Filters:
NameProjectTypeCompare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Compare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Compare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Compare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
Lecce, SmartEnCity SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
Firenze, Novoli-Cascine district on “le PIagge” buildings PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Uncompare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Uncompare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Uncompare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Uncompare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Uncompare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Uncompare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleEspoo, Kera
Laser Valley – Land of Lights
Barcelona, SEILAB & Energy SmartLab
Uden, Loopkantstraat
Izmir, District of Karşıyaka
Santa Chiara Open Lab, Trento
Freiburg, Waldsee
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabEspoo, KeraLaser Valley – Land of LightsBarcelona, SEILAB & Energy SmartLabUden, LoopkantstraatIzmir, District of KarşıyakaSanta Chiara Open Lab, TrentoFreiburg, Waldsee
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studyyesyesnonoyesyesyes
PED relevant case studyyesnonoyesnonono
PED Lab.nonoyesnononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesnoyesyesyesyes
Annual energy surplusnononoyesyesnono
Energy communitynonoyesnononoyes
Circularityyesnononononono
Air quality and urban comfortnonononoyesnono
Electrificationnonoyesyesnonoyes
Net-zero energy costnonononoyesnono
Net-zero emissionnoyesyesnononoyes
Self-sufficiency (energy autonomous)nonoyesnononono
Maximise self-sufficiencynonononoyesnono
Othernoyesyesnonoyesno
Other (A1P004)Energy efficient; Sustainable neighbourhood; Social aspects/affordabilityGreen ITenergy efficient
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhaseIn operationIn operationIn operationPlanning PhaseIn operationPlanning Phase
A1P006: Start Date
A1P006: Start date01/1501/201106/1710/2212/1711/21
A1P007: End Date
A1P007: End date12/3502/201305/2310/2511/24
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • General statistical datasets
  • Monitoring data available within the districts
  • Monitoring data available within the districts,
  • General statistical datasets,
  • GIS open datasets
A1P009: OtherOther
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • Inger Andresen, Tonje Healey Trulsrud, Luca Finocchiaro, Alessandro Nocente, Meril Tamm, Joana Ortiz, Jaume Salom, Abel Magyari, Linda Hoes-van Oeffelen, Wouter Borsboom, Wim Kornaat, Niki Gaitani, Design and performance predictions of plus energy neighbourhoods – Case studies of demonstration projects in four different European climates, Energy and Buildings, Volume 274, 2022, 112447, ISSN 0378-7788, https://doi.org/10.1016/j.enbuild.2022.112447. (https://www.sciencedirect.com/science/article/pii/S0378778822006181),
  • Deliverable, Report: Integrated Energy Design for Sustainable Plus Energy Neighbourhoods (syn.ikia),
  • Deliverable, Report: DEMONSTRATION CASE OF SUSTAINABLE PLUS ENERGY NEIGHBOURHOODS IN MARINE CLIMATE (syn.ikia),
  • https://www.synikia.eu/no/bibliotek/
  • Data from the local energy provider available (restricted usage for some data points because of data security reasons,
  • renewable energy potential,
  • own calculations based on publicly available data,
  • Some data can be found in https://geoportal.freiburg.de/freigis/
A1P011: Geographic coordinates
X Coordinate (longitude):24.7537777826.0218262.15.619127.11004911.1266337.885857135842917
Y Coordinate (latitude):60.2162222244.29987441.351.660638.49605446.06368547.986535207080045
A1P012: Country
A1P012: CountryFinlandRomaniaSpainNetherlandsTurkeyItalyGermany
A1P013: City
A1P013: CityEspooMăgureleBarcelona and TarragonaUdenİzmirTrentoFreiburg im Breisgau
A1P014: Climate Zone (Köppen Geiger classification)
A1P014: Climate Zone (Köppen Geiger classification).DfbCfaCsaCfbCsaCfaCfb
A1P015: District boundary
A1P015: District boundaryGeographicVirtualGeographicGeographicVirtual
Other
A1P016: Ownership of the case study/PED Lab
A1P016: Ownership of the case study/PED Lab:MixedMixedPublicPrivatePrivateMixedMixed
A1P017: Ownership of the land / physical infrastructure
A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersSingle OwnerSingle OwnerMultiple OwnersMultiple OwnersMultiple Owners
A1P018: Number of buildings in PED
A1P018: Number of buildings in PED01212941
A1P019: Conditioned space
A1P019: Conditioned space [m²]2360102795284070
A1P020: Total ground area
A1P020: Total ground area [m²]5800003860326004920000
A1P021: Floor area ratio: Conditioned space / total ground area
A1P021: Floor area ratio: Conditioned space / total ground area0001300
A1P022: Financial schemes
A1P022a: Financing - PRIVATE - Real estatenononoyesnonono
A1P022a: Add the value in EUR if available [EUR]7804440
A1P022b: Financing - PRIVATE - ESCO schemenonononononono
A1P022b: Add the value in EUR if available [EUR]
A1P022c: Financing - PRIVATE - Othernononononoyesno
A1P022c: Add the value in EUR if available [EUR]
A1P022d: Financing - PUBLIC - EU structural fundingnonononononono
A1P022d: Add the value in EUR if available [EUR]
A1P022e: Financing - PUBLIC - National fundingnononononoyesno
A1P022e: Add the value in EUR if available [EUR]41000000
A1P022f: Financing - PUBLIC - Regional fundingnonononononono
A1P022f: Add the value in EUR if available [EUR]
A1P022g: Financing - PUBLIC - Municipal fundingnononononoyesyes
A1P022g: Add the value in EUR if available [EUR]
A1P022h: Financing - PUBLIC - Othernonononononono
A1P022h: Add the value in EUR if available [EUR]
A1P022i: Financing - RESEARCH FUNDING - EUnonononoyesnoyes
A1P022i: Add the value in EUR if available [EUR]1193355
A1P022j: Financing - RESEARCH FUNDING - Nationalnonononoyesnoyes
A1P022j: Add the value in EUR if available [EUR]
A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononono
A1P022k: Add the value in EUR if available [EUR]
A1P022l: Financing - RESEARCH FUNDING - Othernoyesnononoyesno
A1P022l: Add the value in EUR if available [EUR]
A1P022: OtherMultiple different funding schemes depending on the case.Business angels
A1P023: Economic Targets
A1P023: Economic Targets
  • Job creation,
  • Positive externalities,
  • Boosting local businesses,
  • Boosting local and sustainable production,
  • Boosting consumption of local and sustainable products
  • Job creation
  • Job creation,
  • Boosting local and sustainable production
  • Positive externalities,
  • Boosting local and sustainable production
A1P023: OtherCircular economy
A1P024: More comments:
A1P024: More comments:Semi-Virtual Energy Integration Laboratory (SEILAB) The Energy Smart Lab is an infrastructure conceived as a flexible and versatile platform for innovative technological developments for both industry and competitive R+D projects. The areas of expertise of this laboratory pivot around the following technologies: – Power Electronics for the integration and control of the elements within a building or community: Renewable Energy Sources (RES), Energy Storage Systems and Electric Vehicles (EV) – ICT Platform for smart communications and energy management of systems, building, networks and communities. – Energy System Integration technologies for smart and flexible buildings and grids including RES and EV. The laboratory operation is based on the hardware emulation approach, which allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation. The laboratory is pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.The project is a follow-up from the “Social Beautiful” concept which was developed in collaboration between Labyrint (Support in sheltered housing), Area (housing company), the municipality of Uden, and Hendriks Coppelmans (developer). The concept aims to provide an answer to changes in various policy areas and the changing demands of society. The Social Beautiful concept consists of the following elements: 1. Living, working, and community services are brought together in one location. A multifunctional residential and service centre is being realized at the location. 2. Housing is shaped by the realization of financially accessible homes suitable for the target group. The housing design is tailored to the target group. it may also include sheltered / protected living. 3. Work takes place at the location or from the same location. The work has a social function within the neighbourhood. Wage-related work must contribute to providing structure in the daily activities of the residents. 4. Neighbourhood management is organized from the location in the surrounding neighbourhood. A service package is provided from the residential and service centre that contributes to the ability of neighbourhood residents to live independently for longer, to strengthen the social network, and to improve the quality of life and safety in the neighbourhood. 5. The houses are suitable for use at all times for regular rental. Communal facilities must be realized within the contours of a regular apartment. The objective is to offer a suitable living and working situation to a group of vulnerable citizens. In this way they become a fully-fledged part of society. They not only make use of the facilities themselves, but also give substance to the level of facilities in the municipality. Due to the integrated approach, they experience a greater sense of well-being and security.
A1P025: Estimated PED case study / PED LAB costs
A1P025: Estimated PED case study / PED LAB costs [mil. EUR]7804440
Contact person for general enquiries
A1P026: NameJoni MäkinenChristoph GollnerDr. Jaume Salom, Dra. Cristina CorcheroTonje Healey TrulsrudOzlem SenyolChristoph GollnerDr. Annette Steingrube
A1P027: OrganizationCity of EspooFFgIRECNorwegian University of Science and Technology (NTNU)Karsiyaka MunicipalityFFGFraunhofer Institute for solar energy systems
A1P028: AffiliationMunicipality / Public BodiesOtherResearch Center / UniversityResearch Center / UniversityMunicipality / Public BodiesOtherResearch Center / University
A1P028: Other
A1P029: Emailjoni.makinen@espoo.fichritoph.gollner@ffg.atJsalom@irec.cattonje.h.trulsrud@ntnu.noozlemkocaer2@gmail.comchristoph.gollner@ffg.atAnnette.Steingrube@ise.fraunhofer.de
Contact person for other special topics
A1P030: NameHasan Burak Cavka
A1P031: Emailhasancavka@iyte.edu.tr
Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYes
A2P001: Fields of application
A2P001: Fields of application
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Digital technologies,
  • Waste management,
  • Construction materials
  • Energy efficiency,
  • Energy production
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Digital technologies
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • Waste management,
  • Indoor air quality,
  • Construction materials
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • Urban comfort (pollution, heat island, noise level etc.)
  • Energy efficiency,
  • Energy flexibility,
  • Energy production
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Waste management
A2P001: Other
A2P002: Tools/strategies/methods applied for each of the above-selected fields
A2P002: Tools/strategies/methods applied for each of the above-selected fields- Kera development commitment (https://www.espoo.fi/en/kera-development-commitment). - SPARCS Co-creation model for sustainable and smart urban areas (www.co-creatingsparcs.fi/en). - Kera area carbon neutrality roadmap (https://static.espoo.fi/cdn/ff/MHDdcMNJ9aYn7CjpoD4zNpo5M-M9HIDLXlJdUrUmf-8/1642756766/public/2022-01/Kera%20carbon%20neutrality%20map_EN.pdf)Energy SmartLab capacities - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. Energy SmartLab systems - SAFT Li-ion battery: maximum stored energy 20000 Wh, rated power 150 kW, rated discharge current 200 A, rated charge current 34 A, operating voltage 189 V – 227 V – 254 V, capacity 82 Ah. – Ultracapacitors: maximum stored energy 57 Wh, rated power 10 kW, rated current 20 A, peak current (<1s) 200 Apk, operating voltage 250 V – 500 V, capacity 1,65 F. – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah - 5 microgrid emulators (emulated power 5.5 kVA, max generation connected 10kVA, max consumption connected 10 kVA) - 1 grid emulator (Rated power: 200 kVA, Rated current per phase: 350 A, Rated current per neutral conductor: 35)Energy efficiency: Energy efficient envelope, with good insulation, triple glazing windows and airtight envelope. (EPC = 0) Energy Flexibility: MCP controls for the heat pump in the apartments. Energy production: PV panels on the roof, Ground source heat pumps Waste management: construction waste was kept to a minimum and sorted and collected separately as much as possible. Indoor air quality: Exhaust ventilation and opening of windows Construction materials: low carbon emission building materialsMethods involve studying the feasibility of digital PED references for the case cities about their energy, environmental, and economic performance by EnergyPlus tool. In case of insufficient energy data and the need of high resolution data, ‘Gaussian mixture model and expectation-maximization algorithm’ and ‘time-series decomposition-recombination’ method will be used to supplement data to EnergyPlus. The feasibility results will be returned to stakeholders for iterative discussion, and the iterative results will be used to update digital references. Replication plans are developed based on such a cooperation process for strategies to implement PEDs. If a PED is demonstrated during the project period, the measured data will be used to verify the feasibility model to optimize previous results (WP7– R3 & R4). In the MAKING-CITY project, the overall PED design method is developed, which will be further optimised in this project. In addition, PED-ACT will use the methods and knowledge, including how to choose a suitable PED in a city, energy balance calculation, and technologies available for PED. The RUGGEDISED project outputs the governance model into the replication plan in PED-ACT. Its ‘smart city open-data decision platform’ will illustrate an excellent example for the database in PED-ACT. The IEA EBC Annex 83 and Cost Action 19126 create the basis for data collection, developing existing PED databases, characterization of PED, and review of regulations of PED, as well as development of simulation tools. The UBEM project further enables a detailed high-resolution energy balance calculation of PED.Energy system modeling
A2P003: Application of ISO52000
A2P003: Application of ISO52000NoYesYesYes
A2P004: Appliances included in the calculation of the energy balance
A2P004: Appliances included in the calculation of the energy balanceNoYesNoYesYes
A2P005: Mobility included in the calculation of the energy balance
A2P005: Mobility included in the calculation of the energy balanceNoYesNoNoYes
A2P006: Description of how mobility is included (or not included) in the calculation
A2P006: Description of how mobility is included (or not included) in the calculation– Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ahnot includedMobility is not included in the calculations.All energy demands are included in energy balance, either fuel demands or electrical demand of transport sector; Projection is made of future share of electric mobilty, rest is covered with synthetic fuels to achieve climate neutrality
A2P007: Annual energy demand in buildings / Thermal demand
A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]54.50.1483.862135.715
A2P008: Annual energy demand in buildings / Electric Demand
A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]19.40.1091.22631.76
A2P009: Annual energy demand for e-mobility
A2P009: Annual energy demand for e-mobility [GWh/annum]
A2P010: Annual energy demand for urban infrastructure
A2P010: Annual energy demand for urban infrastructure [GWh/annum]
A2P011: Annual renewable electricity production on-site during target year
A2P011: PVyesnoyesyesyesnono
A2P011: PV - specify production in GWh/annum [GWh/annum]40.0581.028
A2P011: Windnonononononono
A2P011: Wind - specify production in GWh/annum [GWh/annum]
A2P011: Hydrononononononono
A2P011: Hydro - specify production in GWh/annum [GWh/annum]
A2P011: Biomass_elnonononononono
A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
A2P011: Biomass_peat_elnonononononono
A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
A2P011: PVT_elnonononononono
A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
A2P011: Othernonononononono
A2P011: Other - specify production in GWh/annum [GWh/annum]
A2P012: Annual renewable thermal production on-site during target year
A2P012: Geothermalnononoyesnonono
A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
A2P012: Solar Thermalnonononononono
A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
A2P012: Biomass_heatnonononononono
A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
A2P012: Waste heat+HPyesnononononono
A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
A2P012: Biomass_peat_heatnonononononono
A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
A2P012: PVT_thnonononononono
A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
A2P012: Biomass_firewood_thnonononononono
A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
A2P012: Othernonononononono
A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
A2P013: Renewable resources on-site - Additional notes
A2P013: Renewable resources on-site - Additional notesLocal energy utility will implement district level thermal solution. First, energy will be produced from waste heat from a local data center. Further thermal solutions are under discussion and development.*Annual energy use below is presentedin primary energy consumption53 MW PV potential in all three quarters; no other internal renewable energy potentials known
A2P014: Annual energy use
A2P014: Annual energy use [GWh/annum]78.80.1945.088132.5
A2P015: Annual energy delivered
A2P015: Annual energy delivered [GWh/annum]15.40.0368
A2P016: Annual non-renewable electricity production on-site during target year
A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]0
A2P017: Annual non-renewable thermal production on-site during target year
A2P017: Gasnonoyesnoyesnono
A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Coalnonononononono
A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Oilnonononononono
A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Othernonononononono
A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P018: Annual renewable electricity imports from outside the boundary during target year
A2P018: PVnonononoyesnono
A2P018 - PV: specify production in GWh/annum if available [GWh/annum]0.707
A2P018: Windnonononononono
A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
A2P018: Hydrononononononono
A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
A2P018: Biomass_elnonononononono
A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
A2P018: Biomass_peat_elnonononononono
A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
A2P018: PVT_elnonononononono
A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
A2P018: Othernonononononono
A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
A2P019: Annual renewable thermal imports from outside the boundary during target year
A2P019: Geothermalnonononononono
A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
A2P019: Solar Thermalnonononononono
A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_heatnonononononono
A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
A2P019: Waste heat+HPnonononononono
A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_peat_heatnonononononono
A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
A2P019: PVT_thnonononononono
A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_firewood_thnonononononono
A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
A2P019: Othernonononononono
A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
A2P020: Share of RES on-site / RES outside the boundary
A2P020: Share of RES on-site / RES outside the boundary00001.454031117397500
A2P021: GHG-balance calculated for the PED
A2P021: GHG-balance calculated for the PED [tCO2/annum]450000-0.00043
A2P022: KPIs related to the PED case study / PED Lab
A2P022: Safety & SecurityPersonal Safety
A2P022: HealthHealthy community
A2P022: Education
A2P022: MobilitySustainable mobilityyes
A2P022: EnergyNOn-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/self-consumption, net energy/net power, peak delivered/peak expoted, total greenhouse gas emissionyes
A2P022: Water
A2P022: Economic developmentcapital costs, operational cots, overall economic performance (5 KPIs)
A2P022: Housing and Communitydemographic composition, diverse community, social cohesionyes
A2P022: Waste
A2P022: OtherSmartness and flecibility, Indoor Environmental Quality, Social performance - Equity (affordable housing, access to servicees and amenitioes, afforability of energy, living conditions, sustinable mobility, universal design)
A2P023: Technological Solutions / Innovations - Energy Generation
A2P023: Photovoltaicsyesnoyesyesyesyesyes
A2P023: Solar thermal collectorsnoyesnononoyesyes
A2P023: Wind Turbinesnonononononono
A2P023: Geothermal energy systemnoyesnoyesnoyesyes
A2P023: Waste heat recoveryyesnonononoyesyes
A2P023: Waste to energynonononononoyes
A2P023: Polygenerationnonononononono
A2P023: Co-generationnonononononoyes
A2P023: Heat Pumpyesnonoyesyesyesyes
A2P023: Hydrogennonononononoyes
A2P023: Hydropower plantnonononononoyes
A2P023: Biomassnonononononoyes
A2P023: Biogasnonononononoyes
A2P023: Other
A2P024: Technological Solutions / Innovations - Energy Flexibility
A2P024: A2P024: Information and Communication Technologies (ICT)yesnoyesnononoyes
A2P024: Energy management systemyesnoyesyesnonoyes
A2P024: Demand-side managementyesnonoyesnonoyes
A2P024: Smart electricity gridyesnoyesnononoyes
A2P024: Thermal Storagenononononoyesyes
A2P024: Electric Storagenonoyesnononoyes
A2P024: District Heating and Coolingyesyesnononoyesyes
A2P024: Smart metering and demand-responsive control systemsnononoyesnonoyes
A2P024: P2P – buildingsnonononononoyes
A2P024: Other
A2P025: Technological Solutions / Innovations - Energy Efficiency
A2P025: Deep Retrofittingnonononoyesnoyes
A2P025: Energy efficiency measures in historic buildingsnonononononoyes
A2P025: High-performance new buildingsyesnonoyesnonono
A2P025: Smart Public infrastructure (e.g. smart lighting)yesnononononono
A2P025: Urban data platformsyesnononononoyes
A2P025: Mobile applications for citizensnonononononono
A2P025: Building services (HVAC & Lighting)yesnoyesyesyesnono
A2P025: Smart irrigationnonononononono
A2P025: Digital tracking for waste disposalnonononononono
A2P025: Smart surveillancenonononononono
A2P025: Other
A2P026: Technological Solutions / Innovations - Mobility
A2P026: Efficiency of vehicles (public and/or private)yesnoyesnononoyes
A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)yesnononononoyes
A2P026: e-Mobilityyesnononononoyes
A2P026: Soft mobility infrastructures and last mile solutionsyesnononononoyes
A2P026: Car-free areanonononononono
A2P026: Other
A2P027: Mobility strategies - Additional notes
A2P027: Mobility strategies - Additional notes
A2P028: Energy efficiency certificates
A2P028: Energy efficiency certificatesNoYesNoNo
A2P028: If yes, please specify and/or enter notesEPC = 0, energy neutral building
A2P029: Any other building / district certificates
A2P029: Any other building / district certificatesNoNoNoNo
A2P029: If yes, please specify and/or enter notes
A3P001: Relevant city /national strategy
A3P001: Relevant city /national strategy
  • Energy master planning (SECAP, etc.),
  • Climate change adaption plan/strategy (e.g. Climate City contract)
  • Smart cities strategies,
  • Urban Renewal Strategies,
  • Energy master planning (SECAP, etc.)
  • Smart cities strategies,
  • New development strategies
  • Energy master planning (SECAP, etc.),
  • Climate change adaption plan/strategy (e.g. Climate City contract),
  • National / international city networks addressing sustainable urban development and climate neutrality
  • Smart cities strategies,
  • Urban Renewal Strategies,
  • Energy master planning (SECAP, etc.)
  • Smart cities strategies
A3P002: Quantitative targets included in the city / national strategy
A3P002: Quantitative targets included in the city / national strategyKarşıyaka Municipality is the first local government in Turkey to sign the Covenant of Mayors in 2011. During this period, the greenhouse gas inventory of the district was carried out three times and reduction targets were set for 2020 and 2030. In the 2021 Sustainable Energy and Climate Action Plan prepared as of the end of 2021, Karşıyaka Municipality has targeted a 40% reduction in its emissions for 2030 compared to the base year 2018. In the 2021 Sustainable Energy and Climate Action Plan, Karşıyaka Municipality aims to reduce its greenhouse gas emissions from 3.96 tCO2e / person in 2018 to 2.37 tCO2e / person in 2030. System solutions such as the use of renewable energy sources, air, ground or water source heat pump, cogeneration and microcogeneration are analysed by designers in order to fully or partially meet the energy requirements for heating, cooling, ventilation, hot water, electricity and lighting for all buildings with a floor area of less than 20,000 square metres. If at least 50% of the building's total energy consumption costs are covered by one or more of these applications, the points are taken in the assessment table in the Building and housing estate business certification guide of 2023.Climate neutrality by 2035
A3P003: Strategies towards decarbonization of the gas grid
A3P003: Strategies towards decarbonization of the gas grid
  • Electrification of Heating System based on Heat Pumps
  • Electrification of Heating System based on Heat Pumps,
  • Biogas,
  • Hydrogen
A3P003: Other
A3P004: Identification of needs and priorities
A3P004: Identification of needs and priorities-Allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation -Pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.According to the model developed for the district, the electrification of heating and cooling is necessary.Therefore, there needs to be the implementation of a heat pump. The building-integrated photovoltaic panelsshould follow. Through net-metering practices, the district is expected to reach energy positivity throughthis scenario.Freiburg has ambitious goals and wants to achieve climate neutrality until 2035, the PED concept could help to develop suitable strategies on district level
A3P005: Sustainable behaviour
A3P005: Sustainable behaviour-Improving the development of Net Zero Energy Buildings and Flexible Energy buildings.Energy efficiency by renovation measures for buildings and measures for saving electricity; electrification by installation of heat pumps and photovoltaics and switching to electric cars, additional measures not directly related to PED like sustainable diet and sharing economy
A3P006: Economic strategies
A3P006: Economic strategies
  • PPP models,
  • Circular economy models
  • Demand management Living Lab
  • Demand management Living Lab,
  • Local trading,
  • Existing incentives
A3P006: Other
A3P007: Social models
A3P007: Social models
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies,
  • Quality of Life
  • Digital Inclusion,
  • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
  • Co-creation / Citizen engagement strategies,
  • Social incentives,
  • Quality of Life
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies,
  • Affordability
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies,
  • Behavioural Change / End-users engagement,
  • Citizen/owner involvement in planning and maintenance,
  • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
A3P007: Other
A3P008: Integrated urban strategies
A3P008: Integrated urban strategies
  • Strategic urban planning,
  • Digital twinning and visual 3D models,
  • District Energy plans
  • Digital twinning and visual 3D models,
  • District Energy plans,
  • SECAP Updates
  • Strategic urban planning,
  • Digital twinning and visual 3D models,
  • District Energy plans
A3P008: Other
A3P009: Environmental strategies
A3P009: Environmental strategies
  • Net zero carbon footprint,
  • Life Cycle approach,
  • Greening strategies,
  • Nature Based Solutions (NBS)
  • Energy Neutral,
  • Low Emission Zone,
  • Pollutants Reduction,
  • Greening strategies
  • Energy Neutral,
  • Low Emission Zone,
  • Pollutants Reduction
  • Energy Neutral
A3P009: Other
A3P010: Legal / Regulatory aspects
A3P010: Legal / Regulatory aspects- European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.
B1P001: PED/PED relevant concept definition
B1P001: PED/PED relevant concept definitionImplementation of district level heating system to make heating energy positive and expanding local renewable electricity production.The demonstration projects is a new residential development, which consists of an apartment complex which includes 39 apartments spread over 3 floors. It is a sustainble plus energy neighbouhood, and has reached a plus energy balance on its first year in operation. It has MPC controls on the individual heat pumps to improve the energy flexibility of the apartments. It includes the "social beatiful" concepts with a strong emphasis on the social sustainability of the project.The pilot area was selected on the basis of several criteria: its location within areas prioritised by Karşıyaka Municipality for combating climate change, compliance with the building regulations set out in the Green Building-Site-Operation (2023) guide, which are in line with Municipality's energy policy, the presence of open spaces that allow various applications for renewable energy, proximity to public facilities such as schools and municipal services, the availability of data on energy consumption (e.g. electricity and natural gas bills) and architectural features, the potential for community building, the suitability for solar energy systems, considering orientation and roof structure, and the potential for future building renovations. The aim of the initiative is to explore the feasibility of transforming the district into a Positive Energy District (PED).Assessment methods for this ped (and for germany) is defined in this project at the moment and will be tested at that case study
B1P002: Motivation behind PED/PED relevant project development
B1P002: Motivation behind PED/PED relevant project developmentThe need for social housing and the ambition to create a great living environment with a high-performance apartment complex, supplied with renewable energy. It results in lower energy bills for the tenants and high-quality homes.City is interested in transforming the quarter, as many buildings are old, have private owner structures and have decentralised heating systems. As the city wants to become climate neutral by 2035 action is needed now. In the research project PED urban the idea is to focus on the future energy system of the quarter and use it as a case study to develop a common assessment method for PEDs in alignment with european efforts in that regard
B1P003: Environment of the case study area
B2P003: Environment of the case study areaUrban areaSuburban areaUrban areaUrban areaSuburban area
B1P004: Type of district
B2P004: Type of district
  • New construction
  • New construction,
  • Renovation
  • New construction
  • Renovation
  • New construction,
  • Renovation
  • Renovation
B1P005: Case Study Context
B1P005: Case Study Context
  • Re-use / Transformation Area
  • Re-use / Transformation Area,
  • New Development
  • New Development
  • Retrofitting Area
  • Re-use / Transformation Area,
  • New Development,
  • Retrofitting Area
  • Retrofitting Area
B1P006: Year of construction
B1P006: Year of construction2005
B1P007: District population before intervention - Residential
B1P007: District population before intervention - Residential5898
B1P008: District population after intervention - Residential
B1P008: District population after intervention - Residential140005898
B1P009: District population before intervention - Non-residential
B1P009: District population before intervention - Non-residential
B1P010: District population after intervention - Non-residential
B1P010: District population after intervention - Non-residential10000
B1P011: Population density before intervention
B1P011: Population density before intervention0000000
B1P012: Population density after intervention
B1P012: Population density after intervention0.041379310344828000000.0011987804878049
B1P013: Building and Land Use before intervention
B1P013: Residentialyesnononoyesnoyes
B1P013 - Residential: Specify the sqm [m²]102795
B1P013: Officeyesnononononoyes
B1P013 - Office: Specify the sqm [m²]
B1P013: Industry and Utilityyesnononononoyes
B1P013 - Industry and Utility: Specify the sqm [m²]
B1P013: Commercialnonononononoyes
B1P013 - Commercial: Specify the sqm [m²]
B1P013: Institutionalnonononononoyes
B1P013 - Institutional: Specify the sqm [m²]
B1P013: Natural areasnonononononoyes
B1P013 - Natural areas: Specify the sqm [m²]
B1P013: Recreationalnonononononoyes
B1P013 - Recreational: Specify the sqm [m²]
B1P013: Dismissed areasyesnononononono
B1P013 - Dismissed areas: Specify the sqm [m²]
B1P013: Othernonononononono
B1P013 - Other: Specify the sqm [m²]
B1P014: Building and Land Use after intervention
B1P014: Residentialyesyesnoyesyesyesyes
B1P014 - Residential: Specify the sqm [m²]2394102795
B1P014: Officeyesyesnononoyesyes
B1P014 - Office: Specify the sqm [m²]
B1P014: Industry and Utilitynoyesnononoyesyes
B1P014 - Industry and Utility: Specify the sqm [m²]
B1P014: Commercialyesnonononoyesyes
B1P014 - Commercial: Specify the sqm [m²]
B1P014: Institutionalnonononononoyes
B1P014 - Institutional: Specify the sqm [m²]
B1P014: Natural areasnoyesnonononoyes
B1P014 - Natural areas: Specify the sqm [m²]
B1P014: Recreationalyesyesnononoyesyes
B1P014 - Recreational: Specify the sqm [m²]
B1P014: Dismissed areasnonononononono
B1P014 - Dismissed areas: Specify the sqm [m²]
B1P014: Othernonononononono
B1P014 - Other: Specify the sqm [m²]
B2P001: PED Lab concept definition
B2P001: PED Lab concept definitionaddressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation
B2P002: Installation life time
B2P002: Installation life time
B2P003: Scale of action
B2P003: ScaleCityVirtual
B2P004: Operator of the installation
B2P004: Operator of the installationIREC
B2P005: Replication framework: Applied strategy to reuse and recycling the materials
B2P005: Replication framework: Applied strategy to reuse and recycling the materials
B2P006: Circular Economy Approach
B2P006: Do you apply any strategy to reuse and recycling the materials?No
B2P006: Other
B2P007: Motivation for developing the PED Lab
B2P007: Motivation for developing the PED Lab
  • Strategic,
  • Private
B2P007: Other
B2P008: Lead partner that manages the PED Lab
B2P008: Lead partner that manages the PED LabResearch center/University
B2P008: Other
B2P009: Collaborative partners that participate in the PED Lab
B2P009: Collaborative partners that participate in the PED Lab
B2P009: Other
B2P010: Synergies between the fields of activities
B2P010: Synergies between the fields of activities
B2P011: Available facilities to test urban configurations in PED Lab
B2P011: Available facilities to test urban configurations in PED Lab
  • Demand-side management,
  • Energy storage,
  • Energy networks,
  • Efficiency measures,
  • Information and Communication Technologies (ICT)
B2P011: Other
B2P012: Incubation capacities of PED Lab
B2P012: Incubation capacities of PED Lab
  • Monitoring and evaluation infrastructure,
  • Tools for prototyping and modelling,
  • Tools, spaces, events for testing and validation
B2P013: Availability of the facilities for external people
B2P013: Availability of the facilities for external people
B2P014: Monitoring measures
B2P014: Monitoring measures
  • Equipment
B2P015: Key Performance indicators
B2P015: Key Performance indicators
  • Energy,
  • Environmental
B2P016: Execution of operations
B2P016: Execution of operations
B2P017: Capacities
B2P017: Capacities- Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network.
B2P018: Relations with stakeholders
B2P018: Relations with stakeholders
B2P019: Available tools
B2P019: Available tools
  • Energy modelling
B2P019: Available tools
B2P020: External accessibility
B2P020: External accessibility
C1P001: Unlocking Factors
C1P001: Recent technological improvements for on-site RES production5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important
C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
C1P001: Energy Communities, P2P, Prosumers concepts3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
C1P001: Storage systems and E-mobility market penetration4 - Important1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant4 - Important
C1P001: Decreasing costs of innovative materials3 - Moderately important1 - Unimportant3 - Moderately important4 - Important5 - Very important1 - Unimportant2 - Slightly important
C1P001: Financial mechanisms to reduce costs and maximize benefits3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important4 - Important1 - Unimportant2 - Slightly important
C1P001: The ability to predict Multiple Benefits3 - Moderately important1 - Unimportant4 - Important3 - Moderately important4 - Important1 - Unimportant3 - Moderately important
C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important1 - Unimportant4 - Important3 - Moderately important4 - Important1 - Unimportant2 - Slightly important
C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant4 - Important
C1P001: Social acceptance (top-down)3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant4 - Important
C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant4 - Important
C1P001: Presence of integrated urban strategies and plans4 - Important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant4 - Important
C1P001: Multidisciplinary approaches available for systemic integration5 - Very important1 - Unimportant4 - Important5 - Very important4 - Important1 - Unimportant4 - Important
C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important
C1P001: Availability of RES on site (Local RES)4 - Important1 - Unimportant4 - Important5 - Very important5 - Very important1 - Unimportant4 - Important
C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders5 - Very important1 - Unimportant5 - Very important4 - Important5 - Very important1 - Unimportant2 - Slightly important
C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P001: Any other UNLOCKING FACTORS (if any)
C1P002: Driving Factors
C1P002: Climate Change adaptation need5 - Very important1 - Unimportant4 - Important5 - Very important5 - Very important1 - Unimportant4 - Important
C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important1 - Unimportant4 - Important5 - Very important5 - Very important1 - Unimportant4 - Important
C1P002: Rapid urbanization trend and need of urban expansions4 - Important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant
C1P002: Urban re-development of existing built environment5 - Very important1 - Unimportant4 - Important4 - Important3 - Moderately important1 - Unimportant2 - Slightly important
C1P002: Economic growth need4 - Important1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)4 - Important1 - Unimportant4 - Important5 - Very important5 - Very important1 - Unimportant2 - Slightly important
C1P002: Territorial and market attractiveness3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant
C1P002: Energy autonomy/independence2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important
C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P002: Any other DRIVING FACTOR (if any)
C1P003: Administrative barriers
C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant4 - Important
C1P003: Lack of good cooperation and acceptance among partners5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important
C1P003: Lack of public participation4 - Important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant4 - Important
C1P003: Lack of institutions/mechanisms to disseminate information4 - Important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
C1P003:Long and complex procedures for authorization of project activities3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important
C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
C1P003: Complicated and non-comprehensive public procurement3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important
C1P003: Fragmented and or complex ownership structure3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant4 - Important
C1P003: City administration & cross-sectoral attitude/approaches (silos)4 - Important1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important
C1P003: Lack of internal capacities to support energy transition4 - Important1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important
C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
C1P003: Any other Administrative BARRIER (if any)Delay in the Environmental Dialogue processing in the municipality
C1P004: Policy barriers
C1P004: Lack of long-term and consistent energy plans and policies4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important
C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important
C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P004: Any other Political BARRIER (if any)
C1P005: Legal and Regulatory barriers
C1P005: Inadequate regulations for new technologies3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant4 - Important
C1P005: Regulatory instability3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important
C1P005: Non-effective regulations3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant5 - Very important
C1P005: Building code and land-use planning hindering innovative technologies4 - Important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important
C1P005: Insufficient or insecure financial incentives5 - Very important1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important
C1P005: Shortage of proven and tested solutions and examples2 - Slightly important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important
C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P005: Any other Legal and Regulatory BARRIER (if any)
C1P006: Environmental barriers
C1P006: Environmental barriers- Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Air and Water Pollution: 2 - Natural Disasters: 1 - Water Scarcity: 1
C1P007: Technical barriers
C1P007: Lack of skilled and trained personnel3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant4 - Important
C1P007: Deficient planning3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant4 - Important
C1P007: Retrofitting work in dwellings in occupied state1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant4 - Important
C1P007: Lack of well-defined process3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
C1P007: Inaccuracy in energy modelling and simulation3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important
C1P007: Lack/cost of computational scalability3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
C1P007: Grid congestion, grid instability3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important
C1P007: Negative effects of project intervention on the natural environment3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important
C1P007: Difficult definition of system boundaries2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important
C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P007: Any other Thecnical BARRIER (if any)
C1P008: Social and Cultural barriers
C1P008: Inertia3 - Moderately important1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant4 - Important
C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
C1P008: Low acceptance of new projects and technologies3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important
C1P008: Difficulty of finding and engaging relevant actors4 - Important1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant4 - Important
C1P008: Lack of trust beyond social network3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important
C1P008: Rebound effect3 - Moderately important1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important
C1P008: Hostile or passive attitude towards environmentalism2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
C1P008: Exclusion of socially disadvantaged groups4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
C1P008: Non-energy issues are more important and urgent for actors2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important
C1P008: Hostile or passive attitude towards energy collaboration2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P008: Any other Social BARRIER (if any)
C1P009: Information and Awareness barriers
C1P009: Insufficient information on the part of potential users and consumers4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important
C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts4 - Important1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important
C1P009: Lack of awareness among authorities3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important
C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
C1P009: High costs of design, material, construction, and installation4 - Important1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant4 - Important
C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P009: Any other Information and Awareness BARRIER (if any)
C1P010: Financial barriers
C1P010: Hidden costs3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important
C1P010: Insufficient external financial support and funding for project activities4 - Important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important
C1P010: Economic crisis4 - Important1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important
C1P010: Risk and uncertainty3 - Moderately important1 - Unimportant5 - Very important5 - Very important4 - Important1 - Unimportant4 - Important
C1P010: Lack of consolidated and tested business models3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
C1P010: Limited access to capital and cost disincentives3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important
C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P010: Any other Financial BARRIER (if any)
C1P011: Market barriers
C1P011: Split incentives3 - Moderately important1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important
C1P011: Energy price distortion3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important
C1P011: Energy market concentration, gatekeeper actors (DSOs)3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important
C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P011: Any other Market BARRIER (if any)
C1P012: Stakeholders involved
C1P012: Government/Public Authorities
  • Planning/leading,
  • Design/demand aggregation
  • Planning/leading,
  • Design/demand aggregation
  • Planning/leading
C1P012: Research & Innovation
  • Planning/leading,
  • Design/demand aggregation
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Construction/implementation,
  • Monitoring/operation/management
C1P012: Financial/Funding
  • Design/demand aggregation,
  • Construction/implementation
  • None
C1P012: Analyst, ICT and Big Data
  • Planning/leading,
  • Monitoring/operation/management
  • None
C1P012: Business process management
  • Design/demand aggregation,
  • Construction/implementation
  • None
C1P012: Urban Services providers
  • Planning/leading,
  • Construction/implementation
  • None
C1P012: Real Estate developers
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading,
  • Construction/implementation,
  • Monitoring/operation/management
  • None
C1P012: Design/Construction companies
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation
  • Planning/leading,
  • Design/demand aggregation
  • Construction/implementation
C1P012: End‐users/Occupants/Energy Citizens
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading,
  • Construction/implementation,
  • Monitoring/operation/management
C1P012: Social/Civil Society/NGOs
  • Planning/leading
  • Construction/implementation,
  • Monitoring/operation/management
C1P012: Industry/SME/eCommerce
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation
  • None
C1P012: Other
C1P012: Other (if any)
Summary

Authors (framework concept)

Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

Contributors (to the content)

Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

Implemented by

Boutik.pt: Filipe Martins, Jamal Khan
Marek Suchánek (Czech Technical University in Prague)