Filters:
NameProjectTypeCompare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Compare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Compare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Compare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Uncompare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Uncompare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
Lecce, SmartEnCity SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
Firenze, Novoli-Cascine district on “le PIagge” buildings PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Uncompare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Uncompare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Uncompare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleEspoo, Kera
Groningen, PED South
Vienna, Kriegerheimstätten
Lublin
Salzburg, Gneis district
Izmir, District of Karşıyaka
Oulu, Kaukovainio
Drammen, Jacobs Borchs Gate
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabEspoo, KeraGroningen, PED SouthVienna, KriegerheimstättenLublinSalzburg, Gneis districtIzmir, District of KarşıyakaOulu, KaukovainioDrammen, Jacobs Borchs Gate
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studyyesnonoyesyesyesyesno
PED relevant case studyyesnoyesnonononoyes
PED Lab.noyesnononononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesyesyesyesyesyes
Annual energy surplusnoyesnoyesyesyesnono
Energy communitynoyesnoyesyesnonono
Circularityyesyesnoyesnonoyesno
Air quality and urban comfortnonoyesyesyesyesnono
Electrificationnonoyesnononoyesno
Net-zero energy costnononoyesnoyesnono
Net-zero emissionnoyesnoyesnononoyes
Self-sufficiency (energy autonomous)nononoyesnononono
Maximise self-sufficiencynononoyesnoyesnono
Othernononononononoyes
Other (A1P004)Energy efficient; Carbon-free; A drive for both non fossil fuel and non-greenhouse gas working fluids plus maximum efficiency led to deploying ammonia fjord source heat pumps
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhaseImplementation PhasePlanning PhasePlanning PhaseCompletedPlanning PhaseIn operationCompleted
A1P006: Start Date
A1P006: Start date01/1512/1801/2301/2010/2201/09
A1P007: End Date
A1P007: End date12/3512/2312/3001/2410/2512/12
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
  • General statistical datasets,
  • GIS open datasets,
  • Vehicle registration datasets
  • Monitoring data available within the districts
  • Monitoring data available within the districts
A1P009: OtherOther
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • TNO, Hanze, RUG,
  • Ped noord book
    A1P011: Geographic coordinates
    X Coordinate (longitude):24.753777786.59065516.47541622.568413.04121627.11004925.51759508409350710.230603
    Y Coordinate (latitude):60.2162222253.20408748.23401151.246547.77101938.49605464.9928809817313259.741334
    A1P012: Country
    A1P012: CountryFinlandNetherlandsAustriaPolandAustriaTurkeyFinlandNorway
    A1P013: City
    A1P013: CityEspooGroningenViennaLublinSalzburgİzmirOuluDrammen
    A1P014: Climate Zone (Köppen Geiger classification)
    A1P014: Climate Zone (Köppen Geiger classification).DfbCfaCfbCfbDfbCsaDfcDfb
    A1P015: District boundary
    A1P015: District boundaryGeographicFunctionalGeographicGeographicGeographicGeographic
    OtherRegional (close to virtual)
    A1P016: Ownership of the case study/PED Lab
    A1P016: Ownership of the case study/PED Lab:MixedMixedPrivatePrivateMixedPrivateMixedPrivate
    A1P017: Ownership of the land / physical infrastructure
    A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersSingle OwnerMultiple OwnersSingle OwnerMultiple OwnersSingle OwnerSingle Owner
    A1P018: Number of buildings in PED
    A1P018: Number of buildings in PED4517216
    A1P019: Conditioned space
    A1P019: Conditioned space [m²]7.8621664.7319976210279519700
    A1P020: Total ground area
    A1P020: Total ground area [m²]58000045.09312400072833.4732600600001000
    A1P021: Floor area ratio: Conditioned space / total ground area
    A1P021: Floor area ratio: Conditioned space / total ground area00000300
    A1P022: Financial schemes
    A1P022a: Financing - PRIVATE - Real estatenoyesnonononoyesno
    A1P022a: Add the value in EUR if available [EUR]
    A1P022b: Financing - PRIVATE - ESCO schemenononononononono
    A1P022b: Add the value in EUR if available [EUR]
    A1P022c: Financing - PRIVATE - Othernoyesyesnonononoyes
    A1P022c: Add the value in EUR if available [EUR]
    A1P022d: Financing - PUBLIC - EU structural fundingnononononononono
    A1P022d: Add the value in EUR if available [EUR]
    A1P022e: Financing - PUBLIC - National fundingnoyesnononononono
    A1P022e: Add the value in EUR if available [EUR]
    A1P022f: Financing - PUBLIC - Regional fundingnononononononono
    A1P022f: Add the value in EUR if available [EUR]
    A1P022g: Financing - PUBLIC - Municipal fundingnoyesnonononoyesno
    A1P022g: Add the value in EUR if available [EUR]
    A1P022h: Financing - PUBLIC - Othernononononononono
    A1P022h: Add the value in EUR if available [EUR]
    A1P022i: Financing - RESEARCH FUNDING - EUnoyesnonoyesyesyesno
    A1P022i: Add the value in EUR if available [EUR]1193355
    A1P022j: Financing - RESEARCH FUNDING - Nationalnononononoyesnono
    A1P022j: Add the value in EUR if available [EUR]
    A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononononono
    A1P022k: Add the value in EUR if available [EUR]
    A1P022l: Financing - RESEARCH FUNDING - Othernononononononono
    A1P022l: Add the value in EUR if available [EUR]
    A1P022: OtherMultiple different funding schemes depending on the case.
    A1P023: Economic Targets
    A1P023: Economic Targets
    • Job creation,
    • Positive externalities,
    • Boosting local businesses,
    • Boosting local and sustainable production,
    • Boosting consumption of local and sustainable products
    • Boosting local businesses,
    • Boosting local and sustainable production
    • Job creation,
    • Positive externalities,
    • Boosting local businesses,
    • Boosting local and sustainable production,
    • Boosting consumption of local and sustainable products
    • Positive externalities,
    • Other
    • Positive externalities,
    • Boosting local and sustainable production
    • Positive externalities,
    • Boosting local and sustainable production
    A1P023: OtherCircular economyBoosting social cooperation and social aidDeveloping and demonstrating new solutions
    A1P024: More comments:
    A1P024: More comments:Lublin PED Area is geographically bounded and the ambition is to reach Self-Sufficiency. There is a shopping centre with a large rooftop area for solar generation and there are also an empty lot (just on the east side of the building) and a carpark area (on the north side) next to the commercial centre. These areas can also be evaluated for on-site (on the ground – or canopies for cars) energy generation. There are also new built (mainly in 2012) residential blocks with high efficiency and this district is so-called an “eco-district”. Thanks to the District Heating Grid (DHN), all buildings are connected to each other the network has potential for sharing mechanisms in the PED Area. Another opportunity for renewable energy is that these buildings are connected to more or less the end point of DHN and for this reason, a waste heat potential from the return pipe may also be considered. There are also small size residentials, that are not connected to the DHN, around the PED area and this enlightened the technical team for exporting energy from PED to these areas with a new infrastructure.
    A1P025: Estimated PED case study / PED LAB costs
    A1P025: Estimated PED case study / PED LAB costs [mil. EUR]5
    Contact person for general enquiries
    A1P026: NameJoni MäkinenJasper Tonen, Elisabeth KoopsGerhard Hofer (e7 GmbH)Dorota Wolińska-PietrzakAbel MagyariOzlem SenyolSamuli RinneChristoph Gollner
    A1P027: OrganizationCity of EspooMunicipality of Groningene7 GmbHLublin MunicipalityABUDKarsiyaka MunicipalityCity of OuluFFG
    A1P028: AffiliationMunicipality / Public BodiesMunicipality / Public BodiesSME / IndustryMunicipality / Public BodiesResearch Center / UniversityMunicipality / Public BodiesMunicipality / Public BodiesOther
    A1P028: Other
    A1P029: Emailjoni.makinen@espoo.fiJasper.tonen@groningen.nlgerhard.hofer@e-sieben.atdwolinska@lublin.eumagyari.abel@abud.huozlemkocaer2@gmail.comsamuli.rinne@ouka.fichristoph.gollner@ffg.at
    Contact person for other special topics
    A1P030: NameStrassl IngeborgHasan Burak CavkaSamuli Rinne
    A1P031: Emailinge.strassl@salzburg.gv.athasancavka@iyte.edu.trsamuli.rinne@ouka.fi
    Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYes
    A2P001: Fields of application
    A2P001: Fields of application
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Digital technologies,
    • Waste management,
    • Construction materials
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Urban comfort (pollution, heat island, noise level etc.),
    • Waste management
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • Urban comfort (pollution, heat island, noise level etc.),
    • Other
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Urban comfort (pollution, heat island, noise level etc.),
    • Digital technologies,
    • Indoor air quality
    • Energy efficiency,
    • Energy flexibility,
    • Energy production
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • Urban comfort (pollution, heat island, noise level etc.)
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Digital technologies,
    • Water use,
    • Indoor air quality
    • Energy efficiency
    A2P001: OtherReducing CO2eq Emissions
    A2P002: Tools/strategies/methods applied for each of the above-selected fields
    A2P002: Tools/strategies/methods applied for each of the above-selected fields- Kera development commitment (https://www.espoo.fi/en/kera-development-commitment). - SPARCS Co-creation model for sustainable and smart urban areas (www.co-creatingsparcs.fi/en). - Kera area carbon neutrality roadmap (https://static.espoo.fi/cdn/ff/MHDdcMNJ9aYn7CjpoD4zNpo5M-M9HIDLXlJdUrUmf-8/1642756766/public/2022-01/Kera%20carbon%20neutrality%20map_EN.pdf)Energy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streamsSEE: D4.1 - Methodology and Guidelines for PED design https://makingcity.eu/results/#1551708358627-aefa76ef-66b2- Dynamic district, and building scale energy modelling - Microclimate modelling - Klimaaktiv certification system - Energy community - Flexibility with shared heating and electricity systemsMethods involve studying the feasibility of digital PED references for the case cities about their energy, environmental, and economic performance by EnergyPlus tool. In case of insufficient energy data and the need of high resolution data, ‘Gaussian mixture model and expectation-maximization algorithm’ and ‘time-series decomposition-recombination’ method will be used to supplement data to EnergyPlus. The feasibility results will be returned to stakeholders for iterative discussion, and the iterative results will be used to update digital references. Replication plans are developed based on such a cooperation process for strategies to implement PEDs. If a PED is demonstrated during the project period, the measured data will be used to verify the feasibility model to optimize previous results (WP7– R3 & R4). In the MAKING-CITY project, the overall PED design method is developed, which will be further optimised in this project. In addition, PED-ACT will use the methods and knowledge, including how to choose a suitable PED in a city, energy balance calculation, and technologies available for PED. The RUGGEDISED project outputs the governance model into the replication plan in PED-ACT. Its ‘smart city open-data decision platform’ will illustrate an excellent example for the database in PED-ACT. The IEA EBC Annex 83 and Cost Action 19126 create the basis for data collection, developing existing PED databases, characterization of PED, and review of regulations of PED, as well as development of simulation tools. The UBEM project further enables a detailed high-resolution energy balance calculation of PED.Different kinds of waste heat streams are utilized by heat pumps. These are district heating return water (actually this is an indirect way to cool down the flue gas in the scrubber), ventilation exhaust air and sewage water. As a normal case, in ventilation also air-to-air heat exchanges are used. PV power is harvested also, in vertical and more horizontal panels. Buildings are well insulated to decrease the needed amount of heating energy in the first place.
    A2P003: Application of ISO52000
    A2P003: Application of ISO52000NoNoNoYesYesNo
    A2P004: Appliances included in the calculation of the energy balance
    A2P004: Appliances included in the calculation of the energy balanceNoNoYesNoYesNo
    A2P005: Mobility included in the calculation of the energy balance
    A2P005: Mobility included in the calculation of the energy balanceNoNoNoNoNoNo
    A2P006: Description of how mobility is included (or not included) in the calculation
    A2P006: Description of how mobility is included (or not included) in the calculationMobility, till now, is not included in the energy model.Mobility is not included in the calculations.Not included. However, there is a charging place for a shared EV in one building.
    A2P007: Annual energy demand in buildings / Thermal demand
    A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]54.51.864.973.8622.1
    A2P008: Annual energy demand in buildings / Electric Demand
    A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]19.41.450.751.2260.2
    A2P009: Annual energy demand for e-mobility
    A2P009: Annual energy demand for e-mobility [GWh/annum]
    A2P010: Annual energy demand for urban infrastructure
    A2P010: Annual energy demand for urban infrastructure [GWh/annum]
    A2P011: Annual renewable electricity production on-site during target year
    A2P011: PVyesnononoyesyesyesno
    A2P011: PV - specify production in GWh/annum [GWh/annum]40.77706641.0280.1
    A2P011: Windnononononononono
    A2P011: Wind - specify production in GWh/annum [GWh/annum]
    A2P011: Hydronononononononono
    A2P011: Hydro - specify production in GWh/annum [GWh/annum]
    A2P011: Biomass_elnononononononono
    A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
    A2P011: Biomass_peat_elnononononononono
    A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
    A2P011: PVT_elnononononononono
    A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
    A2P011: Othernononononononono
    A2P011: Other - specify production in GWh/annum [GWh/annum]
    A2P012: Annual renewable thermal production on-site during target year
    A2P012: Geothermalnoyesnonoyesnonono
    A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
    A2P012: Solar Thermalnoyesnononononono
    A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
    A2P012: Biomass_heatnoyesnononononono
    A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
    A2P012: Waste heat+HPyesyesnonononoyesno
    A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]2.2
    A2P012: Biomass_peat_heatnononononononono
    A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
    A2P012: PVT_thnoyesnononononono
    A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
    A2P012: Biomass_firewood_thnononononononono
    A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
    A2P012: Othernononononononono
    A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
    A2P013: Renewable resources on-site - Additional notes
    A2P013: Renewable resources on-site - Additional notesLocal energy utility will implement district level thermal solution. First, energy will be produced from waste heat from a local data center. Further thermal solutions are under discussion and development.Geothermal heatpump systems, Waste heat from data centersHeat is produced from DH return, refrigeration and exhaust air. The mentioned 2200 MWh/a includes HP el. consumption (about 1/6 of that)
    A2P014: Annual energy use
    A2P014: Annual energy use [GWh/annum]78.80.8190165.0882.3
    A2P015: Annual energy delivered
    A2P015: Annual energy delivered [GWh/annum]15.4
    A2P016: Annual non-renewable electricity production on-site during target year
    A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]0-10
    A2P017: Annual non-renewable thermal production on-site during target year
    A2P017: Gasnononononoyesnono
    A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P017: Coalnononononononono
    A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P017: Oilnononononononono
    A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P017: Othernononononononono
    A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P018: Annual renewable electricity imports from outside the boundary during target year
    A2P018: PVnononononoyesyesno
    A2P018 - PV: specify production in GWh/annum if available [GWh/annum]0.707
    A2P018: Windnonononononoyesno
    A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
    A2P018: Hydrononononononoyesno
    A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
    A2P018: Biomass_elnonononononoyesno
    A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: Biomass_peat_elnonononononoyesno
    A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: PVT_elnononononononono
    A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: Othernononononononono
    A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
    A2P019: Annual renewable thermal imports from outside the boundary during target year
    A2P019: Geothermalnononononononono
    A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Solar Thermalnononononononono
    A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_heatnonononononoyesno
    A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]0.7
    A2P019: Waste heat+HPnononononononono
    A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_peat_heatnononononononono
    A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
    A2P019: PVT_thnononononononono
    A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_firewood_thnononononononono
    A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Othernononononononono
    A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
    A2P020: Share of RES on-site / RES outside the boundary
    A2P020: Share of RES on-site / RES outside the boundary000001.45403111739753.28571428571430
    A2P021: GHG-balance calculated for the PED
    A2P021: GHG-balance calculated for the PED [tCO2/annum]4500000
    A2P022: KPIs related to the PED case study / PED Lab
    A2P022: Safety & Security
    A2P022: HealthCO2) levels, Predicted Mean Vote,Predicted Percentage of Dissatisfied, Temperature, Relative Humidity, Illuminance, Daylight factor, Sound pressure levelsEncouraging a healthy lifestyle
    A2P022: Education
    A2P022: MobilityModal Split, Fuel mix in mobility, Energy use for transportation, Access to public transport, Public infrastructure promoting low-carbon mobility, Number of public EV charging stations, Energy delivered for EV charging
    A2P022: EnergyYesNon-renewable primary energy balance, Renewable energy ratio, Grid Purchase factor, Load cover factor/Self-generation, Supply cover factor/Self-consumption, Net energy/Net power, Peak delivered/exported power, Connection capacity credit, Total greenhouse gas emissionsFinal energy consumption, Primary energy consumption, Energy imported to PED, Energy exported from PED, RES production, PED energy balance, Energy savings in the PED, GHG emissions, Reduction of emissions, Final energy consumption per capita, Primary energy consumption per capita, Primary energy sources (shares), Buildings connected to DH-network or renewable energy grid, GHG emissions per capita, System flexibility for energy players, RES storage usage, Peak load reduction
    A2P022: Water
    A2P022: Economic developmentInvestment costs, Share of investments covered by grants, Maintenance-related costs, Requirement-related costs, Operation-related costs, Other costs, Net Present Value, Internal Rate of Return, Economic Value Added, Payback Period, nZEB Cost ComparisonTotal investments, Payback time, Economic value of savings
    A2P022: Housing and CommunityAccess to services, Affordability of energy, Affordability of housing, Democratic legitimacy, Living conditions, Social cohesion, Personal safety, Energy consciousnessDevelopment of housing prices, Housing cost overburden rate, Citizen engagement/empowerment to climate conscious actions, Inhabitants in dense areas, Energy poverty
    A2P022: WasteRecycling rate
    A2P022: OtherSmart Cities strategies, Quality of open data
    A2P023: Technological Solutions / Innovations - Energy Generation
    A2P023: Photovoltaicsyesyesyesyesyesyesyesno
    A2P023: Solar thermal collectorsnoyesyesnonononono
    A2P023: Wind Turbinesnononononononono
    A2P023: Geothermal energy systemnoyesyesnoyesnonono
    A2P023: Waste heat recoveryyesyesnonononoyesno
    A2P023: Waste to energynoyesnononononono
    A2P023: Polygenerationnononononononono
    A2P023: Co-generationnonononononoyesno
    A2P023: Heat Pumpyesyesyesyesnoyesyesyes
    A2P023: Hydrogennononoyesnononono
    A2P023: Hydropower plantnononononononono
    A2P023: Biomassnonononononoyesno
    A2P023: Biogasnononononononono
    A2P023: Other
    A2P024: Technological Solutions / Innovations - Energy Flexibility
    A2P024: A2P024: Information and Communication Technologies (ICT)yesyesnoyesnonoyesno
    A2P024: Energy management systemyesyesnoyesyesnoyesno
    A2P024: Demand-side managementyesnonoyesyesnonono
    A2P024: Smart electricity gridyesnonoyesyesnonono
    A2P024: Thermal Storagenoyesyesyesnonoyesno
    A2P024: Electric Storagenoyesnoyesnononono
    A2P024: District Heating and Coolingyesyesyesyesnonoyesyes
    A2P024: Smart metering and demand-responsive control systemsnoyesnoyesnononono
    A2P024: P2P – buildingsnonononoyesnonono
    A2P024: Other
    A2P025: Technological Solutions / Innovations - Energy Efficiency
    A2P025: Deep Retrofittingnononoyesnoyesyesno
    A2P025: Energy efficiency measures in historic buildingsnoyesnoyesnononono
    A2P025: High-performance new buildingsyesyesnoyesyesnoyesno
    A2P025: Smart Public infrastructure (e.g. smart lighting)yesyesnoyesnononono
    A2P025: Urban data platformsyesyesnoyesnonoyesno
    A2P025: Mobile applications for citizensnononoyesnononono
    A2P025: Building services (HVAC & Lighting)yesnonoyesyesyesyesno
    A2P025: Smart irrigationnononononononono
    A2P025: Digital tracking for waste disposalnononononononono
    A2P025: Smart surveillancenononononononono
    A2P025: Other
    A2P026: Technological Solutions / Innovations - Mobility
    A2P026: Efficiency of vehicles (public and/or private)yesnonoyesnonoyesno
    A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)yesnonoyesyesnoyesno
    A2P026: e-Mobilityyesyesnoyesyesnoyesno
    A2P026: Soft mobility infrastructures and last mile solutionsyesnononononoyesno
    A2P026: Car-free areanononononononono
    A2P026: Other
    A2P027: Mobility strategies - Additional notes
    A2P027: Mobility strategies - Additional notesShared mobility: a mobility point will be implemented and ensure the flexible use of different mobility services.
    A2P028: Energy efficiency certificates
    A2P028: Energy efficiency certificatesNoYesNoYesNoYes
    A2P028: If yes, please specify and/or enter notesEnergy Performance CertificateEnergy Performance CertificateThe obligatory buildijng energy classification
    A2P029: Any other building / district certificates
    A2P029: Any other building / district certificatesNoNoYesNoNo
    A2P029: If yes, please specify and/or enter notesKlimaaktiv certificate, Greenpass certificate
    A3P001: Relevant city /national strategy
    A3P001: Relevant city /national strategy
    • Energy master planning (SECAP, etc.),
    • Climate change adaption plan/strategy (e.g. Climate City contract)
    • Energy master planning (SECAP, etc.),
    • New development strategies,
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Smart cities strategies,
    • Urban Renewal Strategies,
    • Energy master planning (SECAP, etc.),
    • New development strategies,
    • Promotion of energy communities (REC/CEC),
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Energy master planning (SECAP, etc.),
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Smart cities strategies,
    • Urban Renewal Strategies,
    • Energy master planning (SECAP, etc.),
    • New development strategies,
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    A3P002: Quantitative targets included in the city / national strategy
    A3P002: Quantitative targets included in the city / national strategyKarşıyaka Municipality is the first local government in Turkey to sign the Covenant of Mayors in 2011. During this period, the greenhouse gas inventory of the district was carried out three times and reduction targets were set for 2020 and 2030. In the 2021 Sustainable Energy and Climate Action Plan prepared as of the end of 2021, Karşıyaka Municipality has targeted a 40% reduction in its emissions for 2030 compared to the base year 2018. In the 2021 Sustainable Energy and Climate Action Plan, Karşıyaka Municipality aims to reduce its greenhouse gas emissions from 3.96 tCO2e / person in 2018 to 2.37 tCO2e / person in 2030. System solutions such as the use of renewable energy sources, air, ground or water source heat pump, cogeneration and microcogeneration are analysed by designers in order to fully or partially meet the energy requirements for heating, cooling, ventilation, hot water, electricity and lighting for all buildings with a floor area of less than 20,000 square metres. If at least 50% of the building's total energy consumption costs are covered by one or more of these applications, the points are taken in the assessment table in the Building and housing estate business certification guide of 2023.Carbon neutrality by 2035
    A3P003: Strategies towards decarbonization of the gas grid
    A3P003: Strategies towards decarbonization of the gas grid
    • Electrification of Heating System based on Heat Pumps,
    • Electrification of Cooking Methods,
    • Biogas
    • Electrification of Heating System based on Heat Pumps,
    • Other
    • Electrification of Heating System based on Heat Pumps
    • Electrification of Heating System based on Heat Pumps
    • Electrification of Heating System based on Heat Pumps
    A3P003: OtherHeating Grid
    A3P004: Identification of needs and priorities
    A3P004: Identification of needs and prioritiesAccording to the model developed for the district, the electrification of heating and cooling is necessary.Therefore, there needs to be the implementation of a heat pump. The building-integrated photovoltaic panelsshould follow. Through net-metering practices, the district is expected to reach energy positivity throughthis scenario.Developing and demonstrating solutions for carbon neutrality
    A3P005: Sustainable behaviour
    A3P005: Sustainable behaviourIn Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.E. g. visualizing energy and water consumption
    A3P006: Economic strategies
    A3P006: Economic strategies
    • PPP models,
    • Circular economy models
    • Innovative business models,
    • Blockchain
    • Innovative business models
    • Innovative business models,
    • Local trading
    • Open data business models,
    • Innovative business models,
    • PPP models,
    • Life Cycle Cost,
    • Circular economy models
    A3P006: Other
    A3P007: Social models
    A3P007: Social models
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Quality of Life
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Citizen Social Research,
    • Prevention of energy poverty,
    • Citizen/owner involvement in planning and maintenance
    • Co-creation / Citizen engagement strategies,
    • Affordability,
    • Prevention of energy poverty
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies
    • Strategies towards (local) community-building,
    • Behavioural Change / End-users engagement,
    • Social incentives,
    • Quality of Life,
    • Strategies towards social mix,
    • Affordability,
    • Citizen/owner involvement in planning and maintenance
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Affordability
    • Co-creation / Citizen engagement strategies,
    • Behavioural Change / End-users engagement,
    • Citizen Social Research,
    • Policy Forums,
    • Quality of Life,
    • Strategies towards social mix,
    • Affordability,
    • Prevention of energy poverty,
    • Citizen/owner involvement in planning and maintenance,
    • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
    A3P007: Other
    A3P008: Integrated urban strategies
    A3P008: Integrated urban strategies
    • Strategic urban planning,
    • Digital twinning and visual 3D models,
    • District Energy plans
    • Strategic urban planning,
    • District Energy plans,
    • City Vision 2050,
    • SECAP Updates
    • Strategic urban planning,
    • District Energy plans
    • City Vision 2050,
    • SECAP Updates
    • Building / district Certification
    • Digital twinning and visual 3D models,
    • District Energy plans,
    • SECAP Updates
    • Strategic urban planning,
    • District Energy plans,
    • City Vision 2050,
    • SECAP Updates
    A3P008: Other
    A3P009: Environmental strategies
    A3P009: Environmental strategies
    • Net zero carbon footprint,
    • Life Cycle approach,
    • Greening strategies,
    • Nature Based Solutions (NBS)
    • Energy Neutral
    • Low Emission Zone,
    • Carbon-free
    • Energy Neutral,
    • Low Emission Zone,
    • Net zero carbon footprint,
    • Carbon-free,
    • Life Cycle approach,
    • Greening strategies,
    • Nature Based Solutions (NBS)
    • Energy Neutral,
    • Low Emission Zone
    • Energy Neutral,
    • Low Emission Zone,
    • Pollutants Reduction
    • Energy Neutral,
    • Net zero carbon footprint
    • Energy Neutral,
    • Carbon-free
    A3P009: Other
    A3P010: Legal / Regulatory aspects
    A3P010: Legal / Regulatory aspectsAt national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricity
    B1P001: PED/PED relevant concept definition
    B1P001: PED/PED relevant concept definitionImplementation of district level heating system to make heating energy positive and expanding local renewable electricity production.The pilot area was selected on the basis of several criteria: its location within areas prioritised by Karşıyaka Municipality for combating climate change, compliance with the building regulations set out in the Green Building-Site-Operation (2023) guide, which are in line with Municipality's energy policy, the presence of open spaces that allow various applications for renewable energy, proximity to public facilities such as schools and municipal services, the availability of data on energy consumption (e.g. electricity and natural gas bills) and architectural features, the potential for community building, the suitability for solar energy systems, considering orientation and roof structure, and the potential for future building renovations. The aim of the initiative is to explore the feasibility of transforming the district into a Positive Energy District (PED).The original idea is that the area produces at least as much it consumes.
    B1P002: Motivation behind PED/PED relevant project development
    B1P002: Motivation behind PED/PED relevant project developmentDeveloping systems towards carbon neutrality. Also urban renewal.
    B1P003: Environment of the case study area
    B2P003: Environment of the case study areaUrban areaSuburban areaUrban areaSuburban areaSuburban area
    B1P004: Type of district
    B2P004: Type of district
    • New construction
    • New construction
    • Renovation
    • New construction,
    • Renovation
    • Renovation
    B1P005: Case Study Context
    B1P005: Case Study Context
    • Re-use / Transformation Area
    • New Development
    • Retrofitting Area
    • New Development,
    • Retrofitting Area
    • Retrofitting Area
    B1P006: Year of construction
    B1P006: Year of construction20242005
    B1P007: District population before intervention - Residential
    B1P007: District population before intervention - Residential3500
    B1P008: District population after intervention - Residential
    B1P008: District population after intervention - Residential140003500
    B1P009: District population before intervention - Non-residential
    B1P009: District population before intervention - Non-residential
    B1P010: District population after intervention - Non-residential
    B1P010: District population after intervention - Non-residential10000
    B1P011: Population density before intervention
    B1P011: Population density before intervention00000000
    B1P012: Population density after intervention
    B1P012: Population density after intervention0.041379310344828000000.0583333333333330
    B1P013: Building and Land Use before intervention
    B1P013: Residentialyesnonononoyesyesno
    B1P013 - Residential: Specify the sqm [m²]102795
    B1P013: Officeyesnonononononono
    B1P013 - Office: Specify the sqm [m²]
    B1P013: Industry and Utilityyesnonononononono
    B1P013 - Industry and Utility: Specify the sqm [m²]
    B1P013: Commercialnonononononoyesno
    B1P013 - Commercial: Specify the sqm [m²]
    B1P013: Institutionalnononononononono
    B1P013 - Institutional: Specify the sqm [m²]
    B1P013: Natural areasnonononoyesnoyesno
    B1P013 - Natural areas: Specify the sqm [m²]
    B1P013: Recreationalnonononononoyesno
    B1P013 - Recreational: Specify the sqm [m²]
    B1P013: Dismissed areasyesnonononononono
    B1P013 - Dismissed areas: Specify the sqm [m²]
    B1P013: Othernononononononono
    B1P013 - Other: Specify the sqm [m²]
    B1P014: Building and Land Use after intervention
    B1P014: Residentialyesnononoyesyesyesno
    B1P014 - Residential: Specify the sqm [m²]102795
    B1P014: Officeyesnonononononono
    B1P014 - Office: Specify the sqm [m²]
    B1P014: Industry and Utilitynononononononono
    B1P014 - Industry and Utility: Specify the sqm [m²]
    B1P014: Commercialyesnononononoyesno
    B1P014 - Commercial: Specify the sqm [m²]
    B1P014: Institutionalnononononononono
    B1P014 - Institutional: Specify the sqm [m²]
    B1P014: Natural areasnonononoyesnoyesno
    B1P014 - Natural areas: Specify the sqm [m²]
    B1P014: Recreationalyesnononononoyesno
    B1P014 - Recreational: Specify the sqm [m²]
    B1P014: Dismissed areasnononononononono
    B1P014 - Dismissed areas: Specify the sqm [m²]
    B1P014: Othernononononononono
    B1P014 - Other: Specify the sqm [m²]
    B2P001: PED Lab concept definition
    B2P001: PED Lab concept definitionGroningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.
    B2P002: Installation life time
    B2P002: Installation life timeThe MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.
    B2P003: Scale of action
    B2P003: ScaleDistrictDistrictDistrict
    B2P004: Operator of the installation
    B2P004: Operator of the installationThe Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.
    B2P005: Replication framework: Applied strategy to reuse and recycling the materials
    B2P005: Replication framework: Applied strategy to reuse and recycling the materialsGroningen does not have a strategy to reuse and recyle materials
    B2P006: Circular Economy Approach
    B2P006: Do you apply any strategy to reuse and recycling the materials?NoYes
    B2P006: Other
    B2P007: Motivation for developing the PED Lab
    B2P007: Motivation for developing the PED Lab
    • Civic
    • Strategic
    B2P007: Other
    B2P008: Lead partner that manages the PED Lab
    B2P008: Lead partner that manages the PED LabMunicipalityMunicipality
    B2P008: Other
    B2P009: Collaborative partners that participate in the PED Lab
    B2P009: Collaborative partners that participate in the PED Lab
    • Academia,
    • Private,
    • Industrial,
    • Other
    • Academia,
    • Private,
    • Industrial,
    • Citizens, public, NGO
    B2P009: Otherresearch companies, monitoring company, ict company
    B2P010: Synergies between the fields of activities
    B2P010: Synergies between the fields of activities
    B2P011: Available facilities to test urban configurations in PED Lab
    B2P011: Available facilities to test urban configurations in PED Lab
    • Buildings,
    • Demand-side management,
    • Energy storage,
    • Energy networks,
    • Waste management,
    • Lighting,
    • E-mobility,
    • Information and Communication Technologies (ICT),
    • Social interactions,
    • Business models
    • Buildings,
    • Demand-side management,
    • Prosumers,
    • Renewable generation,
    • Efficiency measures,
    • Waste management,
    • Water treatment,
    • Lighting,
    • E-mobility,
    • Green areas,
    • Circular economy models
    B2P011: Other
    B2P012: Incubation capacities of PED Lab
    B2P012: Incubation capacities of PED Lab
    • Tools for prototyping and modelling
    • Monitoring and evaluation infrastructure
    B2P013: Availability of the facilities for external people
    B2P013: Availability of the facilities for external people
    B2P014: Monitoring measures
    B2P014: Monitoring measures
    • Execution plan,
    • Available data,
    • Type of measured data,
    • Equipment,
    • Level of access
    • Available data
    B2P015: Key Performance indicators
    B2P015: Key Performance indicators
    • Energy,
    • Social,
    • Economical / Financial
    • Energy
    B2P016: Execution of operations
    B2P016: Execution of operations
    B2P017: Capacities
    B2P017: Capacities
    B2P018: Relations with stakeholders
    B2P018: Relations with stakeholders
    B2P019: Available tools
    B2P019: Available tools
    • Energy modelling,
    • Social models,
    • Business and financial models
    B2P019: Available tools
    B2P020: External accessibility
    B2P020: External accessibility
    C1P001: Unlocking Factors
    C1P001: Recent technological improvements for on-site RES production5 - Very important3 - Moderately important5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
    C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock4 - Important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant
    C1P001: Energy Communities, P2P, Prosumers concepts3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
    C1P001: Storage systems and E-mobility market penetration4 - Important4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P001: Decreasing costs of innovative materials3 - Moderately important5 - Very important1 - Unimportant5 - Very important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
    C1P001: Financial mechanisms to reduce costs and maximize benefits3 - Moderately important5 - Very important3 - Moderately important5 - Very important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
    C1P001: The ability to predict Multiple Benefits3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant4 - Important4 - Important1 - Unimportant
    C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant
    C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important5 - Very important5 - Very important5 - Very important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant
    C1P001: Social acceptance (top-down)3 - Moderately important3 - Moderately important5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
    C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important4 - Important4 - Important5 - Very important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
    C1P001: Presence of integrated urban strategies and plans4 - Important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant5 - Very important4 - Important1 - Unimportant
    C1P001: Multidisciplinary approaches available for systemic integration5 - Very important2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant4 - Important4 - Important1 - Unimportant
    C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects3 - Moderately important3 - Moderately important4 - Important5 - Very important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
    C1P001: Availability of RES on site (Local RES)4 - Important4 - Important5 - Very important5 - Very important1 - Unimportant5 - Very important4 - Important1 - Unimportant
    C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders5 - Very important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant5 - Very important4 - Important1 - Unimportant
    C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
    C1P001: Any other UNLOCKING FACTORS (if any)
    C1P002: Driving Factors
    C1P002: Climate Change adaptation need5 - Very important2 - Slightly important2 - Slightly important5 - Very important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
    C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important3 - Moderately important5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
    C1P002: Rapid urbanization trend and need of urban expansions4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
    C1P002: Urban re-development of existing built environment5 - Very important4 - Important5 - Very important5 - Very important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant
    C1P002: Economic growth need4 - Important2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant
    C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)4 - Important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
    C1P002: Territorial and market attractiveness3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
    C1P002: Energy autonomy/independence2 - Slightly important2 - Slightly important4 - Important5 - Very important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
    C1P002: Any other DRIVING FACTOR1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P002: Any other DRIVING FACTOR (if any)Earthquakes due to gas extraction
    C1P003: Administrative barriers
    C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important3 - Moderately important4 - Important5 - Very important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant
    C1P003: Lack of good cooperation and acceptance among partners5 - Very important3 - Moderately important4 - Important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
    C1P003: Lack of public participation4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
    C1P003: Lack of institutions/mechanisms to disseminate information4 - Important2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant
    C1P003:Long and complex procedures for authorization of project activities3 - Moderately important4 - Important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
    C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy3 - Moderately important4 - Important1 - Unimportant5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
    C1P003: Complicated and non-comprehensive public procurement3 - Moderately important3 - Moderately important4 - Important5 - Very important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
    C1P003: Fragmented and or complex ownership structure3 - Moderately important4 - Important4 - Important5 - Very important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
    C1P003: City administration & cross-sectoral attitude/approaches (silos)4 - Important5 - Very important2 - Slightly important5 - Very important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
    C1P003: Lack of internal capacities to support energy transition4 - Important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
    C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P003: Any other Administrative BARRIER (if any)
    C1P004: Policy barriers
    C1P004: Lack of long-term and consistent energy plans and policies4 - Important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
    C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
    C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
    C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P004: Any other Political BARRIER (if any)
    C1P005: Legal and Regulatory barriers
    C1P005: Inadequate regulations for new technologies3 - Moderately important4 - Important4 - Important5 - Very important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
    C1P005: Regulatory instability3 - Moderately important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
    C1P005: Non-effective regulations3 - Moderately important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
    C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important3 - Moderately important4 - Important5 - Very important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
    C1P005: Building code and land-use planning hindering innovative technologies4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
    C1P005: Insufficient or insecure financial incentives5 - Very important3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant
    C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation2 - Slightly important2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
    C1P005: Shortage of proven and tested solutions and examples2 - Slightly important2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant
    C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P005: Any other Legal and Regulatory BARRIER (if any)
    C1P006: Environmental barriers
    C1P006: Environmental barriers- Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Air and Water Pollution: 2 - Natural Disasters: 1 - Water Scarcity: 1
    C1P007: Technical barriers
    C1P007: Lack of skilled and trained personnel3 - Moderately important4 - Important1 - Unimportant5 - Very important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
    C1P007: Deficient planning3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
    C1P007: Retrofitting work in dwellings in occupied state1 - Unimportant2 - Slightly important5 - Very important5 - Very important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
    C1P007: Lack of well-defined process3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
    C1P007: Inaccuracy in energy modelling and simulation3 - Moderately important4 - Important1 - Unimportant5 - Very important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
    C1P007: Lack/cost of computational scalability3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
    C1P007: Grid congestion, grid instability3 - Moderately important4 - Important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
    C1P007: Negative effects of project intervention on the natural environment3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
    C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant3 - Moderately important5 - Very important5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
    C1P007: Difficult definition of system boundaries2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant4 - Important5 - Very important1 - Unimportant
    C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Any other Thecnical BARRIER (if any)
    C1P008: Social and Cultural barriers
    C1P008: Inertia3 - Moderately important2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
    C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important3 - Moderately important4 - Important5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
    C1P008: Low acceptance of new projects and technologies3 - Moderately important2 - Slightly important4 - Important5 - Very important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
    C1P008: Difficulty of finding and engaging relevant actors4 - Important2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
    C1P008: Lack of trust beyond social network3 - Moderately important4 - Important3 - Moderately important5 - Very important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
    C1P008: Rebound effect3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
    C1P008: Hostile or passive attitude towards environmentalism2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant
    C1P008: Exclusion of socially disadvantaged groups4 - Important5 - Very important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
    C1P008: Non-energy issues are more important and urgent for actors2 - Slightly important4 - Important1 - Unimportant5 - Very important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
    C1P008: Hostile or passive attitude towards energy collaboration2 - Slightly important2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant
    C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P008: Any other Social BARRIER (if any)
    C1P009: Information and Awareness barriers
    C1P009: Insufficient information on the part of potential users and consumers4 - Important3 - Moderately important5 - Very important5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant
    C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts4 - Important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant
    C1P009: Lack of awareness among authorities3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
    C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
    C1P009: High costs of design, material, construction, and installation4 - Important4 - Important5 - Very important5 - Very important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
    C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P009: Any other Information and Awareness BARRIER (if any)
    C1P010: Financial barriers
    C1P010: Hidden costs3 - Moderately important2 - Slightly important2 - Slightly important5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
    C1P010: Insufficient external financial support and funding for project activities4 - Important3 - Moderately important5 - Very important5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant
    C1P010: Economic crisis4 - Important1 - Unimportant4 - Important5 - Very important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
    C1P010: Risk and uncertainty3 - Moderately important3 - Moderately important5 - Very important5 - Very important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
    C1P010: Lack of consolidated and tested business models3 - Moderately important3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
    C1P010: Limited access to capital and cost disincentives3 - Moderately important2 - Slightly important2 - Slightly important5 - Very important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
    C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P010: Any other Financial BARRIER (if any)
    C1P011: Market barriers
    C1P011: Split incentives3 - Moderately important5 - Very important1 - Unimportant5 - Very important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
    C1P011: Energy price distortion3 - Moderately important4 - Important3 - Moderately important5 - Very important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
    C1P011: Energy market concentration, gatekeeper actors (DSOs)3 - Moderately important4 - Important5 - Very important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
    C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P011: Any other Market BARRIER (if any)
    C1P012: Stakeholders involved
    C1P012: Government/Public Authorities
    • Planning/leading,
    • Design/demand aggregation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • Planning/leading
    • Planning/leading,
    • Design/demand aggregation,
    • Monitoring/operation/management
    C1P012: Research & Innovation
    • Planning/leading,
    • Design/demand aggregation
    • Planning/leading,
    • Design/demand aggregation,
    • Monitoring/operation/management
    • Design/demand aggregation
    • Planning/leading,
    • Design/demand aggregation,
    • Monitoring/operation/management
    C1P012: Financial/Funding
    • Design/demand aggregation,
    • Construction/implementation
    • Design/demand aggregation,
    • Construction/implementation
    • None
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    C1P012: Analyst, ICT and Big Data
    • Planning/leading,
    • Monitoring/operation/management
    • Design/demand aggregation,
    • Monitoring/operation/management
    • None
    • Monitoring/operation/management
    C1P012: Business process management
    • Design/demand aggregation,
    • Construction/implementation
    • Planning/leading
    • None
    • Planning/leading,
    • Monitoring/operation/management
    C1P012: Urban Services providers
    • Planning/leading,
    • Construction/implementation
    • Design/demand aggregation,
    • Monitoring/operation/management
    • None
    • Planning/leading
    C1P012: Real Estate developers
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Construction/implementation
    • None
    • Design/demand aggregation,
    • Construction/implementation
    C1P012: Design/Construction companies
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • Construction/implementation
    • None
    • Design/demand aggregation
    C1P012: End‐users/Occupants/Energy Citizens
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • None
    • None
    • Monitoring/operation/management
    C1P012: Social/Civil Society/NGOs
    • Planning/leading
    • Planning/leading,
    • Design/demand aggregation
    • None
    • Monitoring/operation/management
    C1P012: Industry/SME/eCommerce
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • None
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    C1P012: Other
    • None
    C1P012: Other (if any)
    Summary

    Authors (framework concept)

    Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

    Contributors (to the content)

    Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

    Implemented by

    Boutik.pt: Filipe Martins, Jamal Khan
    Marek Suchánek (Czech Technical University in Prague)