Filters:
NameProjectTypeCompare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Compare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Uncompare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Uncompare
Pamplona OPEN4CEC PED Lab Uncompare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr, Geothermal District Heating Project PED Relevant Case Study Compare
Drammen, Jacobs Borchs Gate PED Relevant Case Study Compare
Freiburg im Breisgau, Dietenbach PED Relevant Case Study Compare
Lecce, SmartEnCity SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
Trento, STARDUST STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Malmö, Klimatkontrakt Hyllie PED Relevant Case Study Compare
Kaiserslautern, EnStadt:Pfaff PED Relevant Case Study / PED Lab Compare
Helsinki, mySMARTlife PED Relevant Case Study Compare
Firenze, Novoli-Cascine district on “le PIagge” buildings PED Relevant Case Study Compare
Bolzano, Sinfonia PED Relevant Case Study Compare
Zürich, Hunziker Areal PED Relevant Case Study Compare
Hammarby Sjöstad, Hammarby Sjöstad 2.0 PED Relevant Case Study Compare
Milano, Sharing Cities PED Relevant Case Study Compare
Mieres, District Heating Pozo Barredo PED Relevant Case Study Compare
Lund, Cityfied (demo Linero) PED Relevant Case Study Compare
Espoo, Smart Otaniemi PED Relevant Case Study / PED Lab Compare
Vienna, Zukunftsquartier PED Case Study Compare
Trento, Santa Chiara Open Lab PED Case Study Compare
Paterna, Barrio La Pinada PED Case Study / PED Lab Compare
Bergen, Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru, +CityxChange PED Case Study Uncompare
Trondheim, NTNU Campus within the Knowledge Axis ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Oslo, Furuset project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Măgurele, Laser Valley – Land of Lights PED Case Study Compare
Elverum, Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bodø, Airport, NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bærum, Fornebu ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Carquefou, Fleuraye west PED Case Study Compare
Åland, Smart Energy PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Uncompare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Uncompare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Uncompare
TitleEspoo, Kera
Borlänge, Rymdgatan’s Residential Portfolio
Võru, +CityxChange
Istanbul, Ozyegin University Campus
Kifissia, Energy community
Pamplona
Graz, Reininghausgründe
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabEspoo, KeraBorlänge, Rymdgatan’s Residential PortfolioVõru, +CityxChangeIstanbul, Ozyegin University CampusKifissia, Energy communityPamplonaGraz, ReininghausgründeBucharest, The Bucharest University of Economic Studies (ASE) PED LabCerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studyyesnoyesnononoyesnono
PED relevant case studyyesyesnoyesyesnononono
PED Lab.nononononoyesnoyesyes
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesyesnoyesyesyesyes
Annual energy surplusnoyesnonononononono
Energy communitynoyesnonoyesyesnonono
Circularityyesnononononononono
Air quality and urban comfortnononoyesyesnononono
Electrificationnoyesnoyesyesnononono
Net-zero energy costnonononononononono
Net-zero emissionnonoyesnononononono
Self-sufficiency (energy autonomous)nonononononononono
Maximise self-sufficiencynoyesnonononononono
Othernonoyesyesnononoyesyes
Other (A1P004)Sustainable Development; Energy neutral; Energy efficient; Carbon-free; Sustainable neighbourhood; Social aspects/affordabilityalmost nZEB districtSmart Buildings: PV generation/home consumption behaviour emulation at LAB
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhasePlanning PhaseCompletedImplementation PhasePlanning PhaseImplementation PhaseImplementation PhasePlanning PhasePlanning Phase
A1P006: Start Date
A1P006: Start date01/1511/1810/2406/24201903/2509/25
A1P007: End Date
A1P007: End date12/3511/2310/2807/28202512/2712/26
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Open data city platform – different dashboards
  • General statistical datasets
  • GIS open datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
          • E. Rainer, H. Schnitzer, T. Mach, T. Wieland, M. Reiter, L. Fickert, E. Schmautzer, A. Passer, H. Oblak, H. Kreiner, R. Lazar, M. Duschek, et al. (2015): Rahmenplan Energy City Graz-Reininghaus – Subprojekt 2 des Leitprojektes „ECR Energy City Graz – Reininghaus Online: Rahmenplan Energy City Graz-Reininghaus - Haus der Zukunft (nachhaltigwirtschaften.at),
          • H.Schnitzer et al. (2016): Arbeiten und Wohnen in der Smart City Reininghaus, Online: Arbeiten und Wohnen in Graz Reininghaus - Smartcities
              A1P011: Geographic coordinates
              X Coordinate (longitude):24.7537777815.39449526.99594829.25830023.814588-1.6432315.40744026.097394325914982.112145524436096
              Y Coordinate (latitude):60.2162222260.48660957.84581341.03060038.07734942.8168747.060744.4472496751992941.50030860080592
              A1P012: Country
              A1P012: CountryFinlandSwedenEstoniaTurkeyGreeceSpainAustriaRomaniaSpain
              A1P013: City
              A1P013: CityEspooBorlängeVõruIstanbulMunicipality of KifissiaPamplonaGrazBucharestCerdanyola del Valles
              A1P014: Climate Zone (Köppen Geiger classification)
              A1P014: Climate Zone (Köppen Geiger classification).DfbDsbDfbCfaCsaCfbDfbCsaCsa
              A1P015: District boundary
              A1P015: District boundaryGeographicGeographicGeographicVirtualGeographicGeographicGeographicFunctional
              OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhood
              A1P016: Ownership of the case study/PED Lab
              A1P016: Ownership of the case study/PED Lab:MixedMixedMixedPrivateMixedMixedPublicPublic
              A1P017: Ownership of the land / physical infrastructure
              A1P017: Ownership of the land / physical infrastructure:Multiple OwnersSingle OwnerMultiple OwnersSingle OwnerMultiple OwnersMultiple OwnersSingle OwnerSingle Owner
              A1P018: Number of buildings in PED
              A1P018: Number of buildings in PED1015100
              A1P019: Conditioned space
              A1P019: Conditioned space [m²]3700
              A1P020: Total ground area
              A1P020: Total ground area [m²]5800009945220000285.400235500001000000485
              A1P021: Floor area ratio: Conditioned space / total ground area
              A1P021: Floor area ratio: Conditioned space / total ground area000000000
              A1P022: Financial schemes
              A1P022a: Financing - PRIVATE - Real estatenononoyesnonoyesnono
              A1P022a: Add the value in EUR if available [EUR]
              A1P022b: Financing - PRIVATE - ESCO schemenonononononononono
              A1P022b: Add the value in EUR if available [EUR]
              A1P022c: Financing - PRIVATE - Othernonononononononono
              A1P022c: Add the value in EUR if available [EUR]
              A1P022d: Financing - PUBLIC - EU structural fundingnonononononononono
              A1P022d: Add the value in EUR if available [EUR]
              A1P022e: Financing - PUBLIC - National fundingnonononononoyesnono
              A1P022e: Add the value in EUR if available [EUR]
              A1P022f: Financing - PUBLIC - Regional fundingnonononononononono
              A1P022f: Add the value in EUR if available [EUR]
              A1P022g: Financing - PUBLIC - Municipal fundingnononononoyesyesnono
              A1P022g: Add the value in EUR if available [EUR]
              A1P022h: Financing - PUBLIC - Othernononononononoyesyes
              A1P022h: Add the value in EUR if available [EUR]
              A1P022i: Financing - RESEARCH FUNDING - EUnononoyesnonononono
              A1P022i: Add the value in EUR if available [EUR]
              A1P022j: Financing - RESEARCH FUNDING - Nationalnonononononononono
              A1P022j: Add the value in EUR if available [EUR]
              A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononononono
              A1P022k: Add the value in EUR if available [EUR]
              A1P022l: Financing - RESEARCH FUNDING - Othernonononononononono
              A1P022l: Add the value in EUR if available [EUR]
              A1P022: OtherMultiple different funding schemes depending on the case.
              A1P023: Economic Targets
              A1P023: Economic Targets
              • Job creation,
              • Positive externalities,
              • Boosting local businesses,
              • Boosting local and sustainable production,
              • Boosting consumption of local and sustainable products
              • Positive externalities,
              • Boosting local businesses,
              • Boosting consumption of local and sustainable products
              • Positive externalities,
              • Boosting local and sustainable production,
              • Boosting consumption of local and sustainable products
              • Job creation,
              • Boosting local businesses,
              • Boosting consumption of local and sustainable products
              A1P023: OtherCircular economy
              A1P024: More comments:
              A1P024: More comments:In addition to having the most energy efficient academic building in Turkey, the university campus also has 3 buildings with LEED NC Campus certificate and LEED BD+C Gold certificate. In addition, it aims to continuously improve the energy efficiency objectives on campus in an innovative way. For this purpose, energy management and storage systems are being installed in the Dormitory 6 building, which is used as the demo area of the LEGOFIT project, for the purpose of turning it into a PED project.The “Reininghausgründe” are a new quarter near the centre of the City of Graz. In the area of a former brewery, close to more, still working industries, a new town centre is being established. It will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the city centre by bike paths, busses and a tram. Car sharing is provided as well. Some key-energy aspects: • characteristic 1: For the heat supply in the innovative Reininghaus energy model, low-temperature waste heat from a nearby steel plant is harnessed through the use of heat pumps. • characteristic 2: The district heating system operates at low temperatures. • characteristic 3: Generated heat that is not used immediately is stored in the power tower and supplied on demand. Other important aspects of the project are the following: • characteristic 1: Most houses are low-energy houses, some of the certified with the “Klima Aktiv” label • characteristic 2: There are extremely few parking possibilities for residents and visitors; this will foster the use of public transport and bikes • characteristic 3: All the necessary infrastructure for the “daily need” can be reached within walking distance The area of the project is going to be very “green” when finished. Featuring a big district parc, lots of other green spaces are in planning.
              A1P025: Estimated PED case study / PED LAB costs
              A1P025: Estimated PED case study / PED LAB costs [mil. EUR]1
              Contact person for general enquiries
              A1P026: NameJoni MäkinenJingchun ShenChristoph GollnerCem KeskinArtemis Giavasoglou, Kleopatra KalampokaOscar Puyal LAtorreKatharina SchwarzAdela BaraJose Lopez Vicario
              A1P027: OrganizationCity of EspooHögskolan DalarnaFFGCenter for Energy, Environment and Economy, Ozyegin UniversityMunicipality of Kifissia – SPARCS local teamEndef Engineering SLStadtLABOR, Innovationen für urbane Lebensqualität GmbHThe Bucharest University of Economic StudiesUniversitat Autonoma Barcelona (UAB)
              A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityOtherResearch Center / UniversityMunicipality / Public BodiesSME / IndustrySME / IndustryResearch Center / UniversityResearch Center / University
              A1P028: Other
              A1P029: Emailjoni.makinen@espoo.fijih@du.sechristoph.gollner@ffg.atcem.keskin@ozyegin.edu.trgiavasoglou@kifissia.groscar.puyal@endef.comkatharina.schwarz@stadtlaborgraz.atBara.adela@ie.ase.rojose.vicario@uab.cat
              Contact person for other special topics
              A1P030: NameXingxing ZhangM. Pınar MengüçStavros Zapantis - vice mayorHans Schnitzer
              A1P031: Emailxza@du.sepinar.menguc@ozyegin.edu.trstavros.zapantis@gmail.comhans.schnitzer@stadtlaborgraz.at
              Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYes
              A2P001: Fields of application
              A2P001: Fields of application
              • Energy efficiency,
              • Energy flexibility,
              • Energy production,
              • E-mobility,
              • Digital technologies,
              • Waste management,
              • Construction materials
              • Energy efficiency,
              • Energy flexibility,
              • Energy production,
              • E-mobility,
              • Construction materials
              • Energy efficiency,
              • Energy production
              • Energy efficiency,
              • Energy flexibility,
              • Energy production,
              • E-mobility,
              • Digital technologies,
              • Waste management,
              • Indoor air quality,
              • Construction materials
              • Energy production
              • Energy efficiency
              • Energy efficiency,
              • Urban comfort (pollution, heat island, noise level etc.),
              • Water use,
              • Indoor air quality,
              • Other
              • Energy efficiency,
              • Energy flexibility,
              • Digital technologies,
              • Indoor air quality
              • Energy efficiency,
              • Energy flexibility,
              • Digital technologies
              A2P001: OtherUrban Management; Air Quality
              A2P002: Tools/strategies/methods applied for each of the above-selected fields
              A2P002: Tools/strategies/methods applied for each of the above-selected fields- Kera development commitment (https://www.espoo.fi/en/kera-development-commitment). - SPARCS Co-creation model for sustainable and smart urban areas (www.co-creatingsparcs.fi/en). - Kera area carbon neutrality roadmap (https://static.espoo.fi/cdn/ff/MHDdcMNJ9aYn7CjpoD4zNpo5M-M9HIDLXlJdUrUmf-8/1642756766/public/2022-01/Kera%20carbon%20neutrality%20map_EN.pdf)Load calculation and system optimisation: City Energy Analyst Identification of stranded assets for asset owners and investors to understand the carbon risks: CRREMLEED NC Campus + LEGOFIT Project Energy Efficiency: Tri- generation, Compliance with ISO 50001, ASHRAE 90.1, energy efficient appliances, HVAC and lighting Energy flexibility: Energy demand management Energy production: Solar PVs Onsite + (to be installed more) E-mobility: EV Charging stations Indoor Air Quality: Energy Management System, Compliance with ASHRAE 62.1, ASHRAE 55 Construction materials: Passive systems, LEED certified buildings, innovative materials such as PCM Waste Management: Zero waste documentEnergy efficiency: o Several activities: Workshops, Webinars to deepen the knowledge and raise awareness renewable energies o for example rooftop Photovoltaics green & blue infrastructures o Parks, Rooftop Gardens, Quarter Parks, Water elements included in the parks rooftop farming o To produce vegetables in the quarter stormwater management mobility o less parking and less cars in the district. Solutions for boosting public transport with sponsored public transport tickets; building of better bike and pedestrian infrastructure social aspects o district management was established in the district local supply of goods of daily need o Schools within 15 minutes walking distance Supermarkets and other shops within the district
              A2P003: Application of ISO52000
              A2P003: Application of ISO52000NoNoYesNo
              A2P004: Appliances included in the calculation of the energy balance
              A2P004: Appliances included in the calculation of the energy balanceNoYesYesYes
              A2P005: Mobility included in the calculation of the energy balance
              A2P005: Mobility included in the calculation of the energy balanceNoNoNoYes
              A2P006: Description of how mobility is included (or not included) in the calculation
              A2P006: Description of how mobility is included (or not included) in the calculationNot included, the campus is a non car area except emergencies- Number of cars per household - Fraction of electric cars - Number of public transport tickets (week/ annual tickets)
              A2P007: Annual energy demand in buildings / Thermal demand
              A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]54.50.6777
              A2P008: Annual energy demand in buildings / Electric Demand
              A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]19.40.03656
              A2P009: Annual energy demand for e-mobility
              A2P009: Annual energy demand for e-mobility [GWh/annum]0
              A2P010: Annual energy demand for urban infrastructure
              A2P010: Annual energy demand for urban infrastructure [GWh/annum]0
              A2P011: Annual renewable electricity production on-site during target year
              A2P011: PVyesnonoyesyesnoyesnono
              A2P011: PV - specify production in GWh/annum [GWh/annum]4
              A2P011: Windnonononononononono
              A2P011: Wind - specify production in GWh/annum [GWh/annum]
              A2P011: Hydrononononononononono
              A2P011: Hydro - specify production in GWh/annum [GWh/annum]
              A2P011: Biomass_elnonononononononono
              A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
              A2P011: Biomass_peat_elnonononononononono
              A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
              A2P011: PVT_elnoyesnonononononono
              A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.01818
              A2P011: Othernonononononononono
              A2P011: Other - specify production in GWh/annum [GWh/annum]
              A2P012: Annual renewable thermal production on-site during target year
              A2P012: Geothermalnonononononoyesnono
              A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
              A2P012: Solar Thermalnonononononoyesnono
              A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
              A2P012: Biomass_heatnonononononononono
              A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
              A2P012: Waste heat+HPyesnononononoyesnono
              A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
              A2P012: Biomass_peat_heatnonononononononono
              A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
              A2P012: PVT_thnoyesnonononononono
              A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]0.0825
              A2P012: Biomass_firewood_thnonononononononono
              A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
              A2P012: Othernonononononononono
              A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
              A2P013: Renewable resources on-site - Additional notes
              A2P013: Renewable resources on-site - Additional notesLocal energy utility will implement district level thermal solution. First, energy will be produced from waste heat from a local data center. Further thermal solutions are under discussion and development.Groundwater (used for heat pumps)
              A2P014: Annual energy use
              A2P014: Annual energy use [GWh/annum]78.80.3183.5
              A2P015: Annual energy delivered
              A2P015: Annual energy delivered [GWh/annum]15.40.2055
              A2P016: Annual non-renewable electricity production on-site during target year
              A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]00
              A2P017: Annual non-renewable thermal production on-site during target year
              A2P017: Gasnonononononononono
              A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
              A2P017: Coalnonononononononono
              A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
              A2P017: Oilnonononononononono
              A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
              A2P017: Othernoyesnonononononono
              A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]0
              A2P018: Annual renewable electricity imports from outside the boundary during target year
              A2P018: PVnononoyesnonoyesnono
              A2P018 - PV: specify production in GWh/annum if available [GWh/annum]0.00045547
              A2P018: Windnonononononoyesnono
              A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
              A2P018: Hydrononononononoyesnono
              A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
              A2P018: Biomass_elnonononononononono
              A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
              A2P018: Biomass_peat_elnonononononononono
              A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
              A2P018: PVT_elnonononononononono
              A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
              A2P018: Othernoyesnonononononono
              A2P018 - Other: specify production in GWh/annum if available [GWh/annum]0.187
              A2P019: Annual renewable thermal imports from outside the boundary during target year
              A2P019: Geothermalnonononononononono
              A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
              A2P019: Solar Thermalnonononononoyesnono
              A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
              A2P019: Biomass_heatnonononononoyesnono
              A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
              A2P019: Waste heat+HPnonononononoyesnono
              A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
              A2P019: Biomass_peat_heatnonononononononono
              A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
              A2P019: PVT_thnonononononononono
              A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
              A2P019: Biomass_firewood_thnonononononononono
              A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
              A2P019: Othernoyesnonononononono
              A2P019 Other: Please specify imports in GWh/annum [GWh/annum]0
              A2P020: Share of RES on-site / RES outside the boundary
              A2P020: Share of RES on-site / RES outside the boundary00.538395721925130000000
              A2P021: GHG-balance calculated for the PED
              A2P021: GHG-balance calculated for the PED [tCO2/annum]4500006.930.036
              A2P022: KPIs related to the PED case study / PED Lab
              A2P022: Safety & Securitynone
              A2P022: Healththermal comfort diagram
              A2P022: Educationnone
              A2P022: Mobilitynonex
              A2P022: Energynormalized CO2/GHG & Energy intensityxYesYes
              A2P022: Waterx
              A2P022: Economic developmentcost of excess emissionsx
              A2P022: Housing and CommunityNumber of people interested in participating in an energy communityx
              A2P022: Waste
              A2P022: Other
              A2P023: Technological Solutions / Innovations - Energy Generation
              A2P023: Photovoltaicsyesyesnoyesnoyesyesnoyes
              A2P023: Solar thermal collectorsnoyesyesnononononono
              A2P023: Wind Turbinesnononoyesnonononono
              A2P023: Geothermal energy systemnoyesnonononononono
              A2P023: Waste heat recoveryyesyesnonononoyesnono
              A2P023: Waste to energynonononononononono
              A2P023: Polygenerationnonononononononono
              A2P023: Co-generationnononoyesnonononono
              A2P023: Heat Pumpyesyesnoyesnonoyesnono
              A2P023: Hydrogennonononononononono
              A2P023: Hydropower plantnonononononononono
              A2P023: Biomassnonononononononono
              A2P023: Biogasnonononononononono
              A2P023: OtherPhotovoltaics are considered for the next years
              A2P024: Technological Solutions / Innovations - Energy Flexibility
              A2P024: A2P024: Information and Communication Technologies (ICT)yesyesnoyesnonoyesyesyes
              A2P024: Energy management systemyesnonoyesnononoyesyes
              A2P024: Demand-side managementyesnonoyesnononoyesyes
              A2P024: Smart electricity gridyesnononononononono
              A2P024: Thermal Storagenoyesnonononoyesnono
              A2P024: Electric Storagenononoyesnonononono
              A2P024: District Heating and Coolingyesyesyesyesnonoyesnono
              A2P024: Smart metering and demand-responsive control systemsnononoyesnoyesnonono
              A2P024: P2P – buildingsnonononononononono
              A2P024: Other
              A2P025: Technological Solutions / Innovations - Energy Efficiency
              A2P025: Deep Retrofittingnoyesnononononoyesyes
              A2P025: Energy efficiency measures in historic buildingsnononononononoyesno
              A2P025: High-performance new buildingsyesnonoyesnonoyesnono
              A2P025: Smart Public infrastructure (e.g. smart lighting)yesnononononoyesnono
              A2P025: Urban data platformsyesnononononononono
              A2P025: Mobile applications for citizensnonononononoyesnono
              A2P025: Building services (HVAC & Lighting)yesyesnoyesnononoyesno
              A2P025: Smart irrigationnononoyesnonoyesnono
              A2P025: Digital tracking for waste disposalnonononononononono
              A2P025: Smart surveillancenononoyesnoyesnoyesno
              A2P025: Other
              A2P026: Technological Solutions / Innovations - Mobility
              A2P026: Efficiency of vehicles (public and/or private)yesnononononoyesnono
              A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)yesnononononoyesnono
              A2P026: e-Mobilityyesnonoyesnonoyesnono
              A2P026: Soft mobility infrastructures and last mile solutionsyesnonoyesnonoyesnono
              A2P026: Car-free areanononoyesnonoyesnono
              A2P026: Other
              A2P027: Mobility strategies - Additional notes
              A2P027: Mobility strategies - Additional notes- Multimodal mobility nodes - Support of public transport tickets - Mobility consulting - District management
              A2P028: Energy efficiency certificates
              A2P028: Energy efficiency certificatesNoNoYesYes
              A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingEnergieausweis mandatory if buildings/ flats/ apartments are sold
              A2P029: Any other building / district certificates
              A2P029: Any other building / district certificatesNoNoYesYes
              A2P029: If yes, please specify and/or enter notesLEED BD+C, LEED NC CAMPUSKlimaaktiv standard  Voluntary! Certification can be for buildings and/or quarters. The different quarters are built in different standards. Ranging from bronze/silver/gold
              A3P001: Relevant city /national strategy
              A3P001: Relevant city /national strategy
              • Energy master planning (SECAP, etc.),
              • Climate change adaption plan/strategy (e.g. Climate City contract)
              • Promotion of energy communities (REC/CEC),
              • Climate change adaption plan/strategy (e.g. Climate City contract)
              • Smart cities strategies,
              • Urban Renewal Strategies
              • Smart cities strategies,
              • Energy master planning (SECAP, etc.),
              • Climate change adaption plan/strategy (e.g. Climate City contract),
              • National / international city networks addressing sustainable urban development and climate neutrality
              • Energy master planning (SECAP, etc.),
              • Promotion of energy communities (REC/CEC)
              • Smart cities strategies,
              • Energy master planning (SECAP, etc.),
              • Climate change adaption plan/strategy (e.g. Climate City contract),
              • National / international city networks addressing sustainable urban development and climate neutrality
              A3P002: Quantitative targets included in the city / national strategy
              A3P002: Quantitative targets included in the city / national strategyThe study aligns closely with the decarbonisation and energy reduction pathways of residential multi family buildings with 1.5°C global warming target in Sweden. This study will also contribute to the achievement of the carbon neturality of whole Borlänge city by 2030.City level targets Klimaschutzplan Graz - 2022 | Targets: - Climate neutrality until 2040 - Social justice and high quality of life - High innovation levels Mobilitätsplan Graz 2040 – under development | Targets: - Modal Split 80:20 until 2040 80% Public transport, bike, walking | 20% cars Kommunales Energiekonzept (2017) | Targets: - Increase of district heating Energiemasterplan Graz (2018) | Targets: - Energy efficiency of urban dwellings and infrastructures - District heating and solar energy - Energy efficiency of private dwellings - Climate conscious mobility National level targets Klimaschutzplan Österreich -draft, expected by 2024 | Targets: - Decarbonisation (reduction of GHG, renewable energies, - Climate neutrality until 2040 - Energy efficiency - Security of energy supply
              A3P003: Strategies towards decarbonization of the gas grid
              A3P003: Strategies towards decarbonization of the gas grid
              • Electrification of Heating System based on Heat Pumps,
              • Electrification of Cooking Methods
              • Electrification of Heating System based on Heat Pumps,
              • Electrification of Cooking Methods,
              • Biogas
              A3P003: OtherBoiler Automation, Energy Management System, Electric Battery Storage, Demand Management and Flexible Pricing
              A3P004: Identification of needs and priorities
              A3P004: Identification of needs and prioritiesIn our project, we carried out a comprehensive exploration of strategies to achieve positive energy districts in a Swedish residential portfolio. The focus on urban energy transitions necessitates a holistic approach that integrates building retrofit, solar technology exploration, and heating supply optimisation. Exploration of Local Solar Sources: The analysis reveals varying solar irradiance resources throughout the year, emphasizing the importance of strategic placement. Integration of combined photovoltaic and thermal panels into building envelopes demonstrates the potential to cover a significant portion of the energy demand even in Sweden. Heating Supply Optimisation with Solar Technologies: Despite the surplus energy production from on-site solar technology, challenges arise due to temporal energy asymmetry. The introduction of heat pumps emerges as a feasible solution to balance energy gaps, utilising both rejected and free heat. Optimisation scenarios, utilising a combination of geothermal heat pumps, water source heat pumps, and PVT, showcase remarkable reductions in emissions and primary energy consumption. Urban Form and Energy Infrastructure Design: We realised the importance of returning to urban form and energy infrastructure design to optimise future residential portfolio potential. Building layout design, influenced by zoning regulations and innovative typologies, plays a crucial role in achieving district level energy efficiency. Future challenges, including demographic shifts, e-mobility, and climate change, necessitate a more holistic approach to energy infrastructure design, addressing not only heating and electricity demands but also cooling requirements.Carbon and Energy NeutralityReininghaus needs green spaces and places Sector coupling of water, waste water, electricity ICT and demand side management Mobility - Reininghaus needs better infrastructure for bikes and pedestrians - Public transportation should be more affordable and Sharing should be implemented in the district Infrastructure should cover daily needs within walking distance Infrastructure for local jobs and shared offices
              A3P005: Sustainable behaviour
              A3P005: Sustainable behaviourWhile our investigation primarily centres on technical optimisation within Positive Energy District (PED) development, it is essential to acknowledge the broader scope encompassing social and governance dimensions. Specifically, understanding stakeholders' willingness to embrace technical recommendations upon project completion is important. Several potential influencing factors merit exploration, including economic considerations, technical optimisation-associated embodied carbon balance, the general public's technical perceptions, and operational feasibility. Evaluating these aspects holistically not only enhances the efficacy of PED initiatives but also fosters greater acceptance and participation within the communities they serve.Under LEGOFIT project, promoting sustainable behavior for better occupant experience is a targeted aim under a work package.- citizen participation and promotion of functioning neighbourhoods (e.g., through city district management) As of today, solutions for the energy transition in the residential sector have focused on the construction of energy-efficient buildings and on the energy-efficient refurbishment of existing buildings. Measures to influence user behaviour and to directly address residents and neighbourhoods as actors of the energy transition play a minor role and are also not formalized. At the same time, moving into a new apartment offers a ‘window of opportunity’ to establish new everyday practices and behaviour. In already inhabited housing developments, well-functioning neighbourhoods or existing, ‘sustainability pioneers’ are key to motivating people to adopt more resource-efficient lifestyles. In order to prepare such agents of change towards more climate protection and sustainability in the context of housing, Austria launched the BAREWO project. The aim is to develop a kit of formats, methods, and interventions for resource-efficient housing. This toolkit will be tested in six testbeds, among which quarter 12 (Q12) of Graz- Reininghaus, as soon as first residents move in (approx. 2024). Austrian TRANS-PED partner StadtLABOR, which is also a partner in the BAREWO project, will support Q12 in this process. In parallel, a monitoring system will be developed to make the (climate) effects of the kit measurable. In addition, a guideline for property managers will be developed, which will serve as an orientation for them on how their residents can be coached in matters of climate protection and sustainability in everyday (residential) life. From the very beginning, (communication) measures are implemented and relevant stakeholders are involved in the project (project advisory board) to ensure the multiplicability, financing and broad application of the toolkit. If successful, the toolkit could also be scaled up to other quarters in Reininghaus.
              A3P006: Economic strategies
              A3P006: Economic strategies
              • PPP models,
              • Circular economy models
              • Open data business models,
              • Life Cycle Cost,
              • Circular economy models,
              • Local trading
              • PPP models,
              • Local trading
              • Innovative business models,
              • Demand management Living Lab
              • Innovative business models
              A3P006: Other
              A3P007: Social models
              A3P007: Social models
              • Strategies towards (local) community-building,
              • Co-creation / Citizen engagement strategies,
              • Quality of Life
              • Strategies towards (local) community-building,
              • Behavioural Change / End-users engagement,
              • Social incentives,
              • Affordability,
              • Digital Inclusion
              • Co-creation / Citizen engagement strategies
              • Strategies towards (local) community-building,
              • Co-creation / Citizen engagement strategies,
              • Behavioural Change / End-users engagement,
              • Social incentives,
              • Quality of Life,
              • Affordability,
              • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
              • Digital Inclusion,
              • Citizen/owner involvement in planning and maintenance,
              • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
              • Digital Inclusion,
              • Citizen/owner involvement in planning and maintenance,
              • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
              A3P007: Other
              A3P008: Integrated urban strategies
              A3P008: Integrated urban strategies
              • Strategic urban planning,
              • Digital twinning and visual 3D models,
              • District Energy plans
              • Strategic urban planning,
              • Digital twinning and visual 3D models,
              • District Energy plans,
              • Building / district Certification
              • City Vision 2050,
              • SECAP Updates,
              • Building / district Certification
              • Strategic urban planning,
              • City Vision 2050,
              • Building / district Certification
              • Digital twinning and visual 3D models
              • District Energy plans
              A3P008: Other
              A3P009: Environmental strategies
              A3P009: Environmental strategies
              • Net zero carbon footprint,
              • Life Cycle approach,
              • Greening strategies,
              • Nature Based Solutions (NBS)
              • Low Emission Zone,
              • Net zero carbon footprint,
              • Life Cycle approach,
              • Sustainable Urban drainage systems (SUDS)
              • Energy Neutral,
              • Carbon-free
              • Energy Neutral,
              • Low Emission Zone,
              • Net zero carbon footprint,
              • Greening strategies,
              • Cool Materials
              • Greening strategies
              • Pollutants Reduction,
              • Greening strategies,
              • Sustainable Urban drainage systems (SUDS),
              • Nature Based Solutions (NBS)
              A3P009: Other
              A3P010: Legal / Regulatory aspects
              A3P010: Legal / Regulatory aspectsISO 45001, ISO 14001, ISO 50001, Zero Waste PolicyMobility contracts: A mobility contract is concluded between the City of Graz and the property developers in the course of development plans and serves to reduce the motor vehicle traffic to be expected as a result of the construction project. Push & pull measures are agreed: With a lower car parking space key, which is significantly lower than today's usual requirements, offers and information for easier use of public transport, walking and cycling, as well as car sharing and e-mobility are simultaneously created by the property developers, leading to a win-win-win situation for all parties involved. Basic principles - Possibility of combining effective "push & pull" measures => control option (e.g. reduction of car parking spaces, but optimisation of accessibility to public transport and walking and cycling networks, public transport tickets, mobility information, ... etc.) - Changing mobility behaviour in favour of sustainable forms of transport from the moment the flat is handed over ("upheaval" in personal mobility behaviour when changing the residential location) - Reduction in construction and maintenance costs (underground car parks, public road infrastructure) - Easier realisation of larger construction projects in the inner city area with lower generation of vehicle demand Städtebauliche Verträge in Graz / Urban development contracts in Graz Qualitative urban (neighbourhood) development with added value for all stakeholders: urban development contracts are modern instruments in the development of cities and neighbourhoods. As one of the pioneers in this field, the City of Graz also increasingly favours this form of quality assurance. Urban development contracts are a contractual form of regulation between the City of Graz and landowners, which enables flexible control of urban (sub)development in the interests of the common interests while at the same time relieving the public authorities. The contracts make property-related stipulations in accordance with urban planning requirements (e.g. urban development concept, development concept, framework plan, zoning plan) and the specialist planning requirements in particular infrastructure, development, design and mobility. This is intended to infrastructure, services of general interest, building land quality and settlement development required for the (parts of the) city.
              B1P001: PED/PED relevant concept definition
              B1P001: PED/PED relevant concept definitionImplementation of district level heating system to make heating energy positive and expanding local renewable electricity production.The Rymdgatan's Residential Portfolio in Sweden presents a compelling case study for its classification as a PED-related research, given its alignment with sustainable behaviours and overarching PED development principles as follows: Inclusivity and Social Equity: The residential portfolio situated in Rymdgatan caters primarily to a low-income community. By focusing on this demographic, the project addresses critical aspects of social equity within sustainable urban development. Ensuring access to energy-efficient housing and amenities for economically disadvantaged populations not only fosters social cohesion but also mitigates energy poverty, a pressing concern in many urban contexts. Multifamily Residential Building: The inclusion of multifamily residential buildings within the portfolio underscores a commitment to density and efficient land use, both essential components of sustainable urban design. Such developments promote resource optimisation by consolidating housing units, thereby reducing per capita energy consumption and infrastructure demands. Moreover, multifamily dwellings often facilitate community engagement and shared resource management, fostering a culture of sustainability among residents. Low Carbon Retrofitting and Transition: The overarching initiative to transition the entire Jakobsgårdarna district. The included Rymdgatan portfolio, towards low carbon retrofitting, represents a significant example of decarbonization and climate resilience. By integrating energy-efficient technologies and renewable energy solutions into existing infrastructure, the project not only reduces carbon emissions but also serves as a blueprint for revitalising old urban environments sustainably. This holistic approach to retrofitting demonstrates a systemic commitment to environmental stewardship and long-term sustainability. Climate Adaptation and Renewable Energy Integration: Despite Sweden's climatic challenges, including lower solar resources during winter months, the Rymdgatan project leverages its geographical context to optimize renewable energy utilization. Sweden's greater solar resource availability during summer and geothermal potentials complement the design's emphasis on seasonal energy planning, where surplus energy generated during peak periods can be stored or redistributed efficiently. By embracing climate-responsive design strategies, the project demonstrates resilience in the face of climate variability while harnessing renewable energy potential effectively.The campus should be considered a PED case study due to its exemplary commitment to sustainability and energy efficiency, as evidenced by several of its buildings achieving LEED certification. This certification underscores the campus's adherence to rigorous environmental standards and its proactive steps towards reducing carbon footprints. Also, the integration of sustainable practices across the campus aligns with the PED framework, which aims to create urban areas that produce more energy than they consume. Therefore, this campus serves as a model of how educational institutions can lead the way in fostering sustainable communities and advancing the goals of PED.Reininghaus addresses some relevant key aspects listed in the JPI UE PED Framework Definition such as: - high level of aspiration in terms of energy efficiency, energy flexibility and energy production; - integration of different systems and infrastructures; - inclusion of aspects not only related to energy sector, but also connected with social, economic and environmental sustainability.
              B1P002: Motivation behind PED/PED relevant project development
              B1P002: Motivation behind PED/PED relevant project developmentBorlänge city has committed to become the carbon-neutral city by 2030.The purpose of implementing the PED project on this sustainable campus, where several buildings have LEED certification, is to further enhance its energy efficiency and environmental stewardship by creating a district that generates more energy than it consumes. The initiator was motivated by the need to address climate change, reduce greenhouse gas emissions, and promote renewable energy sources. Additionally, the campus's existing commitment to sustainability and the success of its LEED-certified buildings provided a strong foundation for demonstrating the feasibility and benefits of PED development, serving as a model for sustainable urban living and energy self-sufficiency.The Reininghausgründe is a new quarter near the centre of the City of Graz. On the area of a former brewery, close to more, still working industries, a new town centre is being established. The quarter will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the historical city centre by bike paths, busses and a tram. Car sharing is provided as well.
              B1P003: Environment of the case study area
              B2P003: Environment of the case study areaUrban areaUrban areaSuburban areaUrban area
              B1P004: Type of district
              B2P004: Type of district
              • New construction
              • Renovation
              • Renovation
              • Renovation
              • New construction
              B1P005: Case Study Context
              B1P005: Case Study Context
              • Re-use / Transformation Area
              • Re-use / Transformation Area,
              • Retrofitting Area
              • Retrofitting Area
              • Retrofitting Area
              • New Development
              B1P006: Year of construction
              B1P006: Year of construction199020242025
              B1P007: District population before intervention - Residential
              B1P007: District population before intervention - Residential1000
              B1P008: District population after intervention - Residential
              B1P008: District population after intervention - Residential1400010010000
              B1P009: District population before intervention - Non-residential
              B1P009: District population before intervention - Non-residential698000
              B1P010: District population after intervention - Non-residential
              B1P010: District population after intervention - Non-residential1000069800
              B1P011: Population density before intervention
              B1P011: Population density before intervention00034000
              B1P012: Population density after intervention
              B1P012: Population density after intervention0.0413793103448280.010658622423328034.337771548704000.01
              B1P013: Building and Land Use before intervention
              B1P013: Residentialyesyesyesnononononono
              B1P013 - Residential: Specify the sqm [m²]4360
              B1P013: Officeyesnononononononono
              B1P013 - Office: Specify the sqm [m²]
              B1P013: Industry and Utilityyesnoyesnononoyesnono
              B1P013 - Industry and Utility: Specify the sqm [m²]
              B1P013: Commercialnonoyesnononononono
              B1P013 - Commercial: Specify the sqm [m²]
              B1P013: Institutionalnononoyesnonononono
              B1P013 - Institutional: Specify the sqm [m²]285.400
              B1P013: Natural areasnonoyesnononoyesnono
              B1P013 - Natural areas: Specify the sqm [m²]
              B1P013: Recreationalnonononononononono
              B1P013 - Recreational: Specify the sqm [m²]
              B1P013: Dismissed areasyesnononononononono
              B1P013 - Dismissed areas: Specify the sqm [m²]
              B1P013: Othernoyesyesnononononono
              B1P013 - Other: Specify the sqm [m²]706
              B1P014: Building and Land Use after intervention
              B1P014: Residentialyesyesyesnononoyesnono
              B1P014 - Residential: Specify the sqm [m²]4360
              B1P014: Officeyesnononononoyesnono
              B1P014 - Office: Specify the sqm [m²]
              B1P014: Industry and Utilitynonoyesnononononono
              B1P014 - Industry and Utility: Specify the sqm [m²]
              B1P014: Commercialyesnoyesnononoyesnono
              B1P014 - Commercial: Specify the sqm [m²]
              B1P014: Institutionalnononoyesnonoyesnono
              B1P014 - Institutional: Specify the sqm [m²]280000
              B1P014: Natural areasnonoyesnononoyesnono
              B1P014 - Natural areas: Specify the sqm [m²]
              B1P014: Recreationalyesnononononoyesnono
              B1P014 - Recreational: Specify the sqm [m²]
              B1P014: Dismissed areasnonononononononono
              B1P014 - Dismissed areas: Specify the sqm [m²]
              B1P014: Othernoyesyesnononononono
              B1P014 - Other: Specify the sqm [m²]706
              B2P001: PED Lab concept definition
              B2P001: PED Lab concept definition
              B2P002: Installation life time
              B2P002: Installation life time
              B2P003: Scale of action
              B2P003: ScaleDistrict
              B2P004: Operator of the installation
              B2P004: Operator of the installation
              B2P005: Replication framework: Applied strategy to reuse and recycling the materials
              B2P005: Replication framework: Applied strategy to reuse and recycling the materials
              B2P006: Circular Economy Approach
              B2P006: Do you apply any strategy to reuse and recycling the materials?Yes
              B2P006: Other
              B2P007: Motivation for developing the PED Lab
              B2P007: Motivation for developing the PED Lab
              B2P007: Other
              B2P008: Lead partner that manages the PED Lab
              B2P008: Lead partner that manages the PED Lab
              B2P008: Other
              B2P009: Collaborative partners that participate in the PED Lab
              B2P009: Collaborative partners that participate in the PED Lab
              B2P009: Other
              B2P010: Synergies between the fields of activities
              B2P010: Synergies between the fields of activities
              B2P011: Available facilities to test urban configurations in PED Lab
              B2P011: Available facilities to test urban configurations in PED Lab
              B2P011: Other
              B2P012: Incubation capacities of PED Lab
              B2P012: Incubation capacities of PED Lab
              B2P013: Availability of the facilities for external people
              B2P013: Availability of the facilities for external people
              B2P014: Monitoring measures
              B2P014: Monitoring measures
              B2P015: Key Performance indicators
              B2P015: Key Performance indicators
              B2P016: Execution of operations
              B2P016: Execution of operations
              B2P017: Capacities
              B2P017: Capacities
              B2P018: Relations with stakeholders
              B2P018: Relations with stakeholders
              B2P019: Available tools
              B2P019: Available tools
              B2P019: Available tools
              B2P020: External accessibility
              B2P020: External accessibility
              C1P001: Unlocking Factors
              C1P001: Recent technological improvements for on-site RES production5 - Very important4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant3 - Moderately important4 - Important4 - Important
              C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock4 - Important5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
              C1P001: Energy Communities, P2P, Prosumers concepts3 - Moderately important3 - Moderately important1 - Unimportant4 - Important5 - Very important5 - Very important4 - Important4 - Important4 - Important
              C1P001: Storage systems and E-mobility market penetration4 - Important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important
              C1P001: Decreasing costs of innovative materials3 - Moderately important4 - Important1 - Unimportant4 - Important4 - Important2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant
              C1P001: Financial mechanisms to reduce costs and maximize benefits3 - Moderately important5 - Very important1 - Unimportant5 - Very important4 - Important3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important
              C1P001: The ability to predict Multiple Benefits3 - Moderately important4 - Important1 - Unimportant4 - Important1 - Unimportant4 - Important2 - Slightly important2 - Slightly important
              C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important4 - Important1 - Unimportant4 - Important2 - Slightly important4 - Important3 - Moderately important3 - Moderately important
              C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important5 - Very important5 - Very important3 - Moderately important3 - Moderately important
              C1P001: Social acceptance (top-down)3 - Moderately important5 - Very important1 - Unimportant4 - Important5 - Very important2 - Slightly important4 - Important4 - Important4 - Important
              C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important4 - Important1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important5 - Very important4 - Important4 - Important
              C1P001: Presence of integrated urban strategies and plans4 - Important5 - Very important1 - Unimportant4 - Important3 - Moderately important2 - Slightly important5 - Very important3 - Moderately important3 - Moderately important
              C1P001: Multidisciplinary approaches available for systemic integration5 - Very important5 - Very important1 - Unimportant4 - Important3 - Moderately important4 - Important5 - Very important4 - Important4 - Important
              C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects3 - Moderately important4 - Important1 - Unimportant4 - Important4 - Important2 - Slightly important4 - Important5 - Very important5 - Very important
              C1P001: Availability of RES on site (Local RES)4 - Important5 - Very important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important5 - Very important5 - Very important
              C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders5 - Very important2 - Slightly important1 - Unimportant4 - Important4 - Important1 - Unimportant5 - Very important4 - Important4 - Important
              C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P001: Any other UNLOCKING FACTORS (if any)
              C1P002: Driving Factors
              C1P002: Climate Change adaptation need5 - Very important5 - Very important1 - Unimportant5 - Very important4 - Important3 - Moderately important5 - Very important4 - Important4 - Important
              C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important5 - Very important5 - Very important4 - Important4 - Important
              C1P002: Rapid urbanization trend and need of urban expansions4 - Important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
              C1P002: Urban re-development of existing built environment5 - Very important4 - Important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
              C1P002: Economic growth need4 - Important4 - Important1 - Unimportant4 - Important2 - Slightly important2 - Slightly important3 - Moderately important2 - Slightly important2 - Slightly important
              C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)4 - Important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important5 - Very important5 - Very important5 - Very important
              C1P002: Territorial and market attractiveness3 - Moderately important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
              C1P002: Energy autonomy/independence2 - Slightly important2 - Slightly important1 - Unimportant5 - Very important5 - Very important1 - Unimportant3 - Moderately important5 - Very important5 - Very important
              C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P002: Any other DRIVING FACTOR (if any)
              C1P003: Administrative barriers
              C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important4 - Important1 - Unimportant5 - Very important4 - Important3 - Moderately important5 - Very important2 - Slightly important2 - Slightly important
              C1P003: Lack of good cooperation and acceptance among partners5 - Very important4 - Important1 - Unimportant5 - Very important3 - Moderately important2 - Slightly important2 - Slightly important2 - Slightly important2 - Slightly important
              C1P003: Lack of public participation4 - Important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important4 - Important4 - Important4 - Important4 - Important
              C1P003: Lack of institutions/mechanisms to disseminate information4 - Important4 - Important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important2 - Slightly important4 - Important4 - Important
              C1P003:Long and complex procedures for authorization of project activities3 - Moderately important5 - Very important1 - Unimportant5 - Very important5 - Very important5 - Very important5 - Very important4 - Important1 - Unimportant
              C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy3 - Moderately important4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant3 - Moderately important4 - Important4 - Important
              C1P003: Complicated and non-comprehensive public procurement3 - Moderately important5 - Very important1 - Unimportant4 - Important4 - Important3 - Moderately important2 - Slightly important4 - Important4 - Important
              C1P003: Fragmented and or complex ownership structure3 - Moderately important4 - Important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important2 - Slightly important
              C1P003: City administration & cross-sectoral attitude/approaches (silos)4 - Important5 - Very important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant4 - Important2 - Slightly important2 - Slightly important
              C1P003: Lack of internal capacities to support energy transition4 - Important5 - Very important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important
              C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P003: Any other Administrative BARRIER (if any)
              C1P004: Policy barriers
              C1P004: Lack of long-term and consistent energy plans and policies4 - Important5 - Very important1 - Unimportant5 - Very important4 - Important2 - Slightly important2 - Slightly important3 - Moderately important3 - Moderately important
              C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important5 - Very important1 - Unimportant5 - Very important4 - Important2 - Slightly important2 - Slightly important3 - Moderately important3 - Moderately important
              C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important4 - Important1 - Unimportant5 - Very important3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important3 - Moderately important
              C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P004: Any other Political BARRIER (if any)
              C1P005: Legal and Regulatory barriers
              C1P005: Inadequate regulations for new technologies3 - Moderately important4 - Important1 - Unimportant5 - Very important4 - Important4 - Important1 - Unimportant2 - Slightly important2 - Slightly important
              C1P005: Regulatory instability3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important3 - Moderately important4 - Important1 - Unimportant2 - Slightly important2 - Slightly important
              C1P005: Non-effective regulations3 - Moderately important2 - Slightly important1 - Unimportant4 - Important4 - Important3 - Moderately important3 - Moderately important2 - Slightly important2 - Slightly important
              C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important4 - Important1 - Unimportant4 - Important3 - Moderately important2 - Slightly important4 - Important2 - Slightly important2 - Slightly important
              C1P005: Building code and land-use planning hindering innovative technologies4 - Important2 - Slightly important1 - Unimportant4 - Important4 - Important1 - Unimportant2 - Slightly important2 - Slightly important2 - Slightly important
              C1P005: Insufficient or insecure financial incentives5 - Very important3 - Moderately important1 - Unimportant5 - Very important4 - Important2 - Slightly important4 - Important2 - Slightly important2 - Slightly important
              C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation2 - Slightly important2 - Slightly important1 - Unimportant3 - Moderately important4 - Important2 - Slightly important2 - Slightly important2 - Slightly important2 - Slightly important
              C1P005: Shortage of proven and tested solutions and examples2 - Slightly important4 - Important1 - Unimportant4 - Important2 - Slightly important2 - Slightly important2 - Slightly important2 - Slightly important
              C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P005: Any other Legal and Regulatory BARRIER (if any)
              C1P006: Environmental barriers
              C1P006: Environmental barriers2 - Slightly importantAir Quality Management Importance Level: 5 (Very Important) Energy Efficiency Importance Level: 5 (Very Important) Water Conservation Importance Level: 5 (Very Important) Waste Management Importance Level: 4 (Important) Material Selection Importance Level: 4 (Important) Renewable Energy Integration Importance Level: 5 (Very Important) Heat Island Effect Mitigation Importance Level: 4 (Important) Noise Pollution Control Importance Level: 3 (Moderately Important)
              C1P007: Technical barriers
              C1P007: Lack of skilled and trained personnel3 - Moderately important4 - Important1 - Unimportant5 - Very important4 - Important4 - Important2 - Slightly important2 - Slightly important2 - Slightly important
              C1P007: Deficient planning3 - Moderately important4 - Important1 - Unimportant5 - Very important3 - Moderately important5 - Very important2 - Slightly important2 - Slightly important2 - Slightly important
              C1P007: Retrofitting work in dwellings in occupied state1 - Unimportant4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important
              C1P007: Lack of well-defined process3 - Moderately important2 - Slightly important1 - Unimportant4 - Important4 - Important4 - Important4 - Important2 - Slightly important2 - Slightly important
              C1P007: Inaccuracy in energy modelling and simulation3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important4 - Important2 - Slightly important2 - Slightly important2 - Slightly important2 - Slightly important
              C1P007: Lack/cost of computational scalability3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important2 - Slightly important2 - Slightly important2 - Slightly important2 - Slightly important
              C1P007: Grid congestion, grid instability3 - Moderately important5 - Very important1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important
              C1P007: Negative effects of project intervention on the natural environment3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important3 - Moderately important2 - Slightly important2 - Slightly important2 - Slightly important2 - Slightly important
              C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important2 - Slightly important1 - Unimportant2 - Slightly important2 - Slightly important
              C1P007: Difficult definition of system boundaries2 - Slightly important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important2 - Slightly important
              C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P007: Any other Thecnical BARRIER (if any)
              C1P008: Social and Cultural barriers
              C1P008: Inertia3 - Moderately important2 - Slightly important1 - Unimportant4 - Important4 - Important4 - Important3 - Moderately important3 - Moderately important3 - Moderately important
              C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important5 - Very important1 - Unimportant5 - Very important5 - Very important4 - Important4 - Important5 - Very important5 - Very important
              C1P008: Low acceptance of new projects and technologies3 - Moderately important5 - Very important1 - Unimportant5 - Very important5 - Very important3 - Moderately important3 - Moderately important3 - Moderately important3 - Moderately important
              C1P008: Difficulty of finding and engaging relevant actors4 - Important4 - Important1 - Unimportant4 - Important5 - Very important5 - Very important4 - Important3 - Moderately important3 - Moderately important
              C1P008: Lack of trust beyond social network3 - Moderately important5 - Very important1 - Unimportant4 - Important4 - Important3 - Moderately important3 - Moderately important2 - Slightly important2 - Slightly important
              C1P008: Rebound effect3 - Moderately important4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant2 - Slightly important2 - Slightly important2 - Slightly important
              C1P008: Hostile or passive attitude towards environmentalism2 - Slightly important3 - Moderately important1 - Unimportant5 - Very important5 - Very important4 - Important1 - Unimportant4 - Important4 - Important
              C1P008: Exclusion of socially disadvantaged groups4 - Important3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
              C1P008: Non-energy issues are more important and urgent for actors2 - Slightly important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important5 - Very important4 - Important2 - Slightly important2 - Slightly important
              C1P008: Hostile or passive attitude towards energy collaboration2 - Slightly important3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important
              C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P008: Any other Social BARRIER (if any)
              C1P009: Information and Awareness barriers
              C1P009: Insufficient information on the part of potential users and consumers4 - Important3 - Moderately important1 - Unimportant5 - Very important5 - Very important2 - Slightly important2 - Slightly important2 - Slightly important
              C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts4 - Important3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important4 - Important3 - Moderately important3 - Moderately important
              C1P009: Lack of awareness among authorities3 - Moderately important5 - Very important1 - Unimportant5 - Very important4 - Important2 - Slightly important4 - Important4 - Important
              C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important5 - Very important1 - Unimportant4 - Important2 - Slightly important4 - Important2 - Slightly important2 - Slightly important
              C1P009: High costs of design, material, construction, and installation4 - Important5 - Very important1 - Unimportant4 - Important4 - Important4 - Important2 - Slightly important2 - Slightly important
              C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P009: Any other Information and Awareness BARRIER (if any)
              C1P010: Financial barriers
              C1P010: Hidden costs3 - Moderately important5 - Very important1 - Unimportant4 - Important2 - Slightly important3 - Moderately important2 - Slightly important2 - Slightly important
              C1P010: Insufficient external financial support and funding for project activities4 - Important5 - Very important1 - Unimportant5 - Very important5 - Very important2 - Slightly important2 - Slightly important2 - Slightly important
              C1P010: Economic crisis4 - Important5 - Very important1 - Unimportant4 - Important3 - Moderately important4 - Important3 - Moderately important3 - Moderately important
              C1P010: Risk and uncertainty3 - Moderately important5 - Very important1 - Unimportant5 - Very important3 - Moderately important2 - Slightly important4 - Important4 - Important
              C1P010: Lack of consolidated and tested business models3 - Moderately important5 - Very important1 - Unimportant4 - Important4 - Important2 - Slightly important4 - Important4 - Important
              C1P010: Limited access to capital and cost disincentives3 - Moderately important5 - Very important1 - Unimportant5 - Very important3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important
              C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P010: Any other Financial BARRIER (if any)
              C1P011: Market barriers
              C1P011: Split incentives3 - Moderately important4 - Important1 - Unimportant5 - Very important3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important
              C1P011: Energy price distortion3 - Moderately important4 - Important1 - Unimportant5 - Very important3 - Moderately important4 - Important3 - Moderately important3 - Moderately important
              C1P011: Energy market concentration, gatekeeper actors (DSOs)3 - Moderately important3 - Moderately important1 - Unimportant4 - Important5 - Very important4 - Important3 - Moderately important3 - Moderately important
              C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P011: Any other Market BARRIER (if any)
              C1P012: Stakeholders involved
              C1P012: Government/Public Authorities
              • Planning/leading,
              • Design/demand aggregation
              • Monitoring/operation/management
              • Planning/leading,
              • Design/demand aggregation,
              • Construction/implementation,
              • Monitoring/operation/management
              • Planning/leading,
              • Design/demand aggregation,
              • Construction/implementation,
              • Monitoring/operation/management
              C1P012: Research & Innovation
              • Planning/leading,
              • Design/demand aggregation
              • Planning/leading
              • Planning/leading,
              • Design/demand aggregation,
              • Construction/implementation,
              • Monitoring/operation/management
              • Design/demand aggregation,
              • Construction/implementation,
              • Monitoring/operation/management
              C1P012: Financial/Funding
              • Design/demand aggregation,
              • Construction/implementation
              • None
              • Planning/leading,
              • Construction/implementation,
              • Monitoring/operation/management
              • Planning/leading,
              • Design/demand aggregation,
              • Construction/implementation,
              • Monitoring/operation/management
              C1P012: Analyst, ICT and Big Data
              • Planning/leading,
              • Monitoring/operation/management
              • None
              • Planning/leading,
              • Design/demand aggregation,
              • Construction/implementation,
              • Monitoring/operation/management
              • Planning/leading,
              • Monitoring/operation/management
              C1P012: Business process management
              • Design/demand aggregation,
              • Construction/implementation
              • None
              • Planning/leading,
              • Design/demand aggregation,
              • Construction/implementation,
              • Monitoring/operation/management
              • None
              C1P012: Urban Services providers
              • Planning/leading,
              • Construction/implementation
              • None
              • Planning/leading,
              • Design/demand aggregation,
              • Construction/implementation,
              • Monitoring/operation/management
              • Planning/leading,
              • Construction/implementation,
              • Monitoring/operation/management
              C1P012: Real Estate developers
              • Planning/leading,
              • Design/demand aggregation,
              • Construction/implementation,
              • Monitoring/operation/management
              • Design/demand aggregation
              • Planning/leading,
              • Design/demand aggregation,
              • Construction/implementation,
              • Monitoring/operation/management
              • Planning/leading,
              • Design/demand aggregation,
              • Construction/implementation,
              • Monitoring/operation/management
              C1P012: Design/Construction companies
              • Planning/leading,
              • Design/demand aggregation,
              • Construction/implementation
              • None
              • Design/demand aggregation,
              • Construction/implementation,
              • Monitoring/operation/management
              • Planning/leading,
              • Design/demand aggregation,
              • Construction/implementation
              C1P012: End‐users/Occupants/Energy Citizens
              • Planning/leading,
              • Design/demand aggregation,
              • Construction/implementation,
              • Monitoring/operation/management
              • Monitoring/operation/management
              • Monitoring/operation/management
              • Design/demand aggregation
              C1P012: Social/Civil Society/NGOs
              • Planning/leading
              • Monitoring/operation/management
              • Planning/leading,
              • Design/demand aggregation,
              • Construction/implementation,
              • Monitoring/operation/management
              • Design/demand aggregation,
              • Monitoring/operation/management
              C1P012: Industry/SME/eCommerce
              • Planning/leading,
              • Design/demand aggregation,
              • Construction/implementation
              • None
              • Planning/leading,
              • Design/demand aggregation,
              • Construction/implementation,
              • Monitoring/operation/management
              • Planning/leading,
              • Design/demand aggregation,
              • Construction/implementation,
              • Monitoring/operation/management
              C1P012: Other
              • Planning/leading,
              • Design/demand aggregation,
              • Construction/implementation,
              • Monitoring/operation/management
              • None
              C1P012: Other (if any)
              Summary

              Authors (framework concept)

              Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

              Contributors (to the content)

              Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

              Implemented by

              Boutik.pt: Filipe Martins, Jamal Khan
              Marek Suchánek (Czech Technical University in Prague)