Filters:
NameProjectTypeCompare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Compare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Uncompare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Uncompare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Compare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Compare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr, Geothermal District Heating Project PED Relevant Case Study Compare
Drammen, Jacobs Borchs Gate PED Relevant Case Study Compare
Freiburg im Breisgau, Dietenbach PED Relevant Case Study Compare
Lecce, SmartEnCity SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
Trento, STARDUST STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Malmö, Klimatkontrakt Hyllie PED Relevant Case Study Compare
Kaiserslautern, EnStadt:Pfaff PED Relevant Case Study / PED Lab Compare
Helsinki, mySMARTlife PED Relevant Case Study Compare
Firenze, Novoli-Cascine district on “le PIagge” buildings PED Relevant Case Study Compare
Bolzano, Sinfonia PED Relevant Case Study Compare
Zürich, Hunziker Areal PED Relevant Case Study Compare
Hammarby Sjöstad, Hammarby Sjöstad 2.0 PED Relevant Case Study Compare
Milano, Sharing Cities PED Relevant Case Study Compare
Mieres, District Heating Pozo Barredo PED Relevant Case Study Compare
Lund, Cityfied (demo Linero) PED Relevant Case Study Compare
Espoo, Smart Otaniemi PED Relevant Case Study / PED Lab Compare
Vienna, Zukunftsquartier PED Case Study Compare
Trento, Santa Chiara Open Lab PED Case Study Compare
Paterna, Barrio La Pinada PED Case Study / PED Lab Compare
Bergen, Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru, +CityxChange PED Case Study Compare
Trondheim, NTNU Campus within the Knowledge Axis ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Oslo, Furuset project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Măgurele, Laser Valley – Land of Lights PED Case Study Compare
Elverum, Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bodø, Airport, NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bærum, Fornebu ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Carquefou, Fleuraye west PED Case Study Compare
Åland, Smart Energy PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Uncompare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Uncompare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Uncompare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Uncompare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Uncompare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleEspoo, Kera
Kladno, Sletiště (Sport Area), PED Winter Stadium
Romania, Alba Iulia PED
Groningen, PED North
Izmir, District of Karşıyaka
Hällefors, Sweden
Lublin
Barcelona, SEILAB & Energy SmartLab
Texel
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabEspoo, KeraKladno, Sletiště (Sport Area), PED Winter StadiumRomania, Alba Iulia PEDGroningen, PED NorthIzmir, District of KarşıyakaHällefors, SwedenLublinBarcelona, SEILAB & Energy SmartLabTexel
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studyyesnoyesnoyesnoyesnono
PED relevant case studyyesyesnononoyesnonoyes
PED Lab.nononoyesnononoyesno
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesyesyesyesyesnoyes
Annual energy surplusnoyesyesyesyesnoyesnoyes
Energy communitynoyesyesyesnoyesyesyesno
Circularityyesnonoyesnonoyesnono
Air quality and urban comfortnonoyesnoyesnoyesnono
Electrificationnoyesyesnonononoyesyes
Net-zero energy costnonononoyesnoyesnono
Net-zero emissionnononoyesnonoyesyesno
Self-sufficiency (energy autonomous)nonoyesnononoyesyesno
Maximise self-sufficiencynonoyesnoyesnoyesnono
Othernononononononoyesno
Other (A1P004)Green IT
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhasePlanning PhaseImplementation PhaseImplementation PhasePlanning PhasePlanning PhasePlanning PhaseIn operationPlanning Phase
A1P006: Start Date
A1P006: Start date01/15202201/2412/1810/2204/2401/201104/24
A1P007: End Date
A1P007: End date12/3512/2612/2310/2512/2602/201312/26
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Open data city platform – different dashboards,
  • General statistical datasets
  • Monitoring data available within the districts,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
  • Monitoring data available within the districts
  • General statistical datasets,
  • GIS open datasets,
  • Vehicle registration datasets
  • General statistical datasets
A1P009: OtherOther
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • Historical sources,
  • GIS of the municipality,
  • Basic BEMs
  • TNO, Hanze, RUG,
  • Ped noord book
A1P011: Geographic coordinates
X Coordinate (longitude):24.7537777814.0929623.5801120980232356.53512127.11004914.5251022.56842.14.8
Y Coordinate (latitude):60.2162222250.1371546.07701527868011553.23484638.49605459.7896351.246541.353.05
A1P012: Country
A1P012: CountryFinlandCzech RepublicRomaniaNetherlandsTurkeySwedenPolandSpainNetherlands
A1P013: City
A1P013: CityEspooKladnoAlba IuliaGroningenİzmirHälleforsLublinBarcelona and TarragonaTexel
A1P014: Climate Zone (Köppen Geiger classification)
A1P014: Climate Zone (Köppen Geiger classification).DfbCfbDfbCfaCsaDwbCfbCsaCfb
A1P015: District boundary
A1P015: District boundaryGeographicGeographicFunctionalFunctionalGeographicGeographicGeographicVirtualGeographic
OtherV1* (ca 8 buildings)Geographic
A1P016: Ownership of the case study/PED Lab
A1P016: Ownership of the case study/PED Lab:MixedMixedPublicMixedPrivatePublicPrivatePublicPrivate
A1P017: Ownership of the land / physical infrastructure
A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersSingle OwnerMultiple OwnersMultiple OwnersSingle OwnerMultiple OwnersSingle OwnerSingle Owner
A1P018: Number of buildings in PED
A1P018: Number of buildings in PED8672150
A1P019: Conditioned space
A1P019: Conditioned space [m²]1.0110279521664.73
A1P020: Total ground area
A1P020: Total ground area [m²]5800008423.4517.1323260072833.4741269
A1P021: Floor area ratio: Conditioned space / total ground area
A1P021: Floor area ratio: Conditioned space / total ground area000030000
A1P022: Financial schemes
A1P022a: Financing - PRIVATE - Real estatenoyesnoyesnonononono
A1P022a: Add the value in EUR if available [EUR]
A1P022b: Financing - PRIVATE - ESCO schemenoyesnonononononono
A1P022b: Add the value in EUR if available [EUR]
A1P022c: Financing - PRIVATE - Othernononoyesnonononono
A1P022c: Add the value in EUR if available [EUR]
A1P022d: Financing - PUBLIC - EU structural fundingnoyesyesnononononono
A1P022d: Add the value in EUR if available [EUR]
A1P022e: Financing - PUBLIC - National fundingnonoyesyesnonononono
A1P022e: Add the value in EUR if available [EUR]
A1P022f: Financing - PUBLIC - Regional fundingnonoyesnononononono
A1P022f: Add the value in EUR if available [EUR]
A1P022g: Financing - PUBLIC - Municipal fundingnoyesyesyesnonononono
A1P022g: Add the value in EUR if available [EUR]
A1P022h: Financing - PUBLIC - Othernonononononononono
A1P022h: Add the value in EUR if available [EUR]
A1P022i: Financing - RESEARCH FUNDING - EUnoyesnoyesyesnononono
A1P022i: Add the value in EUR if available [EUR]1193355
A1P022j: Financing - RESEARCH FUNDING - Nationalnoyesnonoyesyesnonoyes
A1P022j: Add the value in EUR if available [EUR]321597
A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononononono
A1P022k: Add the value in EUR if available [EUR]
A1P022l: Financing - RESEARCH FUNDING - Othernonononononononono
A1P022l: Add the value in EUR if available [EUR]
A1P022: OtherMultiple different funding schemes depending on the case.
A1P023: Economic Targets
A1P023: Economic Targets
  • Job creation,
  • Positive externalities,
  • Boosting local businesses,
  • Boosting local and sustainable production,
  • Boosting consumption of local and sustainable products
  • Job creation,
  • Positive externalities
  • Job creation,
  • Positive externalities,
  • Other
  • Boosting local businesses,
  • Boosting local and sustainable production
  • Positive externalities,
  • Boosting local and sustainable production
  • Job creation,
  • Positive externalities,
  • Boosting local businesses,
  • Boosting local and sustainable production,
  • Boosting consumption of local and sustainable products
  • Job creation,
  • Boosting local and sustainable production
A1P023: OtherCircular economyBoosting sustainability for public schools
A1P024: More comments:
A1P024: More comments:Lublin PED Area is geographically bounded and the ambition is to reach Self-Sufficiency. There is a shopping centre with a large rooftop area for solar generation and there are also an empty lot (just on the east side of the building) and a carpark area (on the north side) next to the commercial centre. These areas can also be evaluated for on-site (on the ground – or canopies for cars) energy generation. There are also new built (mainly in 2012) residential blocks with high efficiency and this district is so-called an “eco-district”. Thanks to the District Heating Grid (DHN), all buildings are connected to each other the network has potential for sharing mechanisms in the PED Area. Another opportunity for renewable energy is that these buildings are connected to more or less the end point of DHN and for this reason, a waste heat potential from the return pipe may also be considered. There are also small size residentials, that are not connected to the DHN, around the PED area and this enlightened the technical team for exporting energy from PED to these areas with a new infrastructure.Semi-Virtual Energy Integration Laboratory (SEILAB) The Energy Smart Lab is an infrastructure conceived as a flexible and versatile platform for innovative technological developments for both industry and competitive R+D projects. The areas of expertise of this laboratory pivot around the following technologies: – Power Electronics for the integration and control of the elements within a building or community: Renewable Energy Sources (RES), Energy Storage Systems and Electric Vehicles (EV) – ICT Platform for smart communications and energy management of systems, building, networks and communities. – Energy System Integration technologies for smart and flexible buildings and grids including RES and EV. The laboratory operation is based on the hardware emulation approach, which allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation. The laboratory is pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.
A1P025: Estimated PED case study / PED LAB costs
A1P025: Estimated PED case study / PED LAB costs [mil. EUR]3.5
Contact person for general enquiries
A1P026: NameJoni MäkinenDavid ŠkorňaTudor DrâmbăreanJasper Tonen, Elisabeth KoopsOzlem SenyolPer CarlborgDorota Wolińska-PietrzakDr. Jaume Salom, Dra. Cristina CorcheroLuis Ramirez Camargo
A1P027: OrganizationCity of EspooMěsto KladnoMunicipality of Alba IuliaMunicipality of GroningenKarsiyaka MunicipalityÖrebro UniversityLublin MunicipalityIRECUtrecht University
A1P028: AffiliationMunicipality / Public BodiesMunicipality / Public BodiesMunicipality / Public BodiesMunicipality / Public BodiesMunicipality / Public BodiesResearch Center / UniversityMunicipality / Public BodiesResearch Center / UniversityResearch Center / University
A1P028: OtherMaria Elena Seemann
A1P029: Emailjoni.makinen@espoo.fidavid.skorna@mestokladno.cztudor.drambarean@apulum.roJasper.tonen@groningen.nlozlemkocaer2@gmail.comper.carlborg@oru.sedwolinska@lublin.euJsalom@irec.catl.e.ramirezcamargo@uu.nl
Contact person for other special topics
A1P030: NameMichal KuzmičMaria-Elena SeemannHasan Burak CavkaMitali Joshi
A1P031: Emailmichal.kuzmic@cvut.czmaria.seemann@apulum.roapulhasancavka@iyte.edu.trm.y.joshi@uu.nl
Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYesYes
A2P001: Fields of application
A2P001: Fields of application
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Digital technologies,
  • Waste management,
  • Construction materials
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Digital technologies,
  • Indoor air quality
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Urban comfort (pollution, heat island, noise level etc.),
  • Digital technologies,
  • Construction materials
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Urban comfort (pollution, heat island, noise level etc.),
  • Waste management
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • Urban comfort (pollution, heat island, noise level etc.)
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Urban comfort (pollution, heat island, noise level etc.),
  • Digital technologies,
  • Indoor air quality
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Digital technologies
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility
A2P001: Other
A2P002: Tools/strategies/methods applied for each of the above-selected fields
A2P002: Tools/strategies/methods applied for each of the above-selected fields- Kera development commitment (https://www.espoo.fi/en/kera-development-commitment). - SPARCS Co-creation model for sustainable and smart urban areas (www.co-creatingsparcs.fi/en). - Kera area carbon neutrality roadmap (https://static.espoo.fi/cdn/ff/MHDdcMNJ9aYn7CjpoD4zNpo5M-M9HIDLXlJdUrUmf-8/1642756766/public/2022-01/Kera%20carbon%20neutrality%20map_EN.pdf)Trnsys, PV modelling tools, CADThermal rehabilitation of the main building, and investments in the energy efficiency and consumption fields.Energy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streamsMethods involve studying the feasibility of digital PED references for the case cities about their energy, environmental, and economic performance by EnergyPlus tool. In case of insufficient energy data and the need of high resolution data, ‘Gaussian mixture model and expectation-maximization algorithm’ and ‘time-series decomposition-recombination’ method will be used to supplement data to EnergyPlus. The feasibility results will be returned to stakeholders for iterative discussion, and the iterative results will be used to update digital references. Replication plans are developed based on such a cooperation process for strategies to implement PEDs. If a PED is demonstrated during the project period, the measured data will be used to verify the feasibility model to optimize previous results (WP7– R3 & R4). In the MAKING-CITY project, the overall PED design method is developed, which will be further optimised in this project. In addition, PED-ACT will use the methods and knowledge, including how to choose a suitable PED in a city, energy balance calculation, and technologies available for PED. The RUGGEDISED project outputs the governance model into the replication plan in PED-ACT. Its ‘smart city open-data decision platform’ will illustrate an excellent example for the database in PED-ACT. The IEA EBC Annex 83 and Cost Action 19126 create the basis for data collection, developing existing PED databases, characterization of PED, and review of regulations of PED, as well as development of simulation tools. The UBEM project further enables a detailed high-resolution energy balance calculation of PED.SEE: D4.1 - Methodology and Guidelines for PED design https://makingcity.eu/results/#1551708358627-aefa76ef-66b2Energy SmartLab capacities - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. Energy SmartLab systems - SAFT Li-ion battery: maximum stored energy 20000 Wh, rated power 150 kW, rated discharge current 200 A, rated charge current 34 A, operating voltage 189 V – 227 V – 254 V, capacity 82 Ah. – Ultracapacitors: maximum stored energy 57 Wh, rated power 10 kW, rated current 20 A, peak current (<1s) 200 Apk, operating voltage 250 V – 500 V, capacity 1,65 F. – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah - 5 microgrid emulators (emulated power 5.5 kVA, max generation connected 10kVA, max consumption connected 10 kVA) - 1 grid emulator (Rated power: 200 kVA, Rated current per phase: 350 A, Rated current per neutral conductor: 35)
A2P003: Application of ISO52000
A2P003: Application of ISO52000NoNoYesNoYesNo
A2P004: Appliances included in the calculation of the energy balance
A2P004: Appliances included in the calculation of the energy balanceNoYesYesNoYesYesYes
A2P005: Mobility included in the calculation of the energy balance
A2P005: Mobility included in the calculation of the energy balanceNoNoNoNoNoNoYes
A2P006: Description of how mobility is included (or not included) in the calculation
A2P006: Description of how mobility is included (or not included) in the calculationNot yet included.There will be 1 EV station placed nearby the main building. This would be the link to the mobility field.Mobility, till now, is not included in the energy model.Mobility is not included in the calculations.– Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah
A2P007: Annual energy demand in buildings / Thermal demand
A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]54.51.40.9822.33.8620.719
A2P008: Annual energy demand in buildings / Electric Demand
A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]19.40.30.0484410.331.2260.192180
A2P009: Annual energy demand for e-mobility
A2P009: Annual energy demand for e-mobility [GWh/annum]
A2P010: Annual energy demand for urban infrastructure
A2P010: Annual energy demand for urban infrastructure [GWh/annum]
A2P011: Annual renewable electricity production on-site during target year
A2P011: PVyesyesyesnoyesnonoyesno
A2P011: PV - specify production in GWh/annum [GWh/annum]41.11.028
A2P011: Windnonononononononono
A2P011: Wind - specify production in GWh/annum [GWh/annum]
A2P011: Hydrononononononononono
A2P011: Hydro - specify production in GWh/annum [GWh/annum]
A2P011: Biomass_elnonononononononono
A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
A2P011: Biomass_peat_elnonononononononono
A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
A2P011: PVT_elnonononononononono
A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
A2P011: Othernonononononononono
A2P011: Other - specify production in GWh/annum [GWh/annum]
A2P012: Annual renewable thermal production on-site during target year
A2P012: Geothermalnononoyesnonononono
A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
A2P012: Solar Thermalnononoyesnonononono
A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
A2P012: Biomass_heatnononoyesnonononono
A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.1
A2P012: Waste heat+HPyesyesnoyesnonononono
A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]1.7
A2P012: Biomass_peat_heatnonononononononono
A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
A2P012: PVT_thnononoyesnonononono
A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
A2P012: Biomass_firewood_thnonononononononono
A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
A2P012: Othernonoyesnononononono
A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
A2P013: Renewable resources on-site - Additional notes
A2P013: Renewable resources on-site - Additional notesLocal energy utility will implement district level thermal solution. First, energy will be produced from waste heat from a local data center. Further thermal solutions are under discussion and development.Waste heat from cooling the ice rink.Only PVs - 940 PVs on the main buildingGeothermal heatpump systems, Waste heat from data centers
A2P014: Annual energy use
A2P014: Annual energy use [GWh/annum]78.82.10.0000484415.088
A2P015: Annual energy delivered
A2P015: Annual energy delivered [GWh/annum]15.40.000113331
A2P016: Annual non-renewable electricity production on-site during target year
A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]0
A2P017: Annual non-renewable thermal production on-site during target year
A2P017: Gasnonononoyesnonoyesno
A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Coalnonononononononono
A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Oilnonononononononono
A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Othernonoyesnononononono
A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P018: Annual renewable electricity imports from outside the boundary during target year
A2P018: PVnonononoyesnononono
A2P018 - PV: specify production in GWh/annum if available [GWh/annum]0.707
A2P018: Windnonononononononono
A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
A2P018: Hydrononononononononono
A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
A2P018: Biomass_elnonononononononono
A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
A2P018: Biomass_peat_elnonononononononono
A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
A2P018: PVT_elnonononononononono
A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
A2P018: Othernonoyesnononononono
A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
A2P019: Annual renewable thermal imports from outside the boundary during target year
A2P019: Geothermalnonononononononono
A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
A2P019: Solar Thermalnonononononononono
A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_heatnonononononononono
A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
A2P019: Waste heat+HPnonononononononono
A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_peat_heatnonononononononono
A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
A2P019: PVT_thnonononononononono
A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_firewood_thnonononononononono
A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
A2P019: Othernonoyesnononononono
A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
A2P020: Share of RES on-site / RES outside the boundary
A2P020: Share of RES on-site / RES outside the boundary00001.45403111739750000
A2P021: GHG-balance calculated for the PED
A2P021: GHG-balance calculated for the PED [tCO2/annum]450000-104
A2P022: KPIs related to the PED case study / PED Lab
A2P022: Safety & Securityyes
A2P022: Healthyes
A2P022: Educationyes
A2P022: MobilityyesYesYes
A2P022: EnergyEnergy demand (heating and hot water), Energy demand (cooling), Cooling demand, Distributin losses, PV production, RES production, OER, Primafry Non-renewable energy balance, AMR, HMR, CO2 balanceyesYesYes
A2P022: Wateryes
A2P022: Economic developmentInvestment cost, Caputal cost, Operation cost, payback period, NPV, cummulated cash flow, savings, Life cycle, ROI, SROIyes
A2P022: Housing and Community
A2P022: Waste
A2P022: Other
A2P023: Technological Solutions / Innovations - Energy Generation
A2P023: Photovoltaicsyesyesyesyesyesnoyesyesyes
A2P023: Solar thermal collectorsnonoyesyesnonononoyes
A2P023: Wind Turbinesnonononononononono
A2P023: Geothermal energy systemnononoyesnonononono
A2P023: Waste heat recoveryyesyesnoyesnonononono
A2P023: Waste to energynononoyesnonononono
A2P023: Polygenerationnonoyesnononononono
A2P023: Co-generationnonoyesnononononono
A2P023: Heat Pumpyesyesyesyesyesnoyesnoyes
A2P023: Hydrogennonononononoyesnono
A2P023: Hydropower plantnonononononononono
A2P023: Biomassnonononononononono
A2P023: Biogasnonononononononono
A2P023: Other
A2P024: Technological Solutions / Innovations - Energy Flexibility
A2P024: A2P024: Information and Communication Technologies (ICT)yesyesyesyesnonoyesyesno
A2P024: Energy management systemyesyesyesyesnonoyesyesno
A2P024: Demand-side managementyesyesyesyesnoyesyesnoyes
A2P024: Smart electricity gridyesnoyesnononoyesyesno
A2P024: Thermal Storagenononoyesnonoyesnono
A2P024: Electric Storagenonoyesyesnonoyesyesno
A2P024: District Heating and Coolingyesyesnoyesnoyesyesnoyes
A2P024: Smart metering and demand-responsive control systemsnoyesyesyesnonoyesnono
A2P024: P2P – buildingsnonoyesnononononono
A2P024: Other
A2P025: Technological Solutions / Innovations - Energy Efficiency
A2P025: Deep Retrofittingnoyesyesnoyesyesyesnoyes
A2P025: Energy efficiency measures in historic buildingsnononoyesnonoyesnono
A2P025: High-performance new buildingsyesnonoyesnonoyesnono
A2P025: Smart Public infrastructure (e.g. smart lighting)yesnoyesyesnonoyesnono
A2P025: Urban data platformsyesyesyesyesnonoyesnono
A2P025: Mobile applications for citizensnonononononoyesnono
A2P025: Building services (HVAC & Lighting)yesyesyesnoyesnoyesyesno
A2P025: Smart irrigationnonononononononono
A2P025: Digital tracking for waste disposalnonononononononono
A2P025: Smart surveillancenonononononononono
A2P025: Other
A2P026: Technological Solutions / Innovations - Mobility
A2P026: Efficiency of vehicles (public and/or private)yesnoyesnononoyesyesno
A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)yesnoyesnononoyesnono
A2P026: e-Mobilityyesnoyesyesnonoyesnono
A2P026: Soft mobility infrastructures and last mile solutionsyesnononononononono
A2P026: Car-free areanonononononononono
A2P026: Other
A2P027: Mobility strategies - Additional notes
A2P027: Mobility strategies - Additional notesThe new mobility plan integrates the PED area
A2P028: Energy efficiency certificates
A2P028: Energy efficiency certificatesNoYesYesYesNoNo
A2P028: If yes, please specify and/or enter notesNational standards apply.Energy Performance Certificate
A2P029: Any other building / district certificates
A2P029: Any other building / district certificatesNoNoYesNoNo
A2P029: If yes, please specify and/or enter notes
A3P001: Relevant city /national strategy
A3P001: Relevant city /national strategy
  • Energy master planning (SECAP, etc.),
  • Climate change adaption plan/strategy (e.g. Climate City contract)
  • Smart cities strategies,
  • Energy master planning (SECAP, etc.),
  • Promotion of energy communities (REC/CEC),
  • National / international city networks addressing sustainable urban development and climate neutrality
  • Smart cities strategies,
  • Urban Renewal Strategies,
  • Energy master planning (SECAP, etc.),
  • New development strategies,
  • Promotion of energy communities (REC/CEC),
  • Climate change adaption plan/strategy (e.g. Climate City contract),
  • National / international city networks addressing sustainable urban development and climate neutrality
  • Energy master planning (SECAP, etc.),
  • New development strategies,
  • National / international city networks addressing sustainable urban development and climate neutrality
  • Energy master planning (SECAP, etc.),
  • Climate change adaption plan/strategy (e.g. Climate City contract),
  • National / international city networks addressing sustainable urban development and climate neutrality
  • Smart cities strategies,
  • Urban Renewal Strategies,
  • Energy master planning (SECAP, etc.),
  • New development strategies,
  • Promotion of energy communities (REC/CEC),
  • Climate change adaption plan/strategy (e.g. Climate City contract),
  • National / international city networks addressing sustainable urban development and climate neutrality
  • Smart cities strategies,
  • New development strategies
A3P002: Quantitative targets included in the city / national strategy
A3P002: Quantitative targets included in the city / national strategyCarbon neutrality 205040% reduction in emissions by 2030 according to the Covenant of MayorsKarşıyaka Municipality is the first local government in Turkey to sign the Covenant of Mayors in 2011. During this period, the greenhouse gas inventory of the district was carried out three times and reduction targets were set for 2020 and 2030. In the 2021 Sustainable Energy and Climate Action Plan prepared as of the end of 2021, Karşıyaka Municipality has targeted a 40% reduction in its emissions for 2030 compared to the base year 2018. In the 2021 Sustainable Energy and Climate Action Plan, Karşıyaka Municipality aims to reduce its greenhouse gas emissions from 3.96 tCO2e / person in 2018 to 2.37 tCO2e / person in 2030. System solutions such as the use of renewable energy sources, air, ground or water source heat pump, cogeneration and microcogeneration are analysed by designers in order to fully or partially meet the energy requirements for heating, cooling, ventilation, hot water, electricity and lighting for all buildings with a floor area of less than 20,000 square metres. If at least 50% of the building's total energy consumption costs are covered by one or more of these applications, the points are taken in the assessment table in the Building and housing estate business certification guide of 2023.
A3P003: Strategies towards decarbonization of the gas grid
A3P003: Strategies towards decarbonization of the gas grid
  • Electrification of Heating System based on Heat Pumps
  • Electrification of Heating System based on Heat Pumps
  • Electrification of Heating System based on Heat Pumps,
  • Electrification of Cooking Methods,
  • Biogas
  • Electrification of Heating System based on Heat Pumps
  • Electrification of Heating System based on Heat Pumps,
  • Other
A3P003: OtherHeating Grid
A3P004: Identification of needs and priorities
A3P004: Identification of needs and priorities- Thermal rehabilitation - Heat pumps - Smart system capable o various connections and data export - Usage of the energy produced by PVs placed on 3 buildings within the PEDAccording to the model developed for the district, the electrification of heating and cooling is necessary.Therefore, there needs to be the implementation of a heat pump. The building-integrated photovoltaic panelsshould follow. Through net-metering practices, the district is expected to reach energy positivity throughthis scenario.-Allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation -Pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.
A3P005: Sustainable behaviour
A3P005: Sustainable behaviour- Education - Replacement of the non-performant PVs - Professional maintenance of the PV system - Reduce of consumptions - Intelligent systems to recover heat - Intelligent system to permit the usage of domestic water from the heating systemIn Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.-Improving the development of Net Zero Energy Buildings and Flexible Energy buildings.
A3P006: Economic strategies
A3P006: Economic strategies
  • PPP models,
  • Circular economy models
  • Innovative business models,
  • PPP models,
  • Existing incentives
  • Open data business models,
  • Innovative business models,
  • Life Cycle Cost,
  • Circular economy models,
  • Demand management Living Lab
  • Innovative business models,
  • Blockchain
  • Demand management Living Lab
A3P006: Other
A3P007: Social models
A3P007: Social models
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies,
  • Quality of Life
  • Strategies towards (local) community-building,
  • Affordability
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies,
  • Behavioural Change / End-users engagement,
  • Citizen Social Research,
  • Policy Forums,
  • Social incentives,
  • Quality of Life,
  • Strategies towards social mix,
  • Affordability,
  • Prevention of energy poverty,
  • Digital Inclusion,
  • Citizen/owner involvement in planning and maintenance,
  • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies,
  • Citizen Social Research,
  • Prevention of energy poverty,
  • Citizen/owner involvement in planning and maintenance
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies,
  • Affordability
  • Co-creation / Citizen engagement strategies,
  • Citizen Social Research,
  • Quality of Life,
  • Affordability,
  • Prevention of energy poverty,
  • Citizen/owner involvement in planning and maintenance
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies
  • Digital Inclusion,
  • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
  • Co-creation / Citizen engagement strategies,
  • Citizen Social Research
A3P007: Other
A3P008: Integrated urban strategies
A3P008: Integrated urban strategies
  • Strategic urban planning,
  • Digital twinning and visual 3D models,
  • District Energy plans
  • Strategic urban planning,
  • City Vision 2050,
  • SECAP Updates
  • Strategic urban planning,
  • District Energy plans,
  • City Vision 2050,
  • SECAP Updates,
  • Building / district Certification
  • Strategic urban planning,
  • District Energy plans,
  • City Vision 2050,
  • SECAP Updates
  • Digital twinning and visual 3D models,
  • District Energy plans,
  • SECAP Updates
  • Strategic urban planning,
  • Digital twinning and visual 3D models,
  • City Vision 2050
  • City Vision 2050,
  • SECAP Updates
  • Strategic urban planning,
  • Digital twinning and visual 3D models,
  • City Vision 2050,
  • Building / district Certification
A3P008: Other
A3P009: Environmental strategies
A3P009: Environmental strategies
  • Net zero carbon footprint,
  • Life Cycle approach,
  • Greening strategies,
  • Nature Based Solutions (NBS)
  • Net zero carbon footprint
  • Energy Neutral,
  • Low Emission Zone,
  • Net zero carbon footprint,
  • Carbon-free,
  • Life Cycle approach,
  • Pollutants Reduction,
  • Greening strategies,
  • Sustainable Urban drainage systems (SUDS),
  • Cool Materials,
  • Nature Based Solutions (NBS)
  • Energy Neutral
  • Energy Neutral,
  • Low Emission Zone,
  • Pollutants Reduction
  • Energy Neutral
  • Energy Neutral,
  • Low Emission Zone,
  • Net zero carbon footprint,
  • Carbon-free,
  • Life Cycle approach,
  • Greening strategies,
  • Nature Based Solutions (NBS)
  • Energy Neutral,
  • Low Emission Zone,
  • Pollutants Reduction,
  • Greening strategies
  • Energy Neutral
A3P009: Other
A3P010: Legal / Regulatory aspects
A3P010: Legal / Regulatory aspectsAt national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricity- European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.
B1P001: PED/PED relevant concept definition
B1P001: PED/PED relevant concept definitionImplementation of district level heating system to make heating energy positive and expanding local renewable electricity production.Onsite Energy Ratio > 1Positive energy districtThe pilot area was selected on the basis of several criteria: its location within areas prioritised by Karşıyaka Municipality for combating climate change, compliance with the building regulations set out in the Green Building-Site-Operation (2023) guide, which are in line with Municipality's energy policy, the presence of open spaces that allow various applications for renewable energy, proximity to public facilities such as schools and municipal services, the availability of data on energy consumption (e.g. electricity and natural gas bills) and architectural features, the potential for community building, the suitability for solar energy systems, considering orientation and roof structure, and the potential for future building renovations. The aim of the initiative is to explore the feasibility of transforming the district into a Positive Energy District (PED).
B1P002: Motivation behind PED/PED relevant project development
B1P002: Motivation behind PED/PED relevant project developmentStrategic, economicCreation of an area which aims to be sustainable in terms of energy sufficiency and efficiency.
B1P003: Environment of the case study area
B2P003: Environment of the case study areaUrban areaUrban areaUrban areaUrban area
B1P004: Type of district
B2P004: Type of district
  • New construction
  • New construction,
  • Renovation
  • Renovation
  • Renovation
B1P005: Case Study Context
B1P005: Case Study Context
  • Re-use / Transformation Area
  • New Development,
  • Retrofitting Area
  • Retrofitting Area
  • Retrofitting Area
B1P006: Year of construction
B1P006: Year of construction19762005
B1P007: District population before intervention - Residential
B1P007: District population before intervention - Residential
B1P008: District population after intervention - Residential
B1P008: District population after intervention - Residential14000
B1P009: District population before intervention - Non-residential
B1P009: District population before intervention - Non-residential
B1P010: District population after intervention - Non-residential
B1P010: District population after intervention - Non-residential10000
B1P011: Population density before intervention
B1P011: Population density before intervention000000000
B1P012: Population density after intervention
B1P012: Population density after intervention0.04137931034482800000000
B1P013: Building and Land Use before intervention
B1P013: Residentialyesyesnonoyesnononono
B1P013 - Residential: Specify the sqm [m²]102795
B1P013: Officeyesyesnonononononono
B1P013 - Office: Specify the sqm [m²]
B1P013: Industry and Utilityyesnononononononono
B1P013 - Industry and Utility: Specify the sqm [m²]
B1P013: Commercialnonononononononono
B1P013 - Commercial: Specify the sqm [m²]
B1P013: Institutionalnonoyesnononononono
B1P013 - Institutional: Specify the sqm [m²]
B1P013: Natural areasnonononononononono
B1P013 - Natural areas: Specify the sqm [m²]
B1P013: Recreationalnoyesnonononononono
B1P013 - Recreational: Specify the sqm [m²]
B1P013: Dismissed areasyesnononononononono
B1P013 - Dismissed areas: Specify the sqm [m²]
B1P013: Othernonononononononono
B1P013 - Other: Specify the sqm [m²]
B1P014: Building and Land Use after intervention
B1P014: Residentialyesyesnonoyesnononono
B1P014 - Residential: Specify the sqm [m²]102795
B1P014: Officeyesyesnonononononono
B1P014 - Office: Specify the sqm [m²]
B1P014: Industry and Utilitynonononononononono
B1P014 - Industry and Utility: Specify the sqm [m²]
B1P014: Commercialyesnononononononono
B1P014 - Commercial: Specify the sqm [m²]
B1P014: Institutionalnonoyesnononononono
B1P014 - Institutional: Specify the sqm [m²]
B1P014: Natural areasnonononononononono
B1P014 - Natural areas: Specify the sqm [m²]
B1P014: Recreationalyesyesnonononononono
B1P014 - Recreational: Specify the sqm [m²]
B1P014: Dismissed areasnonononononononono
B1P014 - Dismissed areas: Specify the sqm [m²]
B1P014: Othernonononononononono
B1P014 - Other: Specify the sqm [m²]
B2P001: PED Lab concept definition
B2P001: PED Lab concept definitionGroningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation
B2P002: Installation life time
B2P002: Installation life timeThe MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.
B2P003: Scale of action
B2P003: ScaleDistrictDistrictVirtual
B2P004: Operator of the installation
B2P004: Operator of the installationThe Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.IREC
B2P005: Replication framework: Applied strategy to reuse and recycling the materials
B2P005: Replication framework: Applied strategy to reuse and recycling the materialsGroningen does not have a strategy to reuse and recyle materials
B2P006: Circular Economy Approach
B2P006: Do you apply any strategy to reuse and recycling the materials?NoYesNo
B2P006: Other
B2P007: Motivation for developing the PED Lab
B2P007: Motivation for developing the PED Lab
  • Civic
  • Strategic
  • Strategic,
  • Private
B2P007: Other
B2P008: Lead partner that manages the PED Lab
B2P008: Lead partner that manages the PED LabMunicipalityMunicipalityResearch center/University
B2P008: Other
B2P009: Collaborative partners that participate in the PED Lab
B2P009: Collaborative partners that participate in the PED Lab
  • Academia,
  • Private,
  • Industrial,
  • Other
  • Academia,
  • Private,
  • Industrial,
  • Citizens, public, NGO
B2P009: Otherresearch companies, monitoring company, ict company
B2P010: Synergies between the fields of activities
B2P010: Synergies between the fields of activities
B2P011: Available facilities to test urban configurations in PED Lab
B2P011: Available facilities to test urban configurations in PED Lab
  • Buildings,
  • Demand-side management,
  • Energy storage,
  • Energy networks,
  • Waste management,
  • Lighting,
  • E-mobility,
  • Information and Communication Technologies (ICT),
  • Social interactions,
  • Business models
  • Buildings,
  • Demand-side management,
  • Prosumers,
  • Renewable generation,
  • Efficiency measures,
  • Waste management,
  • Water treatment,
  • Lighting,
  • E-mobility,
  • Green areas,
  • Circular economy models
  • Demand-side management,
  • Energy storage,
  • Energy networks,
  • Efficiency measures,
  • Information and Communication Technologies (ICT)
B2P011: Other
B2P012: Incubation capacities of PED Lab
B2P012: Incubation capacities of PED Lab
  • Tools for prototyping and modelling
  • Monitoring and evaluation infrastructure
  • Monitoring and evaluation infrastructure,
  • Tools for prototyping and modelling,
  • Tools, spaces, events for testing and validation
B2P013: Availability of the facilities for external people
B2P013: Availability of the facilities for external people
B2P014: Monitoring measures
B2P014: Monitoring measures
  • Execution plan,
  • Available data,
  • Type of measured data,
  • Equipment,
  • Level of access
  • Available data
  • Equipment
B2P015: Key Performance indicators
B2P015: Key Performance indicators
  • Energy,
  • Social,
  • Economical / Financial
  • Energy
  • Energy,
  • Environmental
B2P016: Execution of operations
B2P016: Execution of operations
B2P017: Capacities
B2P017: Capacities- Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network.
B2P018: Relations with stakeholders
B2P018: Relations with stakeholders
B2P019: Available tools
B2P019: Available tools
  • Energy modelling,
  • Social models,
  • Business and financial models
  • Energy modelling
B2P019: Available tools
B2P020: External accessibility
B2P020: External accessibility
C1P001: Unlocking Factors
C1P001: Recent technological improvements for on-site RES production5 - Very important4 - Important4 - Important3 - Moderately important5 - Very important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock4 - Important4 - Important4 - Important3 - Moderately important4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
C1P001: Energy Communities, P2P, Prosumers concepts3 - Moderately important3 - Moderately important5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
C1P001: Storage systems and E-mobility market penetration4 - Important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant
C1P001: Decreasing costs of innovative materials3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important5 - Very important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
C1P001: Financial mechanisms to reduce costs and maximize benefits3 - Moderately important4 - Important3 - Moderately important5 - Very important4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
C1P001: The ability to predict Multiple Benefits3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant5 - Very important4 - Important1 - Unimportant
C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important3 - Moderately important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant5 - Very important4 - Important1 - Unimportant
C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important3 - Moderately important3 - Moderately important5 - Very important2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
C1P001: Social acceptance (top-down)3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important2 - Slightly important2 - Slightly important4 - Important5 - Very important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
C1P001: Presence of integrated urban strategies and plans4 - Important4 - Important5 - Very important3 - Moderately important5 - Very important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
C1P001: Multidisciplinary approaches available for systemic integration5 - Very important3 - Moderately important2 - Slightly important2 - Slightly important4 - Important1 - Unimportant5 - Very important4 - Important1 - Unimportant
C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects3 - Moderately important5 - Very important5 - Very important3 - Moderately important5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
C1P001: Availability of RES on site (Local RES)4 - Important4 - Important4 - Important4 - Important5 - Very important1 - Unimportant5 - Very important4 - Important1 - Unimportant
C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders5 - Very important4 - Important5 - Very important3 - Moderately important5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
C1P001: Any other UNLOCKING FACTORS1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
C1P001: Any other UNLOCKING FACTORS (if any)Collaboration with the local partners
C1P002: Driving Factors
C1P002: Climate Change adaptation need5 - Very important3 - Moderately important5 - Very important2 - Slightly important5 - Very important1 - Unimportant5 - Very important4 - Important1 - Unimportant
C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important4 - Important5 - Very important3 - Moderately important5 - Very important1 - Unimportant5 - Very important4 - Important1 - Unimportant
C1P002: Rapid urbanization trend and need of urban expansions4 - Important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
C1P002: Urban re-development of existing built environment5 - Very important3 - Moderately important2 - Slightly important4 - Important3 - Moderately important1 - Unimportant5 - Very important4 - Important1 - Unimportant
C1P002: Economic growth need4 - Important4 - Important2 - Slightly important2 - Slightly important4 - Important1 - Unimportant5 - Very important4 - Important1 - Unimportant
C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)4 - Important3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant5 - Very important4 - Important1 - Unimportant
C1P002: Territorial and market attractiveness3 - Moderately important3 - Moderately important5 - Very important2 - Slightly important5 - Very important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
C1P002: Energy autonomy/independence2 - Slightly important4 - Important5 - Very important2 - Slightly important5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
C1P002: Any other DRIVING FACTOR1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
C1P002: Any other DRIVING FACTOR (if any)Earthquakes due to gas extraction
C1P003: Administrative barriers
C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important4 - Important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant5 - Very important4 - Important1 - Unimportant
C1P003: Lack of good cooperation and acceptance among partners5 - Very important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
C1P003: Lack of public participation4 - Important4 - Important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
C1P003: Lack of institutions/mechanisms to disseminate information4 - Important3 - Moderately important4 - Important2 - Slightly important4 - Important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
C1P003:Long and complex procedures for authorization of project activities3 - Moderately important4 - Important5 - Very important4 - Important3 - Moderately important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy3 - Moderately important3 - Moderately important5 - Very important4 - Important5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
C1P003: Complicated and non-comprehensive public procurement3 - Moderately important3 - Moderately important4 - Important3 - Moderately important5 - Very important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
C1P003: Fragmented and or complex ownership structure3 - Moderately important5 - Very important1 - Unimportant4 - Important5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
C1P003: City administration & cross-sectoral attitude/approaches (silos)4 - Important5 - Very important2 - Slightly important5 - Very important5 - Very important1 - Unimportant5 - Very important4 - Important1 - Unimportant
C1P003: Lack of internal capacities to support energy transition4 - Important4 - Important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant5 - Very important4 - Important1 - Unimportant
C1P003: Any other Administrative BARRIER1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant
C1P003: Any other Administrative BARRIER (if any)Fragmented financial support; lack of experimental budget for complex projects, etc.
C1P004: Policy barriers
C1P004: Lack of long-term and consistent energy plans and policies4 - Important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important5 - Very important4 - Important1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important4 - Important3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
C1P004: Any other Political BARRIER1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
C1P004: Any other Political BARRIER (if any)Different priorities; overall problematic system od decentralization powers; non-fuctioning model of local development funding, etc.
C1P005: Legal and Regulatory barriers
C1P005: Inadequate regulations for new technologies3 - Moderately important3 - Moderately important1 - Unimportant4 - Important5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
C1P005: Regulatory instability3 - Moderately important3 - Moderately important4 - Important3 - Moderately important5 - Very important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
C1P005: Non-effective regulations3 - Moderately important4 - Important2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important4 - Important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant5 - Very important4 - Important1 - Unimportant
C1P005: Building code and land-use planning hindering innovative technologies4 - Important4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
C1P005: Insufficient or insecure financial incentives5 - Very important5 - Very important4 - Important3 - Moderately important4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation2 - Slightly important3 - Moderately important3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
C1P005: Shortage of proven and tested solutions and examples2 - Slightly important3 - Moderately important3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant5 - Very important4 - Important1 - Unimportant
C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant
C1P005: Any other Legal and Regulatory BARRIER (if any)
C1P006: Environmental barriers
C1P006: Environmental barriers- Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Air and Water Pollution: 2 - Natural Disasters: 1 - Water Scarcity: 1
C1P007: Technical barriers
C1P007: Lack of skilled and trained personnel3 - Moderately important4 - Important4 - Important4 - Important5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
C1P007: Deficient planning3 - Moderately important4 - Important3 - Moderately important2 - Slightly important4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
C1P007: Retrofitting work in dwellings in occupied state1 - Unimportant4 - Important3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
C1P007: Lack of well-defined process3 - Moderately important5 - Very important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
C1P007: Inaccuracy in energy modelling and simulation3 - Moderately important3 - Moderately important2 - Slightly important4 - Important5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
C1P007: Lack/cost of computational scalability3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
C1P007: Grid congestion, grid instability3 - Moderately important4 - Important2 - Slightly important4 - Important3 - Moderately important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
C1P007: Negative effects of project intervention on the natural environment3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant3 - Moderately important2 - Slightly important3 - Moderately important4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
C1P007: Difficult definition of system boundaries2 - Slightly important4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
C1P007: Any other Thecnical BARRIER1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
C1P007: Any other Thecnical BARRIER (if any)Inadequate regulation towards energy transition
C1P008: Social and Cultural barriers
C1P008: Inertia3 - Moderately important3 - Moderately important4 - Important2 - Slightly important5 - Very important1 - Unimportant5 - Very important4 - Important1 - Unimportant
C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important4 - Important4 - Important3 - Moderately important4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
C1P008: Low acceptance of new projects and technologies3 - Moderately important5 - Very important3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
C1P008: Difficulty of finding and engaging relevant actors4 - Important4 - Important3 - Moderately important2 - Slightly important4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
C1P008: Lack of trust beyond social network3 - Moderately important3 - Moderately important3 - Moderately important4 - Important5 - Very important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
C1P008: Rebound effect3 - Moderately important3 - Moderately important2 - Slightly important2 - Slightly important5 - Very important1 - Unimportant5 - Very important4 - Important1 - Unimportant
C1P008: Hostile or passive attitude towards environmentalism2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
C1P008: Exclusion of socially disadvantaged groups4 - Important3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
C1P008: Non-energy issues are more important and urgent for actors2 - Slightly important5 - Very important1 - Unimportant4 - Important4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
C1P008: Hostile or passive attitude towards energy collaboration2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
C1P008: Any other Social BARRIER (if any)
C1P009: Information and Awareness barriers
C1P009: Insufficient information on the part of potential users and consumers4 - Important3 - Moderately important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts4 - Important4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
C1P009: Lack of awareness among authorities3 - Moderately important4 - Important3 - Moderately important2 - Slightly important4 - Important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important3 - Moderately important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
C1P009: High costs of design, material, construction, and installation4 - Important5 - Very important5 - Very important4 - Important5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
C1P009: Any other Information and Awareness BARRIER (if any)
C1P010: Financial barriers
C1P010: Hidden costs3 - Moderately important4 - Important4 - Important2 - Slightly important4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
C1P010: Insufficient external financial support and funding for project activities4 - Important4 - Important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
C1P010: Economic crisis4 - Important3 - Moderately important4 - Important1 - Unimportant5 - Very important1 - Unimportant5 - Very important4 - Important1 - Unimportant
C1P010: Risk and uncertainty3 - Moderately important4 - Important2 - Slightly important3 - Moderately important4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
C1P010: Lack of consolidated and tested business models3 - Moderately important4 - Important4 - Important3 - Moderately important4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
C1P010: Limited access to capital and cost disincentives3 - Moderately important1 - Unimportant4 - Important2 - Slightly important5 - Very important1 - Unimportant5 - Very important1 - Unimportant
C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
C1P010: Any other Financial BARRIER (if any)
C1P011: Market barriers
C1P011: Split incentives3 - Moderately important5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant5 - Very important4 - Important1 - Unimportant
C1P011: Energy price distortion3 - Moderately important5 - Very important3 - Moderately important4 - Important5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
C1P011: Energy market concentration, gatekeeper actors (DSOs)3 - Moderately important5 - Very important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
C1P011: Any other Market BARRIER (if any)
C1P012: Stakeholders involved
C1P012: Government/Public Authorities
  • Planning/leading,
  • Design/demand aggregation
  • Planning/leading,
  • Design/demand aggregation
  • Planning/leading
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation
  • Planning/leading
C1P012: Research & Innovation
  • Planning/leading,
  • Design/demand aggregation
  • Planning/leading,
  • Design/demand aggregation
  • Planning/leading,
  • Design/demand aggregation,
  • Monitoring/operation/management
  • Design/demand aggregation
C1P012: Financial/Funding
  • Design/demand aggregation,
  • Construction/implementation
  • Design/demand aggregation,
  • Construction/implementation
  • None
C1P012: Analyst, ICT and Big Data
  • Planning/leading,
  • Monitoring/operation/management
  • Design/demand aggregation,
  • Monitoring/operation/management
  • None
C1P012: Business process management
  • Design/demand aggregation,
  • Construction/implementation
  • Planning/leading
  • None
C1P012: Urban Services providers
  • Planning/leading,
  • Construction/implementation
  • Design/demand aggregation
  • Design/demand aggregation,
  • Monitoring/operation/management
  • None
C1P012: Real Estate developers
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Design/demand aggregation
  • Construction/implementation
  • None
C1P012: Design/Construction companies
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation
  • Construction/implementation
  • None
C1P012: End‐users/Occupants/Energy Citizens
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Design/demand aggregation
  • None
  • None
C1P012: Social/Civil Society/NGOs
  • Planning/leading
  • Planning/leading,
  • Design/demand aggregation
  • None
C1P012: Industry/SME/eCommerce
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • None
C1P012: Other
  • None
C1P012: Other (if any)
Summary

Authors (framework concept)

Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

Contributors (to the content)

Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

Implemented by

Boutik.pt: Filipe Martins, Jamal Khan
Marek Suchánek (Czech Technical University in Prague)