Filters:
NameProjectTypeCompare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Compare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Compare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Compare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Uncompare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr, Geothermal District Heating Project PED Relevant Case Study Compare
Drammen, Jacobs Borchs Gate PED Relevant Case Study Compare
Freiburg im Breisgau, Dietenbach PED Relevant Case Study Compare
Lecce, SmartEnCity SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
Trento, STARDUST STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Malmö, Klimatkontrakt Hyllie PED Relevant Case Study Compare
Kaiserslautern, EnStadt:Pfaff PED Relevant Case Study / PED Lab Compare
Helsinki, mySMARTlife PED Relevant Case Study Compare
Firenze, Novoli-Cascine district on “le PIagge” buildings PED Relevant Case Study Compare
Bolzano, Sinfonia PED Relevant Case Study Compare
Zürich, Hunziker Areal PED Relevant Case Study Compare
Hammarby Sjöstad, Hammarby Sjöstad 2.0 PED Relevant Case Study Compare
Milano, Sharing Cities PED Relevant Case Study Compare
Mieres, District Heating Pozo Barredo PED Relevant Case Study Compare
Lund, Cityfied (demo Linero) PED Relevant Case Study Compare
Espoo, Smart Otaniemi PED Relevant Case Study / PED Lab Compare
Vienna, Zukunftsquartier PED Case Study Compare
Trento, Santa Chiara Open Lab PED Case Study Compare
Paterna, Barrio La Pinada PED Case Study / PED Lab Compare
Bergen, Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru, +CityxChange PED Case Study Compare
Trondheim, NTNU Campus within the Knowledge Axis ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Oslo, Furuset project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Măgurele, Laser Valley – Land of Lights PED Case Study Compare
Elverum, Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bodø, Airport, NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bærum, Fornebu ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Carquefou, Fleuraye west PED Case Study Compare
Åland, Smart Energy PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Uncompare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleEspoo, Kera
Trenčín
Trondheim, Svartlamon
Vantaa, Aviapolis
Borlänge, Rymdgatan’s Residential Portfolio
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabEspoo, KeraTrenčínTrondheim, SvartlamonVantaa, AviapolisBorlänge, Rymdgatan’s Residential Portfolio
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studyyesyesnoyesno
PED relevant case studyyesnonoyesyes
PED Lab.nonoyesyesno
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesyesyes
Annual energy surplusnoyesnonoyes
Energy communitynoyesyesnoyes
Circularityyesnonoyesno
Air quality and urban comfortnonononono
Electrificationnonononoyes
Net-zero energy costnonononono
Net-zero emissionnonononono
Self-sufficiency (energy autonomous)noyesnonono
Maximise self-sufficiencynonononoyes
Othernonononono
Other (A1P004)
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhasePlanning PhasePlanning PhasePlanning PhasePlanning Phase
A1P006: Start Date
A1P006: Start date01/1506/1911/2401/23
A1P007: End Date
A1P007: End date12/3511/2303/2612/27
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • GIS open datasets
  • General statistical datasets,
  • GIS open datasets
  • Open data city platform – different dashboards
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
      A1P011: Geographic coordinates
      X Coordinate (longitude):24.7537777818.04687051544292210.4224.95882115.394495
      Y Coordinate (latitude):60.2162222248.89925138034027463.436360.30548860.486609
      A1P012: Country
      A1P012: CountryFinlandSlovakiaNorwayFinlandSweden
      A1P013: City
      A1P013: CityEspooTrencinTrondheimVantaaBorlänge
      A1P014: Climate Zone (Köppen Geiger classification)
      A1P014: Climate Zone (Köppen Geiger classification).DfbCfbCfbDfbDsb
      A1P015: District boundary
      A1P015: District boundaryGeographicFunctionalVirtualGeographicGeographic
      Other
      A1P016: Ownership of the case study/PED Lab
      A1P016: Ownership of the case study/PED Lab:MixedMixedPrivateMixedMixed
      A1P017: Ownership of the land / physical infrastructure
      A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersSingle Owner
      A1P018: Number of buildings in PED
      A1P018: Number of buildings in PED1010
      A1P019: Conditioned space
      A1P019: Conditioned space [m²]20003700
      A1P020: Total ground area
      A1P020: Total ground area [m²]58000075000320038810009945
      A1P021: Floor area ratio: Conditioned space / total ground area
      A1P021: Floor area ratio: Conditioned space / total ground area00000
      A1P022: Financial schemes
      A1P022a: Financing - PRIVATE - Real estatenoyesnoyesno
      A1P022a: Add the value in EUR if available [EUR]
      A1P022b: Financing - PRIVATE - ESCO schemenonononono
      A1P022b: Add the value in EUR if available [EUR]
      A1P022c: Financing - PRIVATE - Othernononoyesno
      A1P022c: Add the value in EUR if available [EUR]
      A1P022d: Financing - PUBLIC - EU structural fundingnoyesnonono
      A1P022d: Add the value in EUR if available [EUR]
      A1P022e: Financing - PUBLIC - National fundingnonoyesnono
      A1P022e: Add the value in EUR if available [EUR]
      A1P022f: Financing - PUBLIC - Regional fundingnonononono
      A1P022f: Add the value in EUR if available [EUR]
      A1P022g: Financing - PUBLIC - Municipal fundingnoyesnoyesno
      A1P022g: Add the value in EUR if available [EUR]
      A1P022h: Financing - PUBLIC - Othernoyesnonono
      A1P022h: Add the value in EUR if available [EUR]
      A1P022i: Financing - RESEARCH FUNDING - EUnononoyesno
      A1P022i: Add the value in EUR if available [EUR]
      A1P022j: Financing - RESEARCH FUNDING - Nationalnonononono
      A1P022j: Add the value in EUR if available [EUR]
      A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononono
      A1P022k: Add the value in EUR if available [EUR]
      A1P022l: Financing - RESEARCH FUNDING - Othernonononono
      A1P022l: Add the value in EUR if available [EUR]
      A1P022: OtherMultiple different funding schemes depending on the case.Multiple different funding schemes depending on the development site within the District and Lab.
      A1P023: Economic Targets
      A1P023: Economic Targets
      • Job creation,
      • Positive externalities,
      • Boosting local businesses,
      • Boosting local and sustainable production,
      • Boosting consumption of local and sustainable products
      • Boosting local businesses,
      • Boosting local and sustainable production
      • Positive externalities,
      • Boosting local businesses,
      • Boosting local and sustainable production
      • Positive externalities,
      • Boosting local businesses,
      • Boosting consumption of local and sustainable products
      A1P023: OtherCircular economy
      A1P024: More comments:
      A1P024: More comments:
      A1P025: Estimated PED case study / PED LAB costs
      A1P025: Estimated PED case study / PED LAB costs [mil. EUR]00.02
      Contact person for general enquiries
      A1P026: NameJoni MäkinenVladimír ŠkolaTatiana González Grandón; Raymundo E. Torres-OlguinEira LinkoJingchun Shen
      A1P027: OrganizationCity of EspooCity of TrencinNTNUCity of VantaaHögskolan Dalarna
      A1P028: AffiliationMunicipality / Public BodiesOtherResearch Center / UniversityMunicipality / Public BodiesResearch Center / University
      A1P028: OtherProject Manager
      A1P029: Emailjoni.makinen@espoo.fivladimir.skola@trencin.sktatiana.c.g.grandon@ntnu.noeira.linko@vantaa.fijih@du.se
      Contact person for other special topics
      A1P030: NameVladimír ŠkolaRaymundo E. Torres-OlguinXingxing Zhang
      A1P031: Emailvladimir.skola@trencin.skraymundo.torres-olguin@sintef.noxza@du.se
      Pursuant to the General Data Protection RegulationYesYesYesYesYes
      A2P001: Fields of application
      A2P001: Fields of application
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies,
      • Waste management,
      • Construction materials
      • Energy efficiency,
      • Energy flexibility
      • Energy flexibility,
      • Digital technologies
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies,
      • Construction materials,
      • Other
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Construction materials
      A2P001: Other
      A2P002: Tools/strategies/methods applied for each of the above-selected fields
      A2P002: Tools/strategies/methods applied for each of the above-selected fields- Kera development commitment (https://www.espoo.fi/en/kera-development-commitment). - SPARCS Co-creation model for sustainable and smart urban areas (www.co-creatingsparcs.fi/en). - Kera area carbon neutrality roadmap (https://static.espoo.fi/cdn/ff/MHDdcMNJ9aYn7CjpoD4zNpo5M-M9HIDLXlJdUrUmf-8/1642756766/public/2022-01/Kera%20carbon%20neutrality%20map_EN.pdf)Pilot collaboration with landowners. Carbon footprint assessment and planning guidelines in zoning planning. Green infrastructure requirements. Examples of considered energy solutions: waste heat recovery and utilization, geothermal, air-water heat pumps, district heating return water, photovoltaics, A-class energy efficiency, smart control and monitoring, energy storages, E-mobility above national requirements, coolingLoad calculation and system optimisation: City Energy Analyst Identification of stranded assets for asset owners and investors to understand the carbon risks: CRREM
      A2P003: Application of ISO52000
      A2P003: Application of ISO52000NoNoNo
      A2P004: Appliances included in the calculation of the energy balance
      A2P004: Appliances included in the calculation of the energy balanceNoYes
      A2P005: Mobility included in the calculation of the energy balance
      A2P005: Mobility included in the calculation of the energy balanceNoNo
      A2P006: Description of how mobility is included (or not included) in the calculation
      A2P006: Description of how mobility is included (or not included) in the calculationThe calculation of the energy balance will be further developed and specified under the Neutralpath-project. Mobility related emissions are taken into account in the carbon footprint calculation of each zoning plan in the development area.
      A2P007: Annual energy demand in buildings / Thermal demand
      A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]54.5140.6777
      A2P008: Annual energy demand in buildings / Electric Demand
      A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]19.4900.03656
      A2P009: Annual energy demand for e-mobility
      A2P009: Annual energy demand for e-mobility [GWh/annum]00
      A2P010: Annual energy demand for urban infrastructure
      A2P010: Annual energy demand for urban infrastructure [GWh/annum]90
      A2P011: Annual renewable electricity production on-site during target year
      A2P011: PVyesnonoyesno
      A2P011: PV - specify production in GWh/annum [GWh/annum]4
      A2P011: Windnonononono
      A2P011: Wind - specify production in GWh/annum [GWh/annum]
      A2P011: Hydrononononono
      A2P011: Hydro - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_elnonononono
      A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_peat_elnonononono
      A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
      A2P011: PVT_elnonononoyes
      A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.01818
      A2P011: Othernonononono
      A2P011: Other - specify production in GWh/annum [GWh/annum]
      A2P012: Annual renewable thermal production on-site during target year
      A2P012: Geothermalnononoyesno
      A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Solar Thermalnonononono
      A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_heatnonononono
      A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: Waste heat+HPyesnonoyesno
      A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_peat_heatnonononono
      A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: PVT_thnonononoyes
      A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]0.0825
      A2P012: Biomass_firewood_thnonononono
      A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Othernonononono
      A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
      A2P013: Renewable resources on-site - Additional notes
      A2P013: Renewable resources on-site - Additional notesLocal energy utility will implement district level thermal solution. First, energy will be produced from waste heat from a local data center. Further thermal solutions are under discussion and development.
      A2P014: Annual energy use
      A2P014: Annual energy use [GWh/annum]78.80.318
      A2P015: Annual energy delivered
      A2P015: Annual energy delivered [GWh/annum]15.40.2055
      A2P016: Annual non-renewable electricity production on-site during target year
      A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]00
      A2P017: Annual non-renewable thermal production on-site during target year
      A2P017: Gasnonononono
      A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Coalnonononono
      A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Oilnonononono
      A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Othernonononoyes
      A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]0
      A2P018: Annual renewable electricity imports from outside the boundary during target year
      A2P018: PVnononoyesno
      A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
      A2P018: Windnononoyesno
      A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
      A2P018: Hydronononoyesno
      A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_elnononoyesno
      A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_peat_elnonononono
      A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: PVT_elnonononono
      A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Othernonononoyes
      A2P018 - Other: specify production in GWh/annum if available [GWh/annum]0.187
      A2P019: Annual renewable thermal imports from outside the boundary during target year
      A2P019: Geothermalnonononono
      A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Solar Thermalnonononono
      A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_heatnononoyesno
      A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Waste heat+HPnononoyesno
      A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_peat_heatnonononono
      A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: PVT_thnonononono
      A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_firewood_thnonononono
      A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Othernonononoyes
      A2P019 Other: Please specify imports in GWh/annum [GWh/annum]0
      A2P020: Share of RES on-site / RES outside the boundary
      A2P020: Share of RES on-site / RES outside the boundary00000.53839572192513
      A2P021: GHG-balance calculated for the PED
      A2P021: GHG-balance calculated for the PED [tCO2/annum]4500006.93
      A2P022: KPIs related to the PED case study / PED Lab
      A2P022: Safety & Securitynone
      A2P022: Healththermal comfort diagram
      A2P022: Educationnone
      A2P022: Mobilitynone
      A2P022: EnergyYesnormalized CO2/GHG & Energy intensity
      A2P022: Water
      A2P022: Economic developmentcost of excess emissions
      A2P022: Housing and Community
      A2P022: Waste
      A2P022: Other
      A2P023: Technological Solutions / Innovations - Energy Generation
      A2P023: Photovoltaicsyesnoyesyesyes
      A2P023: Solar thermal collectorsnonononoyes
      A2P023: Wind Turbinesnonononono
      A2P023: Geothermal energy systemnononoyesyes
      A2P023: Waste heat recoveryyesnonoyesyes
      A2P023: Waste to energynononoyesno
      A2P023: Polygenerationnononoyesno
      A2P023: Co-generationnonononono
      A2P023: Heat Pumpyesnonoyesyes
      A2P023: Hydrogennonononono
      A2P023: Hydropower plantnonononono
      A2P023: Biomassnononoyesno
      A2P023: Biogasnonononono
      A2P023: OtherBatteriesThe technological solutions can vary within the PED Lab area and will be specified case by case.
      A2P024: Technological Solutions / Innovations - Energy Flexibility
      A2P024: A2P024: Information and Communication Technologies (ICT)yesnoyesyesyes
      A2P024: Energy management systemyesyesyesyesno
      A2P024: Demand-side managementyesnonoyesno
      A2P024: Smart electricity gridyesnonoyesno
      A2P024: Thermal Storagenoyesnoyesyes
      A2P024: Electric Storagenoyesnoyesno
      A2P024: District Heating and Coolingyesyesnoyesyes
      A2P024: Smart metering and demand-responsive control systemsnononoyesno
      A2P024: P2P – buildingsnonoyesnono
      A2P024: OtherThe technological solutions can vary within the PED Lab area and will be specified case by case.
      A2P025: Technological Solutions / Innovations - Energy Efficiency
      A2P025: Deep Retrofittingnoyesnonoyes
      A2P025: Energy efficiency measures in historic buildingsnoyesnonono
      A2P025: High-performance new buildingsyesnonoyesno
      A2P025: Smart Public infrastructure (e.g. smart lighting)yesnoyesnono
      A2P025: Urban data platformsyesnoyesnono
      A2P025: Mobile applications for citizensnonononono
      A2P025: Building services (HVAC & Lighting)yesyesnoyesyes
      A2P025: Smart irrigationnonononono
      A2P025: Digital tracking for waste disposalnonononono
      A2P025: Smart surveillancenonononono
      A2P025: OtherThe technological solutions can vary within the PED Lab area and will be specified case by case.
      A2P026: Technological Solutions / Innovations - Mobility
      A2P026: Efficiency of vehicles (public and/or private)yesnonoyesno
      A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)yesnonoyesno
      A2P026: e-Mobilityyesnonoyesno
      A2P026: Soft mobility infrastructures and last mile solutionsyesnonoyesno
      A2P026: Car-free areanonononono
      A2P026: Other
      A2P027: Mobility strategies - Additional notes
      A2P027: Mobility strategies - Additional notesSUMP AVAILABLE
      A2P028: Energy efficiency certificates
      A2P028: Energy efficiency certificatesNoYesNo
      A2P028: If yes, please specify and/or enter notes
      A2P029: Any other building / district certificates
      A2P029: Any other building / district certificatesNoNo
      A2P029: If yes, please specify and/or enter notes
      A3P001: Relevant city /national strategy
      A3P001: Relevant city /national strategy
      • Energy master planning (SECAP, etc.),
      • Climate change adaption plan/strategy (e.g. Climate City contract)
      • Energy master planning (SECAP, etc.),
      • New development strategies,
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Promotion of energy communities (REC/CEC),
      • Climate change adaption plan/strategy (e.g. Climate City contract)
      A3P002: Quantitative targets included in the city / national strategy
      A3P002: Quantitative targets included in the city / national strategyCarbon-Neutral Vantaa by 2030 (min. 80 % reduction of yearly emissions, capture or compensation os the residual 20 %),The study aligns closely with the decarbonisation and energy reduction pathways of residential multi family buildings with 1.5°C global warming target in Sweden. This study will also contribute to the achievement of the carbon neturality of whole Borlänge city by 2030.
      A3P003: Strategies towards decarbonization of the gas grid
      A3P003: Strategies towards decarbonization of the gas grid
      A3P003: OtherSECAP developed in 2023
      A3P004: Identification of needs and priorities
      A3P004: Identification of needs and prioritiesSELF SUSTAINABILITY, SELF EFFICIENCYIn our project, we carried out a comprehensive exploration of strategies to achieve positive energy districts in a Swedish residential portfolio. The focus on urban energy transitions necessitates a holistic approach that integrates building retrofit, solar technology exploration, and heating supply optimisation. Exploration of Local Solar Sources: The analysis reveals varying solar irradiance resources throughout the year, emphasizing the importance of strategic placement. Integration of combined photovoltaic and thermal panels into building envelopes demonstrates the potential to cover a significant portion of the energy demand even in Sweden. Heating Supply Optimisation with Solar Technologies: Despite the surplus energy production from on-site solar technology, challenges arise due to temporal energy asymmetry. The introduction of heat pumps emerges as a feasible solution to balance energy gaps, utilising both rejected and free heat. Optimisation scenarios, utilising a combination of geothermal heat pumps, water source heat pumps, and PVT, showcase remarkable reductions in emissions and primary energy consumption. Urban Form and Energy Infrastructure Design: We realised the importance of returning to urban form and energy infrastructure design to optimise future residential portfolio potential. Building layout design, influenced by zoning regulations and innovative typologies, plays a crucial role in achieving district level energy efficiency. Future challenges, including demographic shifts, e-mobility, and climate change, necessitate a more holistic approach to energy infrastructure design, addressing not only heating and electricity demands but also cooling requirements.
      A3P005: Sustainable behaviour
      A3P005: Sustainable behaviourBASED ON SECAP DEVELOPED IN 2023While our investigation primarily centres on technical optimisation within Positive Energy District (PED) development, it is essential to acknowledge the broader scope encompassing social and governance dimensions. Specifically, understanding stakeholders' willingness to embrace technical recommendations upon project completion is important. Several potential influencing factors merit exploration, including economic considerations, technical optimisation-associated embodied carbon balance, the general public's technical perceptions, and operational feasibility. Evaluating these aspects holistically not only enhances the efficacy of PED initiatives but also fosters greater acceptance and participation within the communities they serve.
      A3P006: Economic strategies
      A3P006: Economic strategies
      • PPP models,
      • Circular economy models
      • Local trading,
      • Existing incentives
      • Innovative business models,
      • PPP models,
      • Life Cycle Cost,
      • Circular economy models
      • Open data business models,
      • Life Cycle Cost,
      • Circular economy models,
      • Local trading
      A3P006: Other
      A3P007: Social models
      A3P007: Social models
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Quality of Life
      • Co-creation / Citizen engagement strategies
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Citizen Social Research,
      • Policy Forums,
      • Quality of Life,
      • Strategies towards social mix,
      • Affordability,
      • Prevention of energy poverty,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Strategies towards (local) community-building,
      • Behavioural Change / End-users engagement,
      • Social incentives,
      • Affordability,
      • Digital Inclusion
      A3P007: Other
      A3P008: Integrated urban strategies
      A3P008: Integrated urban strategies
      • Strategic urban planning,
      • Digital twinning and visual 3D models,
      • District Energy plans
      • Strategic urban planning,
      • SECAP Updates
      • Strategic urban planning,
      • Digital twinning and visual 3D models,
      • District Energy plans,
      • Building / district Certification
      A3P008: Other
      A3P009: Environmental strategies
      A3P009: Environmental strategies
      • Net zero carbon footprint,
      • Life Cycle approach,
      • Greening strategies,
      • Nature Based Solutions (NBS)
      • Low Emission Zone
      • Net zero carbon footprint,
      • Life Cycle approach,
      • Greening strategies,
      • Nature Based Solutions (NBS)
      • Low Emission Zone,
      • Net zero carbon footprint,
      • Life Cycle approach,
      • Sustainable Urban drainage systems (SUDS)
      A3P009: Other
      A3P010: Legal / Regulatory aspects
      A3P010: Legal / Regulatory aspects
      B1P001: PED/PED relevant concept definition
      B1P001: PED/PED relevant concept definitionImplementation of district level heating system to make heating energy positive and expanding local renewable electricity production.GOOD MIX OF PUBLIC PRIVATE BUILDINGSNeutralpath-project is working with the cocept of PCEDs = Positive and Clean Energy Districts (energy-efficient and energy-flexible districts with net zero greenhouse gas emissions and a surplus of renewable energy). Aviapolis Climate-Neutral Lab will work with both PCED and PCED relevant cases within the district.The Rymdgatan's Residential Portfolio in Sweden presents a compelling case study for its classification as a PED-related research, given its alignment with sustainable behaviours and overarching PED development principles as follows: Inclusivity and Social Equity: The residential portfolio situated in Rymdgatan caters primarily to a low-income community. By focusing on this demographic, the project addresses critical aspects of social equity within sustainable urban development. Ensuring access to energy-efficient housing and amenities for economically disadvantaged populations not only fosters social cohesion but also mitigates energy poverty, a pressing concern in many urban contexts. Multifamily Residential Building: The inclusion of multifamily residential buildings within the portfolio underscores a commitment to density and efficient land use, both essential components of sustainable urban design. Such developments promote resource optimisation by consolidating housing units, thereby reducing per capita energy consumption and infrastructure demands. Moreover, multifamily dwellings often facilitate community engagement and shared resource management, fostering a culture of sustainability among residents. Low Carbon Retrofitting and Transition: The overarching initiative to transition the entire Jakobsgårdarna district. The included Rymdgatan portfolio, towards low carbon retrofitting, represents a significant example of decarbonization and climate resilience. By integrating energy-efficient technologies and renewable energy solutions into existing infrastructure, the project not only reduces carbon emissions but also serves as a blueprint for revitalising old urban environments sustainably. This holistic approach to retrofitting demonstrates a systemic commitment to environmental stewardship and long-term sustainability. Climate Adaptation and Renewable Energy Integration: Despite Sweden's climatic challenges, including lower solar resources during winter months, the Rymdgatan project leverages its geographical context to optimize renewable energy utilization. Sweden's greater solar resource availability during summer and geothermal potentials complement the design's emphasis on seasonal energy planning, where surplus energy generated during peak periods can be stored or redistributed efficiently. By embracing climate-responsive design strategies, the project demonstrates resilience in the face of climate variability while harnessing renewable energy potential effectively.
      B1P002: Motivation behind PED/PED relevant project development
      B1P002: Motivation behind PED/PED relevant project developmentReplication of unique PED know howAccording to Vantaa city strategy 2021-2025 Aviapolis area aims to become the greenest airport city in Europe. The district is transforming from a logistics and business focused area to a lively urban district which gives an opportunity to rethink the areas energy solutions. With Neutralpath-project Vantaa aims to support the development of the district's energy system and explore innovative, energy efficient and fossil free district energy solutions.Borlänge city has committed to become the carbon-neutral city by 2030.
      B1P003: Environment of the case study area
      B2P003: Environment of the case study areaUrban areaUrban areaUrban areaUrban area
      B1P004: Type of district
      B2P004: Type of district
      • New construction
      • New construction,
      • Renovation
      • New construction,
      • Renovation
      • Renovation
      B1P005: Case Study Context
      B1P005: Case Study Context
      • Re-use / Transformation Area
      • Retrofitting Area
      • Re-use / Transformation Area,
      • New Development
      • Re-use / Transformation Area,
      • Retrofitting Area
      B1P006: Year of construction
      B1P006: Year of construction1990
      B1P007: District population before intervention - Residential
      B1P007: District population before intervention - Residential100
      B1P008: District population after intervention - Residential
      B1P008: District population after intervention - Residential14000100
      B1P009: District population before intervention - Non-residential
      B1P009: District population before intervention - Non-residential6
      B1P010: District population after intervention - Non-residential
      B1P010: District population after intervention - Non-residential100006
      B1P011: Population density before intervention
      B1P011: Population density before intervention00000
      B1P012: Population density after intervention
      B1P012: Population density after intervention0.0413793103448280000.010658622423328
      B1P013: Building and Land Use before intervention
      B1P013: Residentialyesnonoyesyes
      B1P013 - Residential: Specify the sqm [m²]4360
      B1P013: Officeyesnonoyesno
      B1P013 - Office: Specify the sqm [m²]
      B1P013: Industry and Utilityyesnonoyesno
      B1P013 - Industry and Utility: Specify the sqm [m²]
      B1P013: Commercialnononoyesno
      B1P013 - Commercial: Specify the sqm [m²]
      B1P013: Institutionalnononoyesno
      B1P013 - Institutional: Specify the sqm [m²]
      B1P013: Natural areasnonononono
      B1P013 - Natural areas: Specify the sqm [m²]
      B1P013: Recreationalnononoyesno
      B1P013 - Recreational: Specify the sqm [m²]
      B1P013: Dismissed areasyesnonoyesno
      B1P013 - Dismissed areas: Specify the sqm [m²]
      B1P013: Othernonononoyes
      B1P013 - Other: Specify the sqm [m²]706
      B1P014: Building and Land Use after intervention
      B1P014: Residentialyesnonoyesyes
      B1P014 - Residential: Specify the sqm [m²]4360
      B1P014: Officeyesnonoyesno
      B1P014 - Office: Specify the sqm [m²]
      B1P014: Industry and Utilitynononoyesno
      B1P014 - Industry and Utility: Specify the sqm [m²]
      B1P014: Commercialyesnonoyesno
      B1P014 - Commercial: Specify the sqm [m²]
      B1P014: Institutionalnononoyesno
      B1P014 - Institutional: Specify the sqm [m²]
      B1P014: Natural areasnonononono
      B1P014 - Natural areas: Specify the sqm [m²]
      B1P014: Recreationalyesnonoyesno
      B1P014 - Recreational: Specify the sqm [m²]
      B1P014: Dismissed areasnonononono
      B1P014 - Dismissed areas: Specify the sqm [m²]
      B1P014: Othernonononoyes
      B1P014 - Other: Specify the sqm [m²]706
      B2P001: PED Lab concept definition
      B2P001: PED Lab concept definitionNeutralpath-project is working with the cocept of PCEDs = Positive and Clean Energy Districts (energy-efficient and energy-flexible districts with net zero greenhouse gas emissions and a surplus of renewable energy). Aviapolis Climate-Neutral Lab will work with both PCED and PCED relevant cases within the district.
      B2P002: Installation life time
      B2P002: Installation life time
      B2P003: Scale of action
      B2P003: ScaleDistrict
      B2P004: Operator of the installation
      B2P004: Operator of the installationThe City of Vantaa manages the lab, working closely with landowners and other stakeholders such as energy companies, solution providers, universities and citizens.
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P006: Circular Economy Approach
      B2P006: Do you apply any strategy to reuse and recycling the materials?
      B2P006: Other
      B2P007: Motivation for developing the PED Lab
      B2P007: Motivation for developing the PED Lab
      • Strategic
      B2P007: Other
      B2P008: Lead partner that manages the PED Lab
      B2P008: Lead partner that manages the PED LabMunicipality
      B2P008: Other
      B2P009: Collaborative partners that participate in the PED Lab
      B2P009: Collaborative partners that participate in the PED Lab
      • Academia,
      • Private,
      • Industrial,
      • Citizens, public, NGO
      B2P009: Other
      B2P010: Synergies between the fields of activities
      B2P010: Synergies between the fields of activities
      B2P011: Available facilities to test urban configurations in PED Lab
      B2P011: Available facilities to test urban configurations in PED Lab
      B2P011: Other
      B2P012: Incubation capacities of PED Lab
      B2P012: Incubation capacities of PED Lab
      B2P013: Availability of the facilities for external people
      B2P013: Availability of the facilities for external people
      B2P014: Monitoring measures
      B2P014: Monitoring measures
      B2P015: Key Performance indicators
      B2P015: Key Performance indicators
      • Energy,
      • Environmental,
      • Social,
      • Economical / Financial
      B2P016: Execution of operations
      B2P016: Execution of operations
      B2P017: Capacities
      B2P017: Capacities
      B2P018: Relations with stakeholders
      B2P018: Relations with stakeholders
      B2P019: Available tools
      B2P019: Available tools
      • Energy modelling
      B2P019: Available tools
      B2P020: External accessibility
      B2P020: External accessibilityTo follow the lab and Vantaa's activities in Neutralpath, fill in the following form: https://neutralpath.eu/fi/tayta-lomake-liittyaksesi-cn-labiin/
      C1P001: Unlocking Factors
      C1P001: Recent technological improvements for on-site RES production5 - Very important1 - Unimportant3 - Moderately important5 - Very important4 - Important
      C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock4 - Important1 - Unimportant1 - Unimportant4 - Important5 - Very important
      C1P001: Energy Communities, P2P, Prosumers concepts3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important
      C1P001: Storage systems and E-mobility market penetration4 - Important1 - Unimportant4 - Important5 - Very important3 - Moderately important
      C1P001: Decreasing costs of innovative materials3 - Moderately important1 - Unimportant1 - Unimportant4 - Important4 - Important
      C1P001: Financial mechanisms to reduce costs and maximize benefits3 - Moderately important1 - Unimportant4 - Important3 - Moderately important5 - Very important
      C1P001: The ability to predict Multiple Benefits3 - Moderately important1 - Unimportant2 - Slightly important4 - Important4 - Important
      C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important4 - Important
      C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important1 - Unimportant4 - Important3 - Moderately important5 - Very important
      C1P001: Social acceptance (top-down)3 - Moderately important1 - Unimportant4 - Important4 - Important5 - Very important
      C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important1 - Unimportant5 - Very important5 - Very important4 - Important
      C1P001: Presence of integrated urban strategies and plans4 - Important1 - Unimportant2 - Slightly important5 - Very important5 - Very important
      C1P001: Multidisciplinary approaches available for systemic integration5 - Very important1 - Unimportant2 - Slightly important4 - Important5 - Very important
      C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects3 - Moderately important1 - Unimportant4 - Important3 - Moderately important4 - Important
      C1P001: Availability of RES on site (Local RES)4 - Important1 - Unimportant4 - Important5 - Very important5 - Very important
      C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders5 - Very important1 - Unimportant3 - Moderately important5 - Very important2 - Slightly important
      C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
      C1P001: Any other UNLOCKING FACTORS (if any)Real-estate market situation
      C1P002: Driving Factors
      C1P002: Climate Change adaptation need5 - Very important1 - Unimportant4 - Important4 - Important5 - Very important
      C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important1 - Unimportant4 - Important5 - Very important5 - Very important
      C1P002: Rapid urbanization trend and need of urban expansions4 - Important1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important
      C1P002: Urban re-development of existing built environment5 - Very important1 - Unimportant3 - Moderately important5 - Very important4 - Important
      C1P002: Economic growth need4 - Important1 - Unimportant3 - Moderately important4 - Important4 - Important
      C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)4 - Important1 - Unimportant4 - Important4 - Important1 - Unimportant
      C1P002: Territorial and market attractiveness3 - Moderately important1 - Unimportant4 - Important5 - Very important1 - Unimportant
      C1P002: Energy autonomy/independence2 - Slightly important1 - Unimportant4 - Important3 - Moderately important2 - Slightly important
      C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P002: Any other DRIVING FACTOR (if any)
      C1P003: Administrative barriers
      C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important1 - Unimportant5 - Very important4 - Important4 - Important
      C1P003: Lack of good cooperation and acceptance among partners5 - Very important1 - Unimportant4 - Important5 - Very important4 - Important
      C1P003: Lack of public participation4 - Important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important
      C1P003: Lack of institutions/mechanisms to disseminate information4 - Important1 - Unimportant4 - Important1 - Unimportant4 - Important
      C1P003:Long and complex procedures for authorization of project activities3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important
      C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important
      C1P003: Complicated and non-comprehensive public procurement3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important5 - Very important
      C1P003: Fragmented and or complex ownership structure3 - Moderately important1 - Unimportant4 - Important5 - Very important4 - Important
      C1P003: City administration & cross-sectoral attitude/approaches (silos)4 - Important1 - Unimportant3 - Moderately important2 - Slightly important5 - Very important
      C1P003: Lack of internal capacities to support energy transition4 - Important1 - Unimportant3 - Moderately important3 - Moderately important5 - Very important
      C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P003: Any other Administrative BARRIER (if any)
      C1P004: Policy barriers
      C1P004: Lack of long-term and consistent energy plans and policies4 - Important1 - Unimportant5 - Very important3 - Moderately important5 - Very important
      C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important1 - Unimportant4 - Important3 - Moderately important5 - Very important
      C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important1 - Unimportant4 - Important3 - Moderately important4 - Important
      C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P004: Any other Political BARRIER (if any)
      C1P005: Legal and Regulatory barriers
      C1P005: Inadequate regulations for new technologies3 - Moderately important1 - Unimportant4 - Important3 - Moderately important4 - Important
      C1P005: Regulatory instability3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important
      C1P005: Non-effective regulations3 - Moderately important1 - Unimportant2 - Slightly important4 - Important2 - Slightly important
      C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important4 - Important
      C1P005: Building code and land-use planning hindering innovative technologies4 - Important1 - Unimportant3 - Moderately important2 - Slightly important2 - Slightly important
      C1P005: Insufficient or insecure financial incentives5 - Very important1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important
      C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation2 - Slightly important1 - Unimportant3 - Moderately important2 - Slightly important2 - Slightly important
      C1P005: Shortage of proven and tested solutions and examples2 - Slightly important1 - Unimportant4 - Important2 - Slightly important4 - Important
      C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P005: Any other Legal and Regulatory BARRIER (if any)
      C1P006: Environmental barriers
      C1P006: Environmental barriers2 - Slightly important
      C1P007: Technical barriers
      C1P007: Lack of skilled and trained personnel3 - Moderately important1 - Unimportant4 - Important3 - Moderately important4 - Important
      C1P007: Deficient planning3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important
      C1P007: Retrofitting work in dwellings in occupied state1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important
      C1P007: Lack of well-defined process3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important
      C1P007: Inaccuracy in energy modelling and simulation3 - Moderately important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important
      C1P007: Lack/cost of computational scalability3 - Moderately important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important
      C1P007: Grid congestion, grid instability3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important
      C1P007: Negative effects of project intervention on the natural environment3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important
      C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
      C1P007: Difficult definition of system boundaries2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
      C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P007: Any other Thecnical BARRIER (if any)
      C1P008: Social and Cultural barriers
      C1P008: Inertia3 - Moderately important1 - Unimportant2 - Slightly important4 - Important2 - Slightly important
      C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important1 - Unimportant4 - Important3 - Moderately important5 - Very important
      C1P008: Low acceptance of new projects and technologies3 - Moderately important1 - Unimportant4 - Important1 - Unimportant5 - Very important
      C1P008: Difficulty of finding and engaging relevant actors4 - Important1 - Unimportant4 - Important1 - Unimportant4 - Important
      C1P008: Lack of trust beyond social network3 - Moderately important1 - Unimportant4 - Important1 - Unimportant5 - Very important
      C1P008: Rebound effect3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important
      C1P008: Hostile or passive attitude towards environmentalism2 - Slightly important1 - Unimportant5 - Very important2 - Slightly important3 - Moderately important
      C1P008: Exclusion of socially disadvantaged groups4 - Important1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important
      C1P008: Non-energy issues are more important and urgent for actors2 - Slightly important1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important
      C1P008: Hostile or passive attitude towards energy collaboration2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important
      C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P008: Any other Social BARRIER (if any)
      C1P009: Information and Awareness barriers
      C1P009: Insufficient information on the part of potential users and consumers4 - Important1 - Unimportant4 - Important4 - Important3 - Moderately important
      C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts4 - Important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
      C1P009: Lack of awareness among authorities3 - Moderately important1 - Unimportant4 - Important3 - Moderately important5 - Very important
      C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important1 - Unimportant4 - Important2 - Slightly important5 - Very important
      C1P009: High costs of design, material, construction, and installation4 - Important1 - Unimportant4 - Important4 - Important5 - Very important
      C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P009: Any other Information and Awareness BARRIER (if any)
      C1P010: Financial barriers
      C1P010: Hidden costs3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important5 - Very important
      C1P010: Insufficient external financial support and funding for project activities4 - Important1 - Unimportant5 - Very important2 - Slightly important5 - Very important
      C1P010: Economic crisis4 - Important1 - Unimportant3 - Moderately important2 - Slightly important5 - Very important
      C1P010: Risk and uncertainty3 - Moderately important1 - Unimportant5 - Very important4 - Important5 - Very important
      C1P010: Lack of consolidated and tested business models3 - Moderately important1 - Unimportant4 - Important5 - Very important5 - Very important
      C1P010: Limited access to capital and cost disincentives3 - Moderately important1 - Unimportant4 - Important2 - Slightly important5 - Very important
      C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P010: Any other Financial BARRIER (if any)
      C1P011: Market barriers
      C1P011: Split incentives3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important4 - Important
      C1P011: Energy price distortion3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important4 - Important
      C1P011: Energy market concentration, gatekeeper actors (DSOs)3 - Moderately important1 - Unimportant4 - Important2 - Slightly important3 - Moderately important
      C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P011: Any other Market BARRIER (if any)
      C1P012: Stakeholders involved
      C1P012: Government/Public Authorities
      • Planning/leading,
      • Design/demand aggregation
      • Planning/leading
      • Monitoring/operation/management
      C1P012: Research & Innovation
      • Planning/leading,
      • Design/demand aggregation
      • Design/demand aggregation
      • Planning/leading
      C1P012: Financial/Funding
      • Design/demand aggregation,
      • Construction/implementation
      • None
      C1P012: Analyst, ICT and Big Data
      • Planning/leading,
      • Monitoring/operation/management
      • Design/demand aggregation
      • None
      C1P012: Business process management
      • Design/demand aggregation,
      • Construction/implementation
      • None
      C1P012: Urban Services providers
      • Planning/leading,
      • Construction/implementation
      • None
      C1P012: Real Estate developers
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Design/demand aggregation
      C1P012: Design/Construction companies
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • Construction/implementation
      • None
      C1P012: End‐users/Occupants/Energy Citizens
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Monitoring/operation/management
      • Monitoring/operation/management
      C1P012: Social/Civil Society/NGOs
      • Planning/leading
      • Monitoring/operation/management
      C1P012: Industry/SME/eCommerce
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • Construction/implementation
      • None
      C1P012: Other
      C1P012: Other (if any)
      Summary

      Authors (framework concept)

      Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

      Contributors (to the content)

      Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

      Implemented by

      Boutik.pt: Filipe Martins, Jamal Khan
      Marek Suchánek (Czech Technical University in Prague)