Filters:
NameProjectTypeCompare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Uncompare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Uncompare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Uncompare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Uncompare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Uncompare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Uncompare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Uncompare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleEspoo, Kera
Graz, Reininghausgründe
Évora, Portugal
Umeå, Ålidhem district
Utrecht, the Netherlands (District of Kanaleneiland)
Salzburg, Gneis district
Aveiro, Portugal
Stor-Elvdal, Campus Evenstad
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabEspoo, KeraGraz, ReininghausgründeÉvora, PortugalUmeå, Ålidhem districtUtrecht, the Netherlands (District of Kanaleneiland)Salzburg, Gneis districtAveiro, PortugalStor-Elvdal, Campus Evenstad
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studyyesyesnoyesnoyesnono
PED relevant case studyyesnoyesnoyesnoyesyes
PED Lab.nonoyesnonononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesnoyesyesyesyesyes
Annual energy surplusnonoyesnonoyesnoyes
Energy communitynonoyesnoyesyesyesno
Circularityyesnonononononono
Air quality and urban comfortnononononoyesnono
Electrificationnonononoyesnoyesno
Net-zero energy costnononononononono
Net-zero emissionnononononononono
Self-sufficiency (energy autonomous)nononononononono
Maximise self-sufficiencynononononononono
Othernononononononoyes
Other (A1P004)Energy-flexibility
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhaseImplementation PhaseImplementation PhasePlanning PhasePlanning PhaseCompletedPlanning PhaseIn operation
A1P006: Start Date
A1P006: Start date01/15201910/1910/2211/2301/2012/2301/13
A1P007: End Date
A1P007: End date12/35202509/2409/2511/2601/2411/2612/24
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • GIS open datasets
  • Open data city platform – different dashboards
  • Monitoring data available within the districts
  • Monitoring data available within the districts
  • Monitoring data available within the districts,
  • Meteorological open data
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • E. Rainer, H. Schnitzer, T. Mach, T. Wieland, M. Reiter, L. Fickert, E. Schmautzer, A. Passer, H. Oblak, H. Kreiner, R. Lazar, M. Duschek, et al. (2015): Rahmenplan Energy City Graz-Reininghaus – Subprojekt 2 des Leitprojektes „ECR Energy City Graz – Reininghaus Online: Rahmenplan Energy City Graz-Reininghaus - Haus der Zukunft (nachhaltigwirtschaften.at),
  • H.Schnitzer et al. (2016): Arbeiten und Wohnen in der Smart City Reininghaus, Online: Arbeiten und Wohnen in Graz Reininghaus - Smartcities
  • Umeå Energi
      A1P011: Geographic coordinates
      X Coordinate (longitude):24.7537777815.407440-7.90937720.26305.087513.041216-8.659511.078770773531746
      Y Coordinate (latitude):60.2162222247.060738.57080463.825852.065347.77101940.635361.42604420399112
      A1P012: Country
      A1P012: CountryFinlandAustriaPortugalSwedenNetherlandsAustriaPortugalNorway
      A1P013: City
      A1P013: CityEspooGrazÉvoraUmeåUtrecht (Kanaleneiland)SalzburgAlveiro (Aradas)Evenstad, Stor-Elvdal municipality
      A1P014: Climate Zone (Köppen Geiger classification)
      A1P014: Climate Zone (Köppen Geiger classification).DfbDfbCsaDfbCfbDfbCsbDwc
      A1P015: District boundary
      A1P015: District boundaryGeographicGeographicGeographicGeographicGeographicGeographicGeographicGeographic
      Other
      A1P016: Ownership of the case study/PED Lab
      A1P016: Ownership of the case study/PED Lab:MixedMixedMixedPublicPrivateMixedPublicPublic
      A1P017: Ownership of the land / physical infrastructure
      A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersMultiple OwnersSingle OwnerMultiple OwnersSingle OwnerMultiple OwnersSingle Owner
      A1P018: Number of buildings in PED
      A1P018: Number of buildings in PED1001722
      A1P019: Conditioned space
      A1P019: Conditioned space [m²]4200019976210000
      A1P020: Total ground area
      A1P020: Total ground area [m²]58000010000005200029100008930000
      A1P021: Floor area ratio: Conditioned space / total ground area
      A1P021: Floor area ratio: Conditioned space / total ground area00010000
      A1P022: Financial schemes
      A1P022a: Financing - PRIVATE - Real estatenoyesnononononono
      A1P022a: Add the value in EUR if available [EUR]
      A1P022b: Financing - PRIVATE - ESCO schemenononononononono
      A1P022b: Add the value in EUR if available [EUR]
      A1P022c: Financing - PRIVATE - Othernononononononono
      A1P022c: Add the value in EUR if available [EUR]
      A1P022d: Financing - PUBLIC - EU structural fundingnononononononono
      A1P022d: Add the value in EUR if available [EUR]
      A1P022e: Financing - PUBLIC - National fundingnoyesnonoyesnoyesyes
      A1P022e: Add the value in EUR if available [EUR]
      A1P022f: Financing - PUBLIC - Regional fundingnononononononono
      A1P022f: Add the value in EUR if available [EUR]
      A1P022g: Financing - PUBLIC - Municipal fundingnoyesnononononono
      A1P022g: Add the value in EUR if available [EUR]
      A1P022h: Financing - PUBLIC - Othernononononononono
      A1P022h: Add the value in EUR if available [EUR]
      A1P022i: Financing - RESEARCH FUNDING - EUnonoyesnonoyesnono
      A1P022i: Add the value in EUR if available [EUR]19998275
      A1P022j: Financing - RESEARCH FUNDING - Nationalnononononononoyes
      A1P022j: Add the value in EUR if available [EUR]
      A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononononono
      A1P022k: Add the value in EUR if available [EUR]
      A1P022l: Financing - RESEARCH FUNDING - Othernononononononono
      A1P022l: Add the value in EUR if available [EUR]
      A1P022: OtherMultiple different funding schemes depending on the case.
      A1P023: Economic Targets
      A1P023: Economic Targets
      • Job creation,
      • Positive externalities,
      • Boosting local businesses,
      • Boosting local and sustainable production,
      • Boosting consumption of local and sustainable products
      • Job creation,
      • Boosting local businesses,
      • Boosting consumption of local and sustainable products
      • Positive externalities,
      • Other
      • Boosting local businesses,
      • Boosting local and sustainable production
      A1P023: OtherCircular economyBoosting social cooperation and social aid
      A1P024: More comments:
      A1P024: More comments:The “Reininghausgründe” are a new quarter near the centre of the City of Graz. In the area of a former brewery, close to more, still working industries, a new town centre is being established. It will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the city centre by bike paths, busses and a tram. Car sharing is provided as well. Some key-energy aspects: • characteristic 1: For the heat supply in the innovative Reininghaus energy model, low-temperature waste heat from a nearby steel plant is harnessed through the use of heat pumps. • characteristic 2: The district heating system operates at low temperatures. • characteristic 3: Generated heat that is not used immediately is stored in the power tower and supplied on demand. Other important aspects of the project are the following: • characteristic 1: Most houses are low-energy houses, some of the certified with the “Klima Aktiv” label • characteristic 2: There are extremely few parking possibilities for residents and visitors; this will foster the use of public transport and bikes • characteristic 3: All the necessary infrastructure for the “daily need” can be reached within walking distance The area of the project is going to be very “green” when finished. Featuring a big district parc, lots of other green spaces are in planning.
      A1P025: Estimated PED case study / PED LAB costs
      A1P025: Estimated PED case study / PED LAB costs [mil. EUR]
      Contact person for general enquiries
      A1P026: NameJoni MäkinenKatharina SchwarzJoão Bravo DiasGireesh NairDr. Gonçalo Homem De Almeida Rodriguez CorreiaAbel MagyariDr. Gonçalo Homem De Almeida Rodriguez CorreiaÅse Lekang Sørensen
      A1P027: OrganizationCity of EspooStadtLABOR, Innovationen für urbane Lebensqualität GmbHEDP LabelecUmea MunicipalityDelft University of TechnologyABUDDelft University of TechnologySINTEF / The Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart Cities
      A1P028: AffiliationMunicipality / Public BodiesSME / IndustrySME / IndustryMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversityResearch Center / UniversityResearch Center / University
      A1P028: Other
      A1P029: Emailjoni.makinen@espoo.fikatharina.schwarz@stadtlaborgraz.atjoao.bravodias@edp.ptgireesh.nair@umu.seg.correia@tudelft.nlmagyari.abel@abud.hug.correia@tudelft.nlase.sorensen@sintef.no
      Contact person for other special topics
      A1P030: NameHans SchnitzerQiaochu FanStrassl IngeborgQiaochu Fan
      A1P031: Emailhans.schnitzer@stadtlaborgraz.atq.fan-1@tudelft.nlinge.strassl@salzburg.gv.atq.fan-1@tudelft.nl
      Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYes
      A2P001: Fields of application
      A2P001: Fields of application
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies,
      • Waste management,
      • Construction materials
      • Energy efficiency,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Water use,
      • Indoor air quality,
      • Other
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies,
      • Waste management,
      • Construction materials
      • Energy efficiency,
      • Energy flexibility,
      • Energy production
      • Energy efficiency,
      • Energy flexibility,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies
      • Energy efficiency,
      • Energy flexibility,
      • Energy production
      • Energy efficiency,
      • Energy flexibility,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies,
      • Construction materials
      A2P001: OtherUrban Management; Air Quality
      A2P002: Tools/strategies/methods applied for each of the above-selected fields
      A2P002: Tools/strategies/methods applied for each of the above-selected fields- Kera development commitment (https://www.espoo.fi/en/kera-development-commitment). - SPARCS Co-creation model for sustainable and smart urban areas (www.co-creatingsparcs.fi/en). - Kera area carbon neutrality roadmap (https://static.espoo.fi/cdn/ff/MHDdcMNJ9aYn7CjpoD4zNpo5M-M9HIDLXlJdUrUmf-8/1642756766/public/2022-01/Kera%20carbon%20neutrality%20map_EN.pdf)Energy efficiency: o Several activities: Workshops, Webinars to deepen the knowledge and raise awareness renewable energies o for example rooftop Photovoltaics green & blue infrastructures o Parks, Rooftop Gardens, Quarter Parks, Water elements included in the parks rooftop farming o To produce vegetables in the quarter stormwater management mobility o less parking and less cars in the district. Solutions for boosting public transport with sponsored public transport tickets; building of better bike and pedestrian infrastructure social aspects o district management was established in the district local supply of goods of daily need o Schools within 15 minutes walking distance Supermarkets and other shops within the districtSimulation tools: City Energy Analyst and Polysun- Dynamic district, and building scale energy modelling - Microclimate modelling - Klimaaktiv certification system - Energy community - Flexibility with shared heating and electricity systemsCampus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. The vision for Campus Evenstad is an energy-flexible Campus Evenstad in an emission-free Europe. The area consists of approx. 20 buildings managed and owned by Statsbygg; the Norwegian government’s building commissioner, property manager and developer. The oldest building is from the 1700-century and the newest is the administration centre (2017) which is a Zero Emission Building (ZEB) with the highest ambitions (ZEB-COM). Their concept has been to realize Campus Evenstad as an energy pilot, where innovative energy solutions are demonstrated, showing how local areas can become more self-sufficient in energy. The energy system at Evenstad consists of several innovative energy solutions that are new in a Norwegian and European context. They are combined in local infrastructure for electricity and heat, which has led to new knowledge and learning about how the solutions work together, and how the interaction is between the local and the national energy system. The solutions consist of solar cells (PV), solar collectors, combined heat and power plant (CHP) based on wood chips, biofuel boiler, electric boiler, grid connection, district heating, heat storage, stationary battery and bidirectional electric vehicle (EV) charging (V2G). Statsbygg has gained a lot of operational experience from Campus Evenstad - both from individual technologies and from the interaction between these, which benefits Statsbygg's 2,200 buildings and 3 million m2 around Norway. Sharing of experiences is central. Campus Evenstad is a pilot in the Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart Cities were several of the solutions has been developed and studied.
      A2P003: Application of ISO52000
      A2P003: Application of ISO52000NoNoNoNoYesNo
      A2P004: Appliances included in the calculation of the energy balance
      A2P004: Appliances included in the calculation of the energy balanceNoYesYesYesNoYes
      A2P005: Mobility included in the calculation of the energy balance
      A2P005: Mobility included in the calculation of the energy balanceNoYesYesNoNoYes
      A2P006: Description of how mobility is included (or not included) in the calculation
      A2P006: Description of how mobility is included (or not included) in the calculation- Number of cars per household - Fraction of electric cars - Number of public transport tickets (week/ annual tickets)At Campus Evenstad there is infrastructure for EV charging and bidirectional charging (V2G). EV charging is included in the energy balance.
      A2P007: Annual energy demand in buildings / Thermal demand
      A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]54.50.77
      A2P008: Annual energy demand in buildings / Electric Demand
      A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]19.400.76
      A2P009: Annual energy demand for e-mobility
      A2P009: Annual energy demand for e-mobility [GWh/annum]
      A2P010: Annual energy demand for urban infrastructure
      A2P010: Annual energy demand for urban infrastructure [GWh/annum]
      A2P011: Annual renewable electricity production on-site during target year
      A2P011: PVyesyesnoyesnoyesnoyes
      A2P011: PV - specify production in GWh/annum [GWh/annum]40.2490.77706640.065
      A2P011: Windnononononononono
      A2P011: Wind - specify production in GWh/annum [GWh/annum]
      A2P011: Hydronononononononono
      A2P011: Hydro - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_elnononononononoyes
      A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]0.050
      A2P011: Biomass_peat_elnononononononono
      A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
      A2P011: PVT_elnononononononono
      A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
      A2P011: Othernononononononono
      A2P011: Other - specify production in GWh/annum [GWh/annum]
      A2P012: Annual renewable thermal production on-site during target year
      A2P012: Geothermalnoyesnononoyesnono
      A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Solar Thermalnoyesnononononoyes
      A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.045
      A2P012: Biomass_heatnononononononoyes
      A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.35
      A2P012: Waste heat+HPyesyesnononononono
      A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_peat_heatnononononononono
      A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: PVT_thnononononononono
      A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_firewood_thnononononononono
      A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Othernononononononono
      A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
      A2P013: Renewable resources on-site - Additional notes
      A2P013: Renewable resources on-site - Additional notesLocal energy utility will implement district level thermal solution. First, energy will be produced from waste heat from a local data center. Further thermal solutions are under discussion and development.Groundwater (used for heat pumps)Listed values are measurements from 2018. Renewable energy share is increasing.
      A2P014: Annual energy use
      A2P014: Annual energy use [GWh/annum]78.86.10.8190161.500
      A2P015: Annual energy delivered
      A2P015: Annual energy delivered [GWh/annum]15.41
      A2P016: Annual non-renewable electricity production on-site during target year
      A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]0-1
      A2P017: Annual non-renewable thermal production on-site during target year
      A2P017: Gasnononononononono
      A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Coalnononononononono
      A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Oilnononononononono
      A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Othernononononononono
      A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P018: Annual renewable electricity imports from outside the boundary during target year
      A2P018: PVnoyesnononononono
      A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
      A2P018: Windnoyesnononononono
      A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
      A2P018: Hydronoyesnononononono
      A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_elnononononononono
      A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_peat_elnononononononono
      A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: PVT_elnononononononono
      A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Othernononononononono
      A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
      A2P019: Annual renewable thermal imports from outside the boundary during target year
      A2P019: Geothermalnononononononono
      A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Solar Thermalnoyesnononononono
      A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_heatnoyesnoyesnononono
      A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Waste heat+HPnoyesnoyesnononono
      A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_peat_heatnononononononono
      A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: PVT_thnononononononono
      A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_firewood_thnononononononono
      A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Othernononononononono
      A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
      A2P020: Share of RES on-site / RES outside the boundary
      A2P020: Share of RES on-site / RES outside the boundary00000000
      A2P021: GHG-balance calculated for the PED
      A2P021: GHG-balance calculated for the PED [tCO2/annum]4500000.036
      A2P022: KPIs related to the PED case study / PED Lab
      A2P022: Safety & Security
      A2P022: HealthCO2) levels, Predicted Mean Vote,Predicted Percentage of Dissatisfied, Temperature, Relative Humidity, Illuminance, Daylight factor, Sound pressure levels
      A2P022: Education
      A2P022: MobilityxImproved accessibility to V2G-related transport options, focusing on inclusivity and equitable adoption in urban districtsImproved accessibility to V2G-related transport options, focusing on inclusivity and equitable adoption in urban districts
      A2P022: EnergyxEnergyTarget zero greenhouse gas emissions through the adoption of EVs with V2G capabilities, aiming to reduce reliance on fossil fuels and enhance local grid stabilityNon-renewable primary energy balance, Renewable energy ratio, Grid Purchase factor, Load cover factor/Self-generation, Supply cover factor/Self-consumption, Net energy/Net power, Peak delivered/exported power, Connection capacity credit, Total greenhouse gas emissionsTarget zero greenhouse gas emissions through the adoption of EVs with V2G capabilities, aiming to reduce reliance on fossil fuels and enhance local grid stability
      A2P022: Waterx
      A2P022: Economic developmentxDevelopment of viable business models for V2G that allow decentralized energy markets to integrate with the grid, enhancing local economic resilienceInvestment costs, Share of investments covered by grants, Maintenance-related costs, Requirement-related costs, Operation-related costs, Other costs, Net Present Value, Internal Rate of Return, Economic Value Added, Payback Period, nZEB Cost ComparisonDevelopment of viable business models for V2G that allow decentralized energy markets to integrate with the grid, enhancing local economic resilience
      A2P022: Housing and CommunityxAccess to services, Affordability of energy, Affordability of housing, Democratic legitimacy, Living conditions, Social cohesion, Personal safety, Energy consciousness
      A2P022: Waste
      A2P022: Other
      A2P023: Technological Solutions / Innovations - Energy Generation
      A2P023: Photovoltaicsyesyesyesyesyesyesyesyes
      A2P023: Solar thermal collectorsnonoyesnonononoyes
      A2P023: Wind Turbinesnonononoyesnoyesno
      A2P023: Geothermal energy systemnononononoyesnono
      A2P023: Waste heat recoveryyesyesnononononono
      A2P023: Waste to energynononononononono
      A2P023: Polygenerationnononononononono
      A2P023: Co-generationnononononononoyes
      A2P023: Heat Pumpyesyesnononononono
      A2P023: Hydrogennononononononono
      A2P023: Hydropower plantnononononononono
      A2P023: Biomassnononononononoyes
      A2P023: Biogasnononononononono
      A2P023: OtherThe Co-generation is biomass based.
      A2P024: Technological Solutions / Innovations - Energy Flexibility
      A2P024: A2P024: Information and Communication Technologies (ICT)yesyesyesyesnononoyes
      A2P024: Energy management systemyesnoyesnoyesyesyesyes
      A2P024: Demand-side managementyesnonoyesnoyesyesyes
      A2P024: Smart electricity gridyesnoyesnoyesyesyesno
      A2P024: Thermal Storagenoyesyesnonononoyes
      A2P024: Electric Storagenonoyesnoyesnoyesyes
      A2P024: District Heating and Coolingyesyesnononononoyes
      A2P024: Smart metering and demand-responsive control systemsnonoyesnonononoyes
      A2P024: P2P – buildingsnonoyesnonoyesnono
      A2P024: OtherDistrict HeatingBidirectional electric vehicle (EV) charging (V2G)
      A2P025: Technological Solutions / Innovations - Energy Efficiency
      A2P025: Deep Retrofittingnononoyesyesnoyesno
      A2P025: Energy efficiency measures in historic buildingsnonoyesnonononono
      A2P025: High-performance new buildingsyesyesnononoyesnoyes
      A2P025: Smart Public infrastructure (e.g. smart lighting)yesyesnonoyesnoyesno
      A2P025: Urban data platformsyesnoyesnoyesnoyesno
      A2P025: Mobile applications for citizensnoyesyesnonononono
      A2P025: Building services (HVAC & Lighting)yesnoyesnonoyesnono
      A2P025: Smart irrigationnoyesnononononono
      A2P025: Digital tracking for waste disposalnonoyesnonononono
      A2P025: Smart surveillancenonoyesnonononono
      A2P025: Other
      A2P026: Technological Solutions / Innovations - Mobility
      A2P026: Efficiency of vehicles (public and/or private)yesyesnonoyesnoyesno
      A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)yesyesnonoyesyesyesno
      A2P026: e-Mobilityyesyesyesnoyesyesyesyes
      A2P026: Soft mobility infrastructures and last mile solutionsyesyesyesnonononono
      A2P026: Car-free areanoyesnononononono
      A2P026: Other
      A2P027: Mobility strategies - Additional notes
      A2P027: Mobility strategies - Additional notes- Multimodal mobility nodes - Support of public transport tickets - Mobility consulting - District managementShared mobility: a mobility point will be implemented and ensure the flexible use of different mobility services.
      A2P028: Energy efficiency certificates
      A2P028: Energy efficiency certificatesNoYesNoYesYesYes
      A2P028: If yes, please specify and/or enter notesEnergieausweis mandatory if buildings/ flats/ apartments are soldEnergy Performance CertificatePassive house (2 buildings, 4 200 m2, from 2015)
      A2P029: Any other building / district certificates
      A2P029: Any other building / district certificatesNoYesNoYesYes
      A2P029: If yes, please specify and/or enter notesKlimaaktiv standard  Voluntary! Certification can be for buildings and/or quarters. The different quarters are built in different standards. Ranging from bronze/silver/goldKlimaaktiv certificate, Greenpass certificateZero Emission Building (ZEB) with the highest ambitions (ZEB-COM) (admin building, 1 141 m2, 2016)
      A3P001: Relevant city /national strategy
      A3P001: Relevant city /national strategy
      • Energy master planning (SECAP, etc.),
      • Climate change adaption plan/strategy (e.g. Climate City contract)
      • Smart cities strategies,
      • Energy master planning (SECAP, etc.),
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Energy master planning (SECAP, etc.),
      • Promotion of energy communities (REC/CEC),
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Smart cities strategies,
      • Energy master planning (SECAP, etc.),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Promotion of energy communities (REC/CEC),
      • National / international city networks addressing sustainable urban development and climate neutrality
      A3P002: Quantitative targets included in the city / national strategy
      A3P002: Quantitative targets included in the city / national strategyCity level targets Klimaschutzplan Graz - 2022 | Targets: - Climate neutrality until 2040 - Social justice and high quality of life - High innovation levels Mobilitätsplan Graz 2040 – under development | Targets: - Modal Split 80:20 until 2040 80% Public transport, bike, walking | 20% cars Kommunales Energiekonzept (2017) | Targets: - Increase of district heating Energiemasterplan Graz (2018) | Targets: - Energy efficiency of urban dwellings and infrastructures - District heating and solar energy - Energy efficiency of private dwellings - Climate conscious mobility National level targets Klimaschutzplan Österreich -draft, expected by 2024 | Targets: - Decarbonisation (reduction of GHG, renewable energies, - Climate neutrality until 2040 - Energy efficiency - Security of energy supply
      A3P003: Strategies towards decarbonization of the gas grid
      A3P003: Strategies towards decarbonization of the gas grid
      • Electrification of Heating System based on Heat Pumps,
      • Electrification of Cooking Methods,
      • Biogas
      • Electrification of Heating System based on Heat Pumps
      A3P003: OtherNA
      A3P004: Identification of needs and priorities
      A3P004: Identification of needs and prioritiesReininghaus needs green spaces and places Sector coupling of water, waste water, electricity ICT and demand side management Mobility - Reininghaus needs better infrastructure for bikes and pedestrians - Public transportation should be more affordable and Sharing should be implemented in the district Infrastructure should cover daily needs within walking distance Infrastructure for local jobs and shared offices
      A3P005: Sustainable behaviour
      A3P005: Sustainable behaviour- citizen participation and promotion of functioning neighbourhoods (e.g., through city district management) As of today, solutions for the energy transition in the residential sector have focused on the construction of energy-efficient buildings and on the energy-efficient refurbishment of existing buildings. Measures to influence user behaviour and to directly address residents and neighbourhoods as actors of the energy transition play a minor role and are also not formalized. At the same time, moving into a new apartment offers a ‘window of opportunity’ to establish new everyday practices and behaviour. In already inhabited housing developments, well-functioning neighbourhoods or existing, ‘sustainability pioneers’ are key to motivating people to adopt more resource-efficient lifestyles. In order to prepare such agents of change towards more climate protection and sustainability in the context of housing, Austria launched the BAREWO project. The aim is to develop a kit of formats, methods, and interventions for resource-efficient housing. This toolkit will be tested in six testbeds, among which quarter 12 (Q12) of Graz- Reininghaus, as soon as first residents move in (approx. 2024). Austrian TRANS-PED partner StadtLABOR, which is also a partner in the BAREWO project, will support Q12 in this process. In parallel, a monitoring system will be developed to make the (climate) effects of the kit measurable. In addition, a guideline for property managers will be developed, which will serve as an orientation for them on how their residents can be coached in matters of climate protection and sustainability in everyday (residential) life. From the very beginning, (communication) measures are implemented and relevant stakeholders are involved in the project (project advisory board) to ensure the multiplicability, financing and broad application of the toolkit. If successful, the toolkit could also be scaled up to other quarters in Reininghaus.
      A3P006: Economic strategies
      A3P006: Economic strategies
      • PPP models,
      • Circular economy models
      • PPP models,
      • Local trading
      • Innovative business models,
      • Local trading,
      • Existing incentives
      • Innovative business models,
      • Local trading
      • Innovative business models,
      • Local trading,
      • Existing incentives
      A3P006: Other
      A3P007: Social models
      A3P007: Social models
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Quality of Life
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Social incentives,
      • Quality of Life,
      • Affordability,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Social incentives,
      • Prevention of energy poverty,
      • Digital Inclusion
      • Strategies towards (local) community-building,
      • Behavioural Change / End-users engagement,
      • Social incentives,
      • Quality of Life,
      • Strategies towards social mix,
      • Affordability,
      • Citizen/owner involvement in planning and maintenance
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Social incentives,
      • Prevention of energy poverty,
      • Digital Inclusion
      • Behavioural Change / End-users engagement,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour),
      • Other
      A3P007: OtherCampus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. Sharing knowledge is essential: Evenstad has regular visits from Politicians, decision-makers, researchers, environmental organizations, and energy- and building companies.
      A3P008: Integrated urban strategies
      A3P008: Integrated urban strategies
      • Strategic urban planning,
      • Digital twinning and visual 3D models,
      • District Energy plans
      • Strategic urban planning,
      • City Vision 2050,
      • Building / district Certification
      • District Energy plans
      • Strategic urban planning,
      • District Energy plans
      • Building / district Certification
      • Strategic urban planning,
      • District Energy plans
      A3P008: Other
      A3P009: Environmental strategies
      A3P009: Environmental strategies
      • Net zero carbon footprint,
      • Life Cycle approach,
      • Greening strategies,
      • Nature Based Solutions (NBS)
      • Pollutants Reduction,
      • Greening strategies,
      • Sustainable Urban drainage systems (SUDS),
      • Nature Based Solutions (NBS)
      • Carbon-free
      • Energy Neutral,
      • Low Emission Zone,
      • Nature Based Solutions (NBS)
      • Energy Neutral,
      • Low Emission Zone
      • Energy Neutral,
      • Low Emission Zone,
      • Nature Based Solutions (NBS)
      • Low Emission Zone
      A3P009: Other
      A3P010: Legal / Regulatory aspects
      A3P010: Legal / Regulatory aspectsMobility contracts: A mobility contract is concluded between the City of Graz and the property developers in the course of development plans and serves to reduce the motor vehicle traffic to be expected as a result of the construction project. Push & pull measures are agreed: With a lower car parking space key, which is significantly lower than today's usual requirements, offers and information for easier use of public transport, walking and cycling, as well as car sharing and e-mobility are simultaneously created by the property developers, leading to a win-win-win situation for all parties involved. Basic principles - Possibility of combining effective "push & pull" measures => control option (e.g. reduction of car parking spaces, but optimisation of accessibility to public transport and walking and cycling networks, public transport tickets, mobility information, ... etc.) - Changing mobility behaviour in favour of sustainable forms of transport from the moment the flat is handed over ("upheaval" in personal mobility behaviour when changing the residential location) - Reduction in construction and maintenance costs (underground car parks, public road infrastructure) - Easier realisation of larger construction projects in the inner city area with lower generation of vehicle demand Städtebauliche Verträge in Graz / Urban development contracts in Graz Qualitative urban (neighbourhood) development with added value for all stakeholders: urban development contracts are modern instruments in the development of cities and neighbourhoods. As one of the pioneers in this field, the City of Graz also increasingly favours this form of quality assurance. Urban development contracts are a contractual form of regulation between the City of Graz and landowners, which enables flexible control of urban (sub)development in the interests of the common interests while at the same time relieving the public authorities. The contracts make property-related stipulations in accordance with urban planning requirements (e.g. urban development concept, development concept, framework plan, zoning plan) and the specialist planning requirements in particular infrastructure, development, design and mobility. This is intended to infrastructure, services of general interest, building land quality and settlement development required for the (parts of the) city.Campus Evenstad became a prosumer in 2016, as the first with DSO Eidsiva. Evenstad is also one of the first three PV systems in Norway to receive green certificates.
      B1P001: PED/PED relevant concept definition
      B1P001: PED/PED relevant concept definitionImplementation of district level heating system to make heating energy positive and expanding local renewable electricity production.Reininghaus addresses some relevant key aspects listed in the JPI UE PED Framework Definition such as: - high level of aspiration in terms of energy efficiency, energy flexibility and energy production; - integration of different systems and infrastructures; - inclusion of aspects not only related to energy sector, but also connected with social, economic and environmental sustainability.The PED main objective is to achieve the energy transition while preserving cultural heritage and improving citizen’s quality of life.The biggest impact is the demonstration of several new energy solutions for local communities. Statsbygg/Campus Evenstad contributes to the development of innovations, pushing technological development through purchasing and demonstration of the solutions. This is a benefit for both end users, energy service providers and society at large. Evenstad also contribute to developing the local business community. For example, local biomass chip production for CHP, development of V2G-software etc. Several key solutions have been important when aiming to achieve the goals of reduced emissions, increased self-sufficiency in energy, and an energy-flexible campus. Example Vehicle-to-grid (V2G): We realized bidirectional EV charging at Campus Evenstad in 2019, demonstrating V2G for the first time in Norway. The experiences from Evenstad provide increased knowledge and practical experience from purchasing, installing and operating the V2G solution, and can contribute to creating new solutions within the energy system. With the equipment installed, the batteries in EVs can supply power back to buildings or the power grid. Example solar cells (PV): We installed PV in 2013 when there were only a few grid-connected PV systems in Norway. The PV system was an important piece in changing the view on solar energy in Norway, where businesses, the public sector and private individuals started seeing the potential for solar energy also this far north. In 2022, the PV system was expanded with PV cells on the facade of the energy center. Example Solar collector system: Covers 100m2 of the roof surface of dormitories and supplies supplies 117 dormitories with all the hot water they need (4000m2 floor area. The solar collector system is connected to the district heating system, where the main heat source is bioenergy. Solar energy and bioenergy complement each other at different times of the year. Example battery bank: Among the 5 largest electrical batteries in Norway connected to the grid. Example CHP: First of its kind in Norway, generating heat and electricity from biomass. Already in 2010, fossil fuels were phased out by converting from oil to wood-chip heating.
      B1P002: Motivation behind PED/PED relevant project development
      B1P002: Motivation behind PED/PED relevant project developmentThe Reininghausgründe is a new quarter near the centre of the City of Graz. On the area of a former brewery, close to more, still working industries, a new town centre is being established. The quarter will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the historical city centre by bike paths, busses and a tram. Car sharing is provided as well.POCITYF brings together eight cities (Lightouse and Fellow cities), all having cultural heritage areas in their territory. All are intrinsically motivated to participate in the necessary energy transition not only for their conventional city districts of mixed-used, but also for districts with individually specificities as those belonging in their cultural heritage, which at the moment may be acting as barriers for their further environmental sustainability, but after POCITYF will be acting as a promising building retrofits roadmap for similar and other EU cities.In line with the EU's vision of "local energy communities", Campus Evenstad demonstrates energy actions that contribute to the clean energy transition. The campus has been developed over several years, demonstrating several innovative and sustainable technologies and energy solutions in a microgrid, e.g. vehicle to grid (V2G), biomass-based combined heat and power (CHP), solar energy, energy storage and zero emission buildings. It shows how to use new technology to enable zero emissions areas. Dedicated professionals, both Statsbygg's operating staff and researchers from FME ZEN have been central to the realization, together with dedicated management at the University campus, who have shown a great willingness to implement new solutions.
      B1P003: Environment of the case study area
      B2P003: Environment of the case study areaUrban areaUrban areaUrban areaUrban areaSuburban areaRural
      B1P004: Type of district
      B2P004: Type of district
      • New construction
      • New construction
      • Renovation
      • Renovation
      • New construction
      • New construction,
      • Renovation
      B1P005: Case Study Context
      B1P005: Case Study Context
      • Re-use / Transformation Area
      • New Development
      • Preservation Area
      • Retrofitting Area
      • New Development
      • Retrofitting Area
      B1P006: Year of construction
      B1P006: Year of construction20252024
      B1P007: District population before intervention - Residential
      B1P007: District population before intervention - Residential0
      B1P008: District population after intervention - Residential
      B1P008: District population after intervention - Residential1400010000
      B1P009: District population before intervention - Non-residential
      B1P009: District population before intervention - Non-residential0
      B1P010: District population after intervention - Non-residential
      B1P010: District population after intervention - Non-residential10000
      B1P011: Population density before intervention
      B1P011: Population density before intervention00000000
      B1P012: Population density after intervention
      B1P012: Population density after intervention0.0413793103448280.01000000
      B1P013: Building and Land Use before intervention
      B1P013: Residentialyesnonoyesnononono
      B1P013 - Residential: Specify the sqm [m²]
      B1P013: Officeyesnonononononono
      B1P013 - Office: Specify the sqm [m²]
      B1P013: Industry and Utilityyesyesnononononono
      B1P013 - Industry and Utility: Specify the sqm [m²]
      B1P013: Commercialnononononononono
      B1P013 - Commercial: Specify the sqm [m²]
      B1P013: Institutionalnononononononono
      B1P013 - Institutional: Specify the sqm [m²]
      B1P013: Natural areasnoyesnononoyesnono
      B1P013 - Natural areas: Specify the sqm [m²]
      B1P013: Recreationalnononononononono
      B1P013 - Recreational: Specify the sqm [m²]
      B1P013: Dismissed areasyesnonononononono
      B1P013 - Dismissed areas: Specify the sqm [m²]
      B1P013: Othernononononononono
      B1P013 - Other: Specify the sqm [m²]
      B1P014: Building and Land Use after intervention
      B1P014: Residentialyesyesnoyesnoyesnono
      B1P014 - Residential: Specify the sqm [m²]
      B1P014: Officeyesyesnononononono
      B1P014 - Office: Specify the sqm [m²]
      B1P014: Industry and Utilitynononononononono
      B1P014 - Industry and Utility: Specify the sqm [m²]
      B1P014: Commercialyesyesnononononono
      B1P014 - Commercial: Specify the sqm [m²]
      B1P014: Institutionalnoyesnononononono
      B1P014 - Institutional: Specify the sqm [m²]
      B1P014: Natural areasnoyesnononoyesnono
      B1P014 - Natural areas: Specify the sqm [m²]
      B1P014: Recreationalyesyesnononononono
      B1P014 - Recreational: Specify the sqm [m²]
      B1P014: Dismissed areasnononononononono
      B1P014 - Dismissed areas: Specify the sqm [m²]
      B1P014: Othernononononononono
      B1P014 - Other: Specify the sqm [m²]
      B2P001: PED Lab concept definition
      B2P001: PED Lab concept definition
      B2P002: Installation life time
      B2P002: Installation life time
      B2P003: Scale of action
      B2P003: ScaleDistrict
      B2P004: Operator of the installation
      B2P004: Operator of the installation
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P006: Circular Economy Approach
      B2P006: Do you apply any strategy to reuse and recycling the materials?
      B2P006: Other
      B2P007: Motivation for developing the PED Lab
      B2P007: Motivation for developing the PED Lab
      B2P007: Other
      B2P008: Lead partner that manages the PED Lab
      B2P008: Lead partner that manages the PED Lab
      B2P008: Other
      B2P009: Collaborative partners that participate in the PED Lab
      B2P009: Collaborative partners that participate in the PED Lab
      B2P009: Other
      B2P010: Synergies between the fields of activities
      B2P010: Synergies between the fields of activities
      B2P011: Available facilities to test urban configurations in PED Lab
      B2P011: Available facilities to test urban configurations in PED Lab
      • Buildings,
      • Demand-side management,
      • Prosumers,
      • Renewable generation,
      • Energy storage,
      • Energy networks,
      • Waste management,
      • E-mobility,
      • Social interactions,
      • Circular economy models
      B2P011: Other
      B2P012: Incubation capacities of PED Lab
      B2P012: Incubation capacities of PED Lab
      • Monitoring and evaluation infrastructure,
      • Tools for prototyping and modelling,
      • Tools, spaces, events for testing and validation
      B2P013: Availability of the facilities for external people
      B2P013: Availability of the facilities for external people
      B2P014: Monitoring measures
      B2P014: Monitoring measures
      B2P015: Key Performance indicators
      B2P015: Key Performance indicators
      • Energy
      B2P016: Execution of operations
      B2P016: Execution of operations
      B2P017: Capacities
      B2P017: Capacities
      B2P018: Relations with stakeholders
      B2P018: Relations with stakeholders
      B2P019: Available tools
      B2P019: Available tools
      B2P019: Available tools
      B2P020: External accessibility
      B2P020: External accessibility
      C1P001: Unlocking Factors
      C1P001: Recent technological improvements for on-site RES production5 - Very important3 - Moderately important4 - Important1 - Unimportant5 - Very important1 - Unimportant5 - Very important5 - Very important
      C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock4 - Important2 - Slightly important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important5 - Very important
      C1P001: Energy Communities, P2P, Prosumers concepts3 - Moderately important4 - Important5 - Very important1 - Unimportant5 - Very important1 - Unimportant5 - Very important5 - Very important
      C1P001: Storage systems and E-mobility market penetration4 - Important2 - Slightly important4 - Important1 - Unimportant5 - Very important1 - Unimportant5 - Very important5 - Very important
      C1P001: Decreasing costs of innovative materials3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important
      C1P001: Financial mechanisms to reduce costs and maximize benefits3 - Moderately important2 - Slightly important4 - Important1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant
      C1P001: The ability to predict Multiple Benefits3 - Moderately important4 - Important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant
      C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important4 - Important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant
      C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important5 - Very important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant5 - Very important4 - Important
      C1P001: Social acceptance (top-down)3 - Moderately important4 - Important4 - Important1 - Unimportant4 - Important1 - Unimportant4 - Important4 - Important
      C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important5 - Very important4 - Important1 - Unimportant5 - Very important1 - Unimportant5 - Very important4 - Important
      C1P001: Presence of integrated urban strategies and plans4 - Important5 - Very important5 - Very important1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant
      C1P001: Multidisciplinary approaches available for systemic integration5 - Very important5 - Very important5 - Very important1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant
      C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects3 - Moderately important4 - Important4 - Important1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant
      C1P001: Availability of RES on site (Local RES)4 - Important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant5 - Very important5 - Very important
      C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders5 - Very important5 - Very important4 - Important1 - Unimportant5 - Very important1 - Unimportant5 - Very important3 - Moderately important
      C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P001: Any other UNLOCKING FACTORS (if any)
      C1P002: Driving Factors
      C1P002: Climate Change adaptation need5 - Very important5 - Very important5 - Very important1 - Unimportant4 - Important1 - Unimportant4 - Important3 - Moderately important
      C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important5 - Very important4 - Important1 - Unimportant5 - Very important1 - Unimportant5 - Very important5 - Very important
      C1P002: Rapid urbanization trend and need of urban expansions4 - Important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P002: Urban re-development of existing built environment5 - Very important5 - Very important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant
      C1P002: Economic growth need4 - Important3 - Moderately important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)4 - Important5 - Very important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant
      C1P002: Territorial and market attractiveness3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant
      C1P002: Energy autonomy/independence2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant5 - Very important4 - Important
      C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P002: Any other DRIVING FACTOR (if any)
      C1P003: Administrative barriers
      C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important5 - Very important5 - Very important1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant
      C1P003: Lack of good cooperation and acceptance among partners5 - Very important2 - Slightly important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant
      C1P003: Lack of public participation4 - Important4 - Important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant
      C1P003: Lack of institutions/mechanisms to disseminate information4 - Important2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P003:Long and complex procedures for authorization of project activities3 - Moderately important5 - Very important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important
      C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important
      C1P003: Complicated and non-comprehensive public procurement3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important
      C1P003: Fragmented and or complex ownership structure3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important3 - Moderately important
      C1P003: City administration & cross-sectoral attitude/approaches (silos)4 - Important4 - Important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P003: Lack of internal capacities to support energy transition4 - Important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant
      C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P003: Any other Administrative BARRIER (if any)
      C1P004: Policy barriers
      C1P004: Lack of long-term and consistent energy plans and policies4 - Important2 - Slightly important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant5 - Very important3 - Moderately important
      C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important2 - Slightly important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important3 - Moderately important
      C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant4 - Important3 - Moderately important
      C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P004: Any other Political BARRIER (if any)
      C1P005: Legal and Regulatory barriers
      C1P005: Inadequate regulations for new technologies3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant5 - Very important5 - Very important
      C1P005: Regulatory instability3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important3 - Moderately important
      C1P005: Non-effective regulations3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important
      C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important4 - Important5 - Very important1 - Unimportant4 - Important1 - Unimportant4 - Important3 - Moderately important
      C1P005: Building code and land-use planning hindering innovative technologies4 - Important2 - Slightly important5 - Very important1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant
      C1P005: Insufficient or insecure financial incentives5 - Very important4 - Important2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant5 - Very important4 - Important
      C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant
      C1P005: Shortage of proven and tested solutions and examples2 - Slightly important2 - Slightly important5 - Very important1 - Unimportant4 - Important1 - Unimportant4 - Important3 - Moderately important
      C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P005: Any other Legal and Regulatory BARRIER (if any)
      C1P006: Environmental barriers
      C1P006: Environmental barriers
      C1P007: Technical barriers
      C1P007: Lack of skilled and trained personnel3 - Moderately important2 - Slightly important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant4 - Important3 - Moderately important
      C1P007: Deficient planning3 - Moderately important2 - Slightly important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant
      C1P007: Retrofitting work in dwellings in occupied state1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important
      C1P007: Lack of well-defined process3 - Moderately important4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important3 - Moderately important
      C1P007: Inaccuracy in energy modelling and simulation3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important3 - Moderately important
      C1P007: Lack/cost of computational scalability3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important5 - Very important
      C1P007: Grid congestion, grid instability3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant5 - Very important5 - Very important
      C1P007: Negative effects of project intervention on the natural environment3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P007: Difficult definition of system boundaries2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
      C1P007: Any other Thecnical BARRIER (if any)Energy management systems of different new technologies does not "talk together" (e.g. solar inverter, V2G inverter). This creates challenges.
      C1P008: Social and Cultural barriers
      C1P008: Inertia3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant
      C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant5 - Very important3 - Moderately important
      C1P008: Low acceptance of new projects and technologies3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant5 - Very important3 - Moderately important
      C1P008: Difficulty of finding and engaging relevant actors4 - Important4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant
      C1P008: Lack of trust beyond social network3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant
      C1P008: Rebound effect3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P008: Hostile or passive attitude towards environmentalism2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P008: Exclusion of socially disadvantaged groups4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P008: Non-energy issues are more important and urgent for actors2 - Slightly important4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important4 - Important
      C1P008: Hostile or passive attitude towards energy collaboration2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P008: Any other Social BARRIER (if any)
      C1P009: Information and Awareness barriers
      C1P009: Insufficient information on the part of potential users and consumers4 - Important2 - Slightly important4 - Important1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant
      C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts4 - Important4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important3 - Moderately important
      C1P009: Lack of awareness among authorities3 - Moderately important2 - Slightly important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important4 - Important
      C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P009: High costs of design, material, construction, and installation4 - Important4 - Important4 - Important1 - Unimportant5 - Very important1 - Unimportant5 - Very important5 - Very important
      C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
      C1P009: Any other Information and Awareness BARRIER (if any)Different interests - Grid/energy stakeholders and building stakeholders
      C1P010: Financial barriers
      C1P010: Hidden costs3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important
      C1P010: Insufficient external financial support and funding for project activities4 - Important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important5 - Very important
      C1P010: Economic crisis4 - Important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P010: Risk and uncertainty3 - Moderately important2 - Slightly important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant4 - Important5 - Very important
      C1P010: Lack of consolidated and tested business models3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant5 - Very important5 - Very important
      C1P010: Limited access to capital and cost disincentives3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant5 - Very important4 - Important
      C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P010: Any other Financial BARRIER (if any)
      C1P011: Market barriers
      C1P011: Split incentives3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant
      C1P011: Energy price distortion3 - Moderately important4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant
      C1P011: Energy market concentration, gatekeeper actors (DSOs)3 - Moderately important4 - Important2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant
      C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P011: Any other Market BARRIER (if any)
      C1P012: Stakeholders involved
      C1P012: Government/Public Authorities
      • Planning/leading,
      • Design/demand aggregation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading
      C1P012: Research & Innovation
      • Planning/leading,
      • Design/demand aggregation
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Monitoring/operation/management
      C1P012: Financial/Funding
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Construction/implementation
      C1P012: Analyst, ICT and Big Data
      • Planning/leading,
      • Monitoring/operation/management
      • Planning/leading,
      • Monitoring/operation/management
      • Monitoring/operation/management
      C1P012: Business process management
      • Design/demand aggregation,
      • Construction/implementation
      • None
      • Planning/leading
      C1P012: Urban Services providers
      • Planning/leading,
      • Construction/implementation
      • Planning/leading,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Real Estate developers
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Monitoring/operation/management
      C1P012: Design/Construction companies
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • Construction/implementation
      C1P012: End‐users/Occupants/Energy Citizens
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Design/demand aggregation
      • Monitoring/operation/management
      C1P012: Social/Civil Society/NGOs
      • Planning/leading
      • Design/demand aggregation,
      • Monitoring/operation/management
      • None
      C1P012: Industry/SME/eCommerce
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Construction/implementation
      C1P012: Other
      • None
      C1P012: Other (if any)
      Summary

      Authors (framework concept)

      Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

      Contributors (to the content)

      Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

      Implemented by

      Boutik.pt: Filipe Martins, Jamal Khan
      Marek Suchánek (Czech Technical University in Prague)