsite and includes green areas for well-being.The need for social housing and the ambition to create a great living environment with a high-performance apartment complex, supplied with renewable energy. It results in lower energy bills for the tenants and high-quality homes.- Citycon’s (developer and owner of Lippulaiva) target is to be carbon neutral by 2030 - Increasing sustainability requirements from the financing, tenants, cities, other stakeholders
    B1P003: Environment of the case study area
    B2P003: Environment of the case study areaUrban areaUrban areaUrban areaSuburban areaRurbanSuburban areaUrban area
    B1P004: Type of district
    B2P004: Type of district
    • New construction
    • Renovation
    • Renovation
    • New construction
    • New construction
    • Renovation
    • New construction
    • New construction
    B1P005: Case Study Context
    B1P005: Case Study Context
    • Re-use / Transformation Area
    • Retrofitting Area
    • Retrofitting Area
    • Re-use / Transformation Area,
    • New Development
    • New Development
    • Retrofitting Area,
    • Preservation Area
    • New Development
    • Re-use / Transformation Area,
    • New Development
    B1P006: Year of construction
    B1P006: Year of construction20222022
    B1P007: District population before intervention - Residential
    B1P007: District population before intervention - Residential4500
    B1P008: District population after intervention - Residential
    B1P008: District population after intervention - Residential14000780
    B1P009: District population before intervention - Non-residential
    B1P009: District population before intervention - Non-residential
    B1P010: District population after intervention - Non-residential
    B1P010: District population after intervention - Non-residential10000
    B1P011: Population density before intervention
    B1P011: Population density before intervention000000000
    B1P012: Population density after intervention
    B1P012: Population density after intervention0.041379310344828000.06871641265086800000
    B1P013: Building and Land Use before intervention
    B1P013: Residentialyesyesyesnonoyesnonono
    B1P013 - Residential: Specify the sqm [m²]
    B1P013: Officeyesnonononoyesnonono
    B1P013 - Office: Specify the sqm [m²]
    B1P013: Industry and Utilityyesyesnonoyesnononono
    B1P013 - Industry and Utility: Specify the sqm [m²]whole site was used for idustry and excavation
    B1P013: Commercialnoyesyesnononononoyes
    B1P013 - Commercial: Specify the sqm [m²]
    B1P013: Institutionalnonononononononono
    B1P013 - Institutional: Specify the sqm [m²]
    B1P013: Natural areasnoyesyesnononononoyes
    B1P013 - Natural areas: Specify the sqm [m²]
    B1P013: Recreationalnonoyesnononononono
    B1P013 - Recreational: Specify the sqm [m²]
    B1P013: Dismissed areasyesnononononononono
    B1P013 - Dismissed areas: Specify the sqm [m²]
    B1P013: Othernoyesnonononononono
    B1P013 - Other: Specify the sqm [m²]
    B1P014: Building and Land Use after intervention
    B1P014: Residentialyesyesyesyesyesyesnoyesyes
    B1P014 - Residential: Specify the sqm [m²]2394
    B1P014: Officeyesnonononoyesnonono
    B1P014 - Office: Specify the sqm [m²]
    B1P014: Industry and Utilitynoyesnonononononono
    B1P014 - Industry and Utility: Specify the sqm [m²]
    B1P014: Commercialyesyesyesyesnonononoyes
    B1P014 - Commercial: Specify the sqm [m²]
    B1P014: Institutionalnononoyesnonononono
    B1P014 - Institutional: Specify the sqm [m²]
    B1P014: Natural areasnoyesyesnononononono
    B1P014 - Natural areas: Specify the sqm [m²]
    B1P014: Recreationalyesnoyesyesnonononono
    B1P014 - Recreational: Specify the sqm [m²]
    B1P014: Dismissed areasnonononononononono
    B1P014 - Dismissed areas: Specify the sqm [m²]
    B1P014: Othernoyesnonononononono
    B1P014 - Other: Specify the sqm [m²]
    B2P001: PED Lab concept definition
    B2P001: PED Lab concept definitionGroningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.
    B2P002: Installation life time
    B2P002: Installation life timeThe MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.
    B2P003: Scale of action
    B2P003: ScaleDistrictDistrictDistrict
    B2P004: Operator of the installation
    B2P004: Operator of the installationThe Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.
    B2P005: Replication framework: Applied strategy to reuse and recycling the materials
    B2P005: Replication framework: Applied strategy to reuse and recycling the materialsGroningen does not have a strategy to reuse and recyle materials
    B2P006: Circular Economy Approach
    B2P006: Do you apply any strategy to reuse and recycling the materials?YesNoNo
    B2P006: Other
    B2P007: Motivation for developing the PED Lab
    B2P007: Motivation for developing the PED Lab
    • Strategic
    • Civic
    B2P007: Other
    B2P008: Lead partner that manages the PED Lab
    B2P008: Lead partner that manages the PED LabMunicipalityMunicipality
    B2P008: Other
    B2P009: Collaborative partners that participate in the PED Lab
    B2P009: Collaborative partners that participate in the PED Lab
    • Academia,
    • Private,
    • Industrial,
    • Citizens, public, NGO
    • Academia,
    • Private,
    • Industrial,
    • Other
    B2P009: Otherresearch companies, monitoring company, ict company
    B2P010: Synergies between the fields of activities
    B2P010: Synergies between the fields of activities
    B2P011: Available facilities to test urban configurations in PED Lab
    B2P011: Available facilities to test urban configurations in PED Lab
    • Buildings,
    • Prosumers,
    • Renewable generation,
    • Energy networks,
    • Lighting,
    • E-mobility,
    • Green areas,
    • User interaction/participation,
    • Information and Communication Technologies (ICT)
    • Buildings,
    • Demand-side management,
    • Energy storage,
    • Energy networks,
    • Waste management,
    • Lighting,
    • E-mobility,
    • Information and Communication Technologies (ICT),
    • Social interactions,
    • Business models
    B2P011: Other
    B2P012: Incubation capacities of PED Lab
    B2P012: Incubation capacities of PED Lab
    • Monitoring and evaluation infrastructure,
    • Pivoting and risk-mitigating measures
    • Tools for prototyping and modelling
    B2P013: Availability of the facilities for external people
    B2P013: Availability of the facilities for external people
    B2P014: Monitoring measures
    B2P014: Monitoring measures
    • Available data,
    • Life Cycle Analysis
    • Execution plan,
    • Available data,
    • Type of measured data,
    • Equipment,
    • Level of access
    B2P015: Key Performance indicators
    B2P015: Key Performance indicators
    • Energy,
    • Sustainability,
    • Social,
    • Economical / Financial
    • Energy,
    • Social,
    • Economical / Financial
    B2P016: Execution of operations
    B2P016: Execution of operations
    B2P017: Capacities
    B2P017: Capacities
    B2P018: Relations with stakeholders
    B2P018: Relations with stakeholders
    B2P019: Available tools
    B2P019: Available tools
    • Social models
    • Energy modelling,
    • Social models,
    • Business and financial models
    B2P019: Available tools
    B2P020: External accessibility
    B2P020: External accessibility
    C1P001: Unlocking Factors
    C1P001: Recent technological improvements for on-site RES production5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important4 - Important3 - Moderately important3 - Moderately important4 - Important
    C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock4 - Important1 - Unimportant4 - Important2 - Slightly important4 - Important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant
    C1P001: Energy Communities, P2P, Prosumers concepts3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important4 - Important3 - Moderately important4 - Important
    C1P001: Storage systems and E-mobility market penetration4 - Important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant4 - Important4 - Important4 - Important4 - Important
    C1P001: Decreasing costs of innovative materials3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important4 - Important1 - Unimportant
    C1P001: Financial mechanisms to reduce costs and maximize benefits3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant5 - Very important5 - Very important3 - Moderately important5 - Very important
    C1P001: The ability to predict Multiple Benefits3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important4 - Important
    C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important4 - Important
    C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important3 - Moderately important
    C1P001: Social acceptance (top-down)3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important5 - Very important2 - Slightly important
    C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important4 - Important4 - Important2 - Slightly important
    C1P001: Presence of integrated urban strategies and plans4 - Important1 - Unimportant5 - Very important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant
    C1P001: Multidisciplinary approaches available for systemic integration5 - Very important1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant
    C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects3 - Moderately important1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
    C1P001: Availability of RES on site (Local RES)4 - Important1 - Unimportant4 - Important3 - Moderately important5 - Very important1 - Unimportant4 - Important5 - Very important5 - Very important
    C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders5 - Very important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important4 - Important1 - Unimportant
    C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P001: Any other UNLOCKING FACTORS (if any)
    C1P002: Driving Factors
    C1P002: Climate Change adaptation need5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant5 - Very important2 - Slightly important5 - Very important5 - Very important
    C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important1 - Unimportant5 - Very important4 - Important5 - Very important5 - Very important3 - Moderately important5 - Very important4 - Important
    C1P002: Rapid urbanization trend and need of urban expansions4 - Important1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
    C1P002: Urban re-development of existing built environment5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant
    C1P002: Economic growth need4 - Important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant3 - Moderately important
    C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)4 - Important1 - Unimportant4 - Important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
    C1P002: Territorial and market attractiveness3 - Moderately important1 - Unimportant3 - Moderately important4 - Important5 - Very important3 - Moderately important2 - Slightly important2 - Slightly important2 - Slightly important
    C1P002: Energy autonomy/independence2 - Slightly important1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant4 - Important
    C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
    C1P002: Any other DRIVING FACTOR (if any)Earthquakes due to gas extraction
    C1P003: Administrative barriers
    C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant4 - Important
    C1P003: Lack of good cooperation and acceptance among partners5 - Very important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important
    C1P003: Lack of public participation4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P003: Lack of institutions/mechanisms to disseminate information4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
    C1P003:Long and complex procedures for authorization of project activities3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
    C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
    C1P003: Complicated and non-comprehensive public procurement3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
    C1P003: Fragmented and or complex ownership structure3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant
    C1P003: City administration & cross-sectoral attitude/approaches (silos)4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant
    C1P003: Lack of internal capacities to support energy transition4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important
    C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
    C1P003: Any other Administrative BARRIER (if any)Delay in the Environmental Dialogue processing in the municipality
    C1P004: Policy barriers
    C1P004: Lack of long-term and consistent energy plans and policies4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important1 - Unimportant1 - Unimportant
    C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P004: Any other Political BARRIER (if any)
    C1P005: Legal and Regulatory barriers
    C1P005: Inadequate regulations for new technologies3 - Moderately important1 - Unimportant4 - Important1 - Unimportant5 - Very important2 - Slightly important4 - Important1 - Unimportant2 - Slightly important
    C1P005: Regulatory instability3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important
    C1P005: Non-effective regulations3 - Moderately important1 - Unimportant4 - Important1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important
    C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important
    C1P005: Building code and land-use planning hindering innovative technologies4 - Important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important
    C1P005: Insufficient or insecure financial incentives5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important
    C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation2 - Slightly important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
    C1P005: Shortage of proven and tested solutions and examples2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important
    C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P005: Any other Legal and Regulatory BARRIER (if any)
    C1P006: Environmental barriers
    C1P006: Environmental barriersUrban area very high buildings (and apartment) density and thus, less available space for renewable sources.
    C1P007: Technical barriers
    C1P007: Lack of skilled and trained personnel3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant4 - Important
    C1P007: Deficient planning3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important2 - Slightly important1 - Unimportant1 - Unimportant
    C1P007: Retrofitting work in dwellings in occupied state1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant4 - Important
    C1P007: Lack of well-defined process3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
    C1P007: Inaccuracy in energy modelling and simulation3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important1 - Unimportant2 - Slightly important
    C1P007: Lack/cost of computational scalability3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Grid congestion, grid instability3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important1 - Unimportant1 - Unimportant
    C1P007: Negative effects of project intervention on the natural environment3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant
    C1P007: Difficult definition of system boundaries2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Any other Thecnical BARRIER (if any)
    C1P008: Social and Cultural barriers
    C1P008: Inertia3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant
    C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant
    C1P008: Low acceptance of new projects and technologies3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant3 - Moderately important
    C1P008: Difficulty of finding and engaging relevant actors4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important1 - Unimportant1 - Unimportant
    C1P008: Lack of trust beyond social network3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant
    C1P008: Rebound effect3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant3 - Moderately important
    C1P008: Hostile or passive attitude towards environmentalism2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important
    C1P008: Exclusion of socially disadvantaged groups4 - Important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important
    C1P008: Non-energy issues are more important and urgent for actors2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant4 - Important
    C1P008: Hostile or passive attitude towards energy collaboration2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important
    C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P008: Any other Social BARRIER (if any)
    C1P009: Information and Awareness barriers
    C1P009: Insufficient information on the part of potential users and consumers4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important
    C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
    C1P009: Lack of awareness among authorities3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant
    C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant3 - Moderately important
    C1P009: High costs of design, material, construction, and installation4 - Important1 - Unimportant5 - Very important5 - Very important4 - Important4 - Important4 - Important1 - Unimportant4 - Important
    C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P009: Any other Information and Awareness BARRIER (if any)
    C1P010: Financial barriers
    C1P010: Hidden costs3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important
    C1P010: Insufficient external financial support and funding for project activities4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important
    C1P010: Economic crisis4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important
    C1P010: Risk and uncertainty3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important5 - Very important3 - Moderately important
    C1P010: Lack of consolidated and tested business models3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant4 - Important
    C1P010: Limited access to capital and cost disincentives3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important1 - Unimportant3 - Moderately important
    C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P010: Any other Financial BARRIER (if any)
    C1P011: Market barriers
    C1P011: Split incentives3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant3 - Moderately important
    C1P011: Energy price distortion3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant3 - Moderately important
    C1P011: Energy market concentration, gatekeeper actors (DSOs)3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important1 - Unimportant3 - Moderately important
    C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P011: Any other Market BARRIER (if any)
    C1P012: Stakeholders involved
    C1P012: Government/Public Authorities
    • Planning/leading,
    • Design/demand aggregation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • Planning/leading,
    • Design/demand aggregation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    C1P012: Research & Innovation
    • Planning/leading,
    • Design/demand aggregation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Monitoring/operation/management
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Design/demand aggregation
    • Planning/leading,
    • Design/demand aggregation,
    • Monitoring/operation/management
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation
    C1P012: Financial/Funding
    • Design/demand aggregation,
    • Construction/implementation
    • Design/demand aggregation,
    • Construction/implementation
    • Planning/leading,
    • Construction/implementation
    • Planning/leading
    • Design/demand aggregation,
    • Construction/implementation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    C1P012: Analyst, ICT and Big Data
    • Planning/leading,
    • Monitoring/operation/management
    • Planning/leading,
    • Monitoring/operation/management
    • Monitoring/operation/management
    • Planning/leading
    • Design/demand aggregation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Monitoring/operation/management
    C1P012: Business process management
    • Design/demand aggregation,
    • Construction/implementation
    • Planning/leading
    • Planning/leading
    • Planning/leading
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    C1P012: Urban Services providers
    • Planning/leading,
    • Construction/implementation
    • Construction/implementation
    • Construction/implementation
    • Planning/leading
    • Design/demand aggregation,
    • Monitoring/operation/management
    • None
    C1P012: Real Estate developers
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • None
    • Planning/leading
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading
    • Construction/implementation
    • Planning/leading,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    C1P012: Design/Construction companies
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • Design/demand aggregation,
    • Construction/implementation
    • Design/demand aggregation,
    • Construction/implementation
    • Planning/leading
    • Construction/implementation
    • Planning/leading,
    • Design/demand aggregation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    C1P012: End‐users/Occupants/Energy Citizens
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation
    • Monitoring/operation/management
    • None
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    C1P012: Social/Civil Society/NGOs
    • Planning/leading
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading
    • Construction/implementation
    • Planning/leading,
    • Design/demand aggregation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    C1P012: Industry/SME/eCommerce
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Design/demand aggregation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    C1P012: Other
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    C1P012: Other (if any)
    Summary

    Authors (framework concept)

    Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

    Contributors (to the content)

    Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

    Implemented by

    Boutik.pt: Filipe Martins, Jamal Khan
    Marek Suchánek (Czech Technical University in Prague)