Name | Project | Type | Compare |
---|---|---|---|
Örebro-Vivalla | JUST PEPP | PED Relevant Case Study | Compare |
Tiurberget, Kongsvinger | JUST PEPP | PED Relevant Case Study | Compare |
Texel | JUST PEPP | PED Relevant Case Study | Compare |
Hällefors, Sweden | JUST PEPP | PED Relevant Case Study | Compare |
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona | OPEN4CEC | PED Lab | Compare |
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab | OPEN4CEC | PED Lab | Compare |
Pamplona | OPEN4CEC | PED Lab | Compare |
Trondheim, Svartlamon | OPEN4CEC | PED Lab | Compare |
Savona, The University of Genova, Savona Campus | OPEN4CEC | PED Lab | Compare |
Torres Vedras, Encosta de São Vicente | COPPER | PED Lab | Compare |
Malmö, Stadium area (Stadionområdet) | PED StepWise | PED Case Study | Compare |
Utrecht, Utrecht Science Park | PED StepWise | PED Relevant Case Study | Compare |
Vienna, Kriegerheimstätten | PED StepWise | PED Relevant Case Study | Compare |
Vienna, 16. District, Leben am Wilhelminenberg | HeatCOOP | PED Relevant Case Study | Compare |
Vienna, Laxenburgerstraße AH | HeatCOOP | PED Lab | Compare |
Tartu, Annelinn | V2G-QUESTS | PED Relevant Case Study | Compare |
Utrecht, Kanaleneiland | V2G-QUESTS | PED Relevant Case Study | Compare |
Aveiro, Aradas district | V2G-QUESTS | PED Relevant Case Study | Compare |
Győr, Geothermal District Heating Project | PED Relevant Case Study | Compare | |
Drammen, Jacobs Borchs Gate | PED Relevant Case Study | Compare | |
Freiburg im Breisgau, Dietenbach | PED Relevant Case Study | Compare | |
Lecce, SmartEnCity | SmartEnCity – Towards Smart Zero CO2 Cities across Europe | PED Relevant Case Study | Compare |
Trento, STARDUST | STARDUST – Holistic and Integrated Urban Model for Smart Cities | PED Relevant Case Study / PED Lab | Compare |
Malmö, Klimatkontrakt Hyllie | PED Relevant Case Study | Compare | |
Kaiserslautern, EnStadt:Pfaff | PED Relevant Case Study / PED Lab | Compare | |
Helsinki, mySMARTlife | PED Relevant Case Study | Compare | |
Firenze, Novoli-Cascine district on “le PIagge” buildings | PED Relevant Case Study | Compare | |
Bolzano, Sinfonia | PED Relevant Case Study | Compare | |
Zürich, Hunziker Areal | PED Relevant Case Study | Compare | |
Hammarby Sjöstad, Hammarby Sjöstad 2.0 | PED Relevant Case Study | Compare | |
Milano, Sharing Cities | PED Relevant Case Study | Compare | |
Mieres, District Heating Pozo Barredo | PED Relevant Case Study | Compare | |
Lund, Cityfied (demo Linero) | PED Relevant Case Study | Compare | |
Espoo, Smart Otaniemi | PED Relevant Case Study / PED Lab | Compare | |
Vienna, Zukunftsquartier | PED Case Study | Compare | |
Trento, Santa Chiara Open Lab | PED Case Study | Compare | |
Paterna, Barrio La Pinada | PED Case Study / PED Lab | Compare | |
Bergen, Zero Village Bergen (ZVB) | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
Võru, +CityxChange | PED Case Study | Compare | |
Trondheim, NTNU Campus within the Knowledge Axis | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
Oslo, Furuset project | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
Măgurele, Laser Valley – Land of Lights | PED Case Study | Compare | |
Elverum, Ydalir project | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
Bodø, Airport, NyBy – Ny Flyplass (New City – New Airport) | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
Bærum, Fornebu | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
Carquefou, Fleuraye west | PED Case Study | Compare | |
Åland, Smart Energy | PED Case Study | Compare | |
Romania, Alba Iulia PED | ASCEND – Accelerate poSitive Clean ENergy Districts | PED Case Study | Compare |
Romania, Alba Iulia PED | InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts | PED Case Study | Compare |
Munich, Harthof district | PED Case Study | Compare | |
Lublin | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Uncompare |
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran | CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings | PED Relevant Case Study | Compare |
Bærum, Eiksveien 116 | CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings | PED Relevant Case Study | Compare |
Findhorn, the Park | InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts | PED Case Study | Compare |
Amsterdam, Buiksloterham PED | ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities | PED Case Study | Compare |
Schönbühel-Aggsbach, Schönbühel an der Donau | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Relevant Case Study | Compare |
Umeå, Ålidhem district | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study | Compare |
Aalborg East | PED Relevant Case Study / PED Lab | Compare | |
Ankara, Çamlık District | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study / PED Relevant Case Study | Compare |
Trenčín | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Luxembourg, Betzdorf | LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes | PED Relevant Case Study | Compare |
Vantaa, Aviapolis | NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts | PED Case Study / PED Relevant Case Study / PED Lab | Uncompare |
Vidin, Himik and Bononia | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Oslo, Verksbyen | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Compare |
Uden, Loopkantstraat | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Relevant Case Study | Compare |
Zaragoza, Actur | NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts | PED Relevant Case Study | Compare |
Aarhus, Brabrand | BIPED – Building Intelligent Positive Energy Districts | PED Case Study / PED Relevant Case Study / PED Lab | Compare |
Riga, Ķīpsala, RTU smart student city | ExPEDite – Enabling Positive Energy Districts through Digital Twins | PED Case Study | Compare |
Izmir, District of Karşıyaka | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study | Compare |
Istanbul, Ozyegin University Campus | LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes | PED Relevant Case Study | Compare |
Espoo, Kera | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study / PED Relevant Case Study | |
Borlänge, Rymdgatan’s Residential Portfolio | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Relevant Case Study | Compare |
Freiburg, Waldsee | PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district | PED Case Study | Compare |
Innsbruck, Campagne-Areal | PED Relevant Case Study | Compare | |
Graz, Reininghausgründe | PED Case Study | Compare | |
Stor-Elvdal, Campus Evenstad | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Relevant Case Study | Compare |
Oulu, Kaukovainio | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Halmstad, Fyllinge | PED Relevant Case Study | Compare | |
Lund, Brunnshög district | PED Case Study | Uncompare | |
Vienna, Am Kempelenpark | PED Case Study | Compare | |
Évora, Portugal | POCITYF – A POsitive Energy CITY Transformation Framework | PED Relevant Case Study / PED Lab | Compare |
Kladno, Sletiště (Sport Area), PED Winter Stadium | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Relevant Case Study | Compare |
Groningen, PED South | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Lab | Compare |
Groningen, PED North | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Lab | Compare |
Maia, Sobreiro Social Housing | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Lab | Compare |
Lubia (Soria), CEDER-CIEMAT | PED Lab | Compare | |
Tampere, Ilokkaanpuisto district | STARDUST – Holistic and Integrated Urban Model for Smart Cities | PED Relevant Case Study | Compare |
Leon, Former Sugar Factory district | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Istanbul, Kadikoy district, Caferaga | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Espoo, Leppävaara district, Sello center | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Compare |
Espoo, Espoonlahti district, Lippulaiva block | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Compare |
Salzburg, Gneis district | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Uncompare |
Barcelona, Santa Coloma de Gramenet | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Compare |
Tartu, City centre area | SmartEnCity – Towards Smart Zero CO2 Cities across Europe | PED Relevant Case Study / PED Lab | Compare |
Bologna, Pilastro-Roveri district | GRETA – GReen Energy Transition Actions | PED Relevant Case Study | Compare |
Barcelona, SEILAB & Energy SmartLab | PED Lab | Uncompare | |
Leipzig, Baumwollspinnerei district | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Uncompare |
Kifissia, Energy community | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Relevant Case Study | Compare |
Title | Espoo, Kera | Salzburg, Gneis district | Lublin | Lund, Brunnshög district | Vantaa, Aviapolis | Leipzig, Baumwollspinnerei district | Barcelona, SEILAB & Energy SmartLab |
---|---|---|---|---|---|---|---|
A1P001: Name of the PED case study / PED Lab | |||||||
A1P001: Name of the PED case study / PED Lab | Espoo, Kera | Salzburg, Gneis district | Lublin | Lund, Brunnshög district | Vantaa, Aviapolis | Leipzig, Baumwollspinnerei district | Barcelona, SEILAB & Energy SmartLab |
A1P002: Map / aerial view / photos / graphic details / leaflet | |||||||
A1P002: Map / aerial view / photos / graphic details / leaflet |
| ||||||
A1P003: Categorisation of the PED site | |||||||
PED case study | yes | yes | yes | yes | yes | yes | no |
PED relevant case study | yes | no | no | no | yes | no | no |
PED Lab. | no | no | no | no | yes | no | yes |
A1P004: Targets of the PED case study / PED Lab | |||||||
Climate neutrality | yes | yes | yes | yes | yes | yes | no |
Annual energy surplus | no | yes | yes | yes | no | no | no |
Energy community | no | yes | yes | yes | no | no | yes |
Circularity | yes | no | yes | yes | yes | no | no |
Air quality and urban comfort | no | yes | yes | yes | no | yes | no |
Electrification | no | no | no | yes | no | yes | yes |
Net-zero energy cost | no | no | yes | no | no | no | no |
Net-zero emission | no | no | yes | yes | no | no | yes |
Self-sufficiency (energy autonomous) | no | no | yes | no | no | no | yes |
Maximise self-sufficiency | no | no | yes | no | no | no | no |
Other | no | no | no | yes | no | yes | yes |
Other (A1P004) | Holistic approach on city planning; Minimise car traffic - walkability; Local service; Climate neutral buildings 2030; | Net-zero emission; Annual energy surplus | Green IT | ||||
A1P005: Phase of the PED case study / PED Lab | |||||||
A1P005: Project Phase of your case study/PED Lab | Planning Phase | Completed | Planning Phase | In operation | Planning Phase | Implementation Phase | In operation |
A1P006: Start Date | |||||||
A1P006: Start date | 01/15 | 01/20 | 2015 | 01/23 | 01/2011 | ||
A1P007: End Date | |||||||
A1P007: End date | 12/35 | 01/24 | 2040 | 12/27 | 02/2013 | ||
A1P008: Reference Project | |||||||
A1P008: Reference Project | |||||||
A1P009: Data availability | |||||||
A1P009: Data availability |
|
|
|
| |||
A1P009: Other | GIS open dataset is under construction | ||||||
A1P010: Sources | |||||||
Any publication, link to website, deliverable referring to the PED/PED Lab | |||||||
A1P011: Geographic coordinates | |||||||
X Coordinate (longitude): | 24.75377778 | 13.041216 | 22.5684 | 13.232469400769599 | 24.958821 | 12.318458 | 2.1 |
Y Coordinate (latitude): | 60.21622222 | 47.771019 | 51.2465 | 55.71989792207193 | 60.305488 | 51.326492 | 41.3 |
A1P012: Country | |||||||
A1P012: Country | Finland | Austria | Poland | Sweden | Finland | Germany | Spain |
A1P013: City | |||||||
A1P013: City | Espoo | Salzburg | Lublin | Lund | Vantaa | Leipzig | Barcelona and Tarragona |
A1P014: Climate Zone (Köppen Geiger classification) | |||||||
A1P014: Climate Zone (Köppen Geiger classification). | Dfb | Dfb | Cfb | Dfb | Dfb | Dfb | Csa |
A1P015: District boundary | |||||||
A1P015: District boundary | Geographic | Geographic | Geographic | Geographic | Geographic | Functional | Virtual |
Other | Geographic | ||||||
A1P016: Ownership of the case study/PED Lab | |||||||
A1P016: Ownership of the case study/PED Lab: | Mixed | Mixed | Private | Public | Mixed | Public | |
A1P017: Ownership of the land / physical infrastructure | |||||||
A1P017: Ownership of the land / physical infrastructure: | Multiple Owners | Single Owner | Multiple Owners | Multiple Owners | Multiple Owners | Single Owner | |
A1P018: Number of buildings in PED | |||||||
A1P018: Number of buildings in PED | 17 | 5 | 200 | 2 | 0 | ||
A1P019: Conditioned space | |||||||
A1P019: Conditioned space [m²] | 199762 | 21664.73 | 1500000 | 17000 | |||
A1P020: Total ground area | |||||||
A1P020: Total ground area [m²] | 580000 | 72833.47 | 1500000 | 3881000 | 30000 | ||
A1P021: Floor area ratio: Conditioned space / total ground area | |||||||
A1P021: Floor area ratio: Conditioned space / total ground area | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
A1P022: Financial schemes | |||||||
A1P022a: Financing - PRIVATE - Real estate | no | no | no | yes | yes | no | no |
A1P022a: Add the value in EUR if available [EUR] | 99999999 | ||||||
A1P022b: Financing - PRIVATE - ESCO scheme | no | no | no | no | no | no | no |
A1P022b: Add the value in EUR if available [EUR] | |||||||
A1P022c: Financing - PRIVATE - Other | no | no | no | no | yes | no | no |
A1P022c: Add the value in EUR if available [EUR] | |||||||
A1P022d: Financing - PUBLIC - EU structural funding | no | no | no | yes | no | no | no |
A1P022d: Add the value in EUR if available [EUR] | 1000000 | ||||||
A1P022e: Financing - PUBLIC - National funding | no | no | no | yes | no | no | no |
A1P022e: Add the value in EUR if available [EUR] | 30000000 | ||||||
A1P022f: Financing - PUBLIC - Regional funding | no | no | no | yes | no | no | no |
A1P022f: Add the value in EUR if available [EUR] | 30000000 | ||||||
A1P022g: Financing - PUBLIC - Municipal funding | no | no | no | yes | yes | no | no |
A1P022g: Add the value in EUR if available [EUR] | 180000000 | ||||||
A1P022h: Financing - PUBLIC - Other | no | no | no | no | no | no | no |
A1P022h: Add the value in EUR if available [EUR] | |||||||
A1P022i: Financing - RESEARCH FUNDING - EU | no | yes | no | yes | yes | no | no |
A1P022i: Add the value in EUR if available [EUR] | 2000000 | ||||||
A1P022j: Financing - RESEARCH FUNDING - National | no | no | no | no | no | no | no |
A1P022j: Add the value in EUR if available [EUR] | |||||||
A1P022k: Financing - RESEARCH FUNDING - Local/regional | no | no | no | no | no | no | no |
A1P022k: Add the value in EUR if available [EUR] | |||||||
A1P022l: Financing - RESEARCH FUNDING - Other | no | no | no | no | no | no | no |
A1P022l: Add the value in EUR if available [EUR] | |||||||
A1P022: Other | Multiple different funding schemes depending on the case. | Multiple different funding schemes depending on the development site within the District and Lab. | |||||
A1P023: Economic Targets | |||||||
A1P023: Economic Targets |
|
|
|
|
|
| |
A1P023: Other | Circular economy | Boosting social cooperation and social aid | World class sustainable living and research environments | Sustainable and replicable business models regarding renewable energy systems | |||
A1P024: More comments: | |||||||
A1P024: More comments: | Lublin PED Area is geographically bounded and the ambition is to reach Self-Sufficiency. There is a shopping centre with a large rooftop area for solar generation and there are also an empty lot (just on the east side of the building) and a carpark area (on the north side) next to the commercial centre. These areas can also be evaluated for on-site (on the ground – or canopies for cars) energy generation. There are also new built (mainly in 2012) residential blocks with high efficiency and this district is so-called an “eco-district”. Thanks to the District Heating Grid (DHN), all buildings are connected to each other the network has potential for sharing mechanisms in the PED Area. Another opportunity for renewable energy is that these buildings are connected to more or less the end point of DHN and for this reason, a waste heat potential from the return pipe may also be considered. There are also small size residentials, that are not connected to the DHN, around the PED area and this enlightened the technical team for exporting energy from PED to these areas with a new infrastructure. | Semi-Virtual Energy Integration Laboratory (SEILAB) The Energy Smart Lab is an infrastructure conceived as a flexible and versatile platform for innovative technological developments for both industry and competitive R+D projects. The areas of expertise of this laboratory pivot around the following technologies: – Power Electronics for the integration and control of the elements within a building or community: Renewable Energy Sources (RES), Energy Storage Systems and Electric Vehicles (EV) – ICT Platform for smart communications and energy management of systems, building, networks and communities. – Energy System Integration technologies for smart and flexible buildings and grids including RES and EV. The laboratory operation is based on the hardware emulation approach, which allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation. The laboratory is pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation. | |||||
A1P025: Estimated PED case study / PED LAB costs | |||||||
A1P025: Estimated PED case study / PED LAB costs [mil. EUR] | |||||||
Contact person for general enquiries | |||||||
A1P026: Name | Joni Mäkinen | Abel Magyari | Dorota Wolińska-Pietrzak | Markus Paulsson | Eira Linko | Simon Baum | Dr. Jaume Salom, Dra. Cristina Corchero |
A1P027: Organization | City of Espoo | ABUD | Lublin Municipality | City of Lund | City of Vantaa | CENERO Energy GmbH | IREC |
A1P028: Affiliation | Municipality / Public Bodies | Research Center / University | Municipality / Public Bodies | Municipality / Public Bodies | Municipality / Public Bodies | Other | Research Center / University |
A1P028: Other | CENERO Energy GmbH | ||||||
A1P029: Email | joni.makinen@espoo.fi | magyari.abel@abud.hu | dwolinska@lublin.eu | markus.paulsson@lund.se | eira.linko@vantaa.fi | sib@cenero.de | Jsalom@irec.cat |
Contact person for other special topics | |||||||
A1P030: Name | Strassl Ingeborg | Eva Dalman | Simon Baum | ||||
A1P031: Email | inge.strassl@salzburg.gv.at | eva.dalman@lund.se | sib@cenero.de | ||||
Pursuant to the General Data Protection Regulation | Yes | Yes | Yes | Yes | Yes | Yes | |
A2P001: Fields of application | |||||||
A2P001: Fields of application |
|
|
|
|
|
|
|
A2P001: Other | Walkability and biking | ||||||
A2P002: Tools/strategies/methods applied for each of the above-selected fields | |||||||
A2P002: Tools/strategies/methods applied for each of the above-selected fields | - Kera development commitment (https://www.espoo.fi/en/kera-development-commitment). - SPARCS Co-creation model for sustainable and smart urban areas (www.co-creatingsparcs.fi/en). - Kera area carbon neutrality roadmap (https://static.espoo.fi/cdn/ff/MHDdcMNJ9aYn7CjpoD4zNpo5M-M9HIDLXlJdUrUmf-8/1642756766/public/2022-01/Kera%20carbon%20neutrality%20map_EN.pdf) | - Dynamic district, and building scale energy modelling - Microclimate modelling - Klimaaktiv certification system - Energy community - Flexibility with shared heating and electricity systems | SEE: D4.1 - Methodology and Guidelines for PED design https://makingcity.eu/results/#1551708358627-aefa76ef-66b2 | LundaMaTs methodology for traffic and city planning. LundaEko - Lund's programme for ecological sustainability. Municipally owned land is sold to property developers on environmental conditions. | Pilot collaboration with landowners. Carbon footprint assessment and planning guidelines in zoning planning. Green infrastructure requirements. Examples of considered energy solutions: waste heat recovery and utilization, geothermal, air-water heat pumps, district heating return water, photovoltaics, A-class energy efficiency, smart control and monitoring, energy storages, E-mobility above national requirements, cooling | Energy SmartLab capacities - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. Energy SmartLab systems - SAFT Li-ion battery: maximum stored energy 20000 Wh, rated power 150 kW, rated discharge current 200 A, rated charge current 34 A, operating voltage 189 V – 227 V – 254 V, capacity 82 Ah. – Ultracapacitors: maximum stored energy 57 Wh, rated power 10 kW, rated current 20 A, peak current (<1s) 200 Apk, operating voltage 250 V – 500 V, capacity 1,65 F. – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah - 5 microgrid emulators (emulated power 5.5 kVA, max generation connected 10kVA, max consumption connected 10 kVA) - 1 grid emulator (Rated power: 200 kVA, Rated current per phase: 350 A, Rated current per neutral conductor: 35) | |
A2P003: Application of ISO52000 | |||||||
A2P003: Application of ISO52000 | No | Yes | No | No | No | ||
A2P004: Appliances included in the calculation of the energy balance | |||||||
A2P004: Appliances included in the calculation of the energy balance | No | No | Yes | Yes | Yes | ||
A2P005: Mobility included in the calculation of the energy balance | |||||||
A2P005: Mobility included in the calculation of the energy balance | No | No | No | Yes | Yes | ||
A2P006: Description of how mobility is included (or not included) in the calculation | |||||||
A2P006: Description of how mobility is included (or not included) in the calculation | Today electrically charged vehicles are included in the energy balance. In the future also other fuels should be included. | The calculation of the energy balance will be further developed and specified under the Neutralpath-project. Mobility related emissions are taken into account in the carbon footprint calculation of each zoning plan in the development area. | – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah | ||||
A2P007: Annual energy demand in buildings / Thermal demand | |||||||
A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum] | 54.5 | 25 | 1.65 | ||||
A2P008: Annual energy demand in buildings / Electric Demand | |||||||
A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum] | 19.4 | 30 | |||||
A2P009: Annual energy demand for e-mobility | |||||||
A2P009: Annual energy demand for e-mobility [GWh/annum] | 0 | ||||||
A2P010: Annual energy demand for urban infrastructure | |||||||
A2P010: Annual energy demand for urban infrastructure [GWh/annum] | |||||||
A2P011: Annual renewable electricity production on-site during target year | |||||||
A2P011: PV | yes | yes | no | yes | yes | yes | yes |
A2P011: PV - specify production in GWh/annum [GWh/annum] | 4 | 0.7770664 | |||||
A2P011: Wind | no | no | no | yes | no | no | no |
A2P011: Wind - specify production in GWh/annum [GWh/annum] | |||||||
A2P011: Hydro | no | no | no | no | no | no | no |
A2P011: Hydro - specify production in GWh/annum [GWh/annum] | |||||||
A2P011: Biomass_el | no | no | no | no | no | no | no |
A2P011: Biomass_el - specify production in GWh/annum [GWh/annum] | |||||||
A2P011: Biomass_peat_el | no | no | no | no | no | no | no |
A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum] | |||||||
A2P011: PVT_el | no | no | no | no | no | no | no |
A2P011: PVT_el - specify production in GWh/annum [GWh/annum] | |||||||
A2P011: Other | no | no | no | no | no | no | no |
A2P011: Other - specify production in GWh/annum [GWh/annum] | |||||||
A2P012: Annual renewable thermal production on-site during target year | |||||||
A2P012: Geothermal | no | yes | no | no | yes | no | no |
A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum] | |||||||
A2P012: Solar Thermal | no | no | no | no | no | no | no |
A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum] | |||||||
A2P012: Biomass_heat | no | no | no | no | no | no | no |
A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum] | |||||||
A2P012: Waste heat+HP | yes | no | no | yes | yes | no | no |
A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum] | 200 | ||||||
A2P012: Biomass_peat_heat | no | no | no | no | no | no | no |
A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum] | |||||||
A2P012: PVT_th | no | no | no | no | no | no | no |
A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum] | |||||||
A2P012: Biomass_firewood_th | no | no | no | no | no | no | no |
A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum] | |||||||
A2P012: Other | no | no | no | no | no | no | no |
A2P012 - Other: Please specify production in GWh/annum [GWh/annum] | |||||||
A2P013: Renewable resources on-site - Additional notes | |||||||
A2P013: Renewable resources on-site - Additional notes | Local energy utility will implement district level thermal solution. First, energy will be produced from waste heat from a local data center. Further thermal solutions are under discussion and development. | ||||||
A2P014: Annual energy use | |||||||
A2P014: Annual energy use [GWh/annum] | 78.8 | 0.819016 | 2.421 | ||||
A2P015: Annual energy delivered | |||||||
A2P015: Annual energy delivered [GWh/annum] | 15.4 | ||||||
A2P016: Annual non-renewable electricity production on-site during target year | |||||||
A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum] | 0 | -1 | 0 | ||||
A2P017: Annual non-renewable thermal production on-site during target year | |||||||
A2P017: Gas | no | no | no | no | no | no | yes |
A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum] | |||||||
A2P017: Coal | no | no | no | no | no | no | no |
A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum] | |||||||
A2P017: Oil | no | no | no | no | no | no | no |
A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum] | |||||||
A2P017: Other | no | no | no | no | no | no | no |
A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum] | |||||||
A2P018: Annual renewable electricity imports from outside the boundary during target year | |||||||
A2P018: PV | no | no | no | yes | yes | no | no |
A2P018 - PV: specify production in GWh/annum if available [GWh/annum] | |||||||
A2P018: Wind | no | no | no | yes | yes | no | no |
A2P018 - Wind: specify production in GWh/annum if available [GWh/annum] | |||||||
A2P018: Hydro | no | no | no | yes | yes | no | no |
A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum] | |||||||
A2P018: Biomass_el | no | no | no | yes | yes | no | no |
A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum] | |||||||
A2P018: Biomass_peat_el | no | no | no | no | no | no | no |
A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum] | |||||||
A2P018: PVT_el | no | no | no | no | no | no | no |
A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum] | |||||||
A2P018: Other | no | no | no | no | no | no | no |
A2P018 - Other: specify production in GWh/annum if available [GWh/annum] | |||||||
A2P019: Annual renewable thermal imports from outside the boundary during target year | |||||||
A2P019: Geothermal | no | no | no | no | no | no | no |
A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum] | |||||||
A2P019: Solar Thermal | no | no | no | no | no | no | no |
A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum] | |||||||
A2P019: Biomass_heat | no | no | no | no | yes | no | no |
A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum] | |||||||
A2P019: Waste heat+HP | no | no | no | no | yes | no | no |
A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum] | |||||||
A2P019: Biomass_peat_heat | no | no | no | no | no | no | no |
A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum] | |||||||
A2P019: PVT_th | no | no | no | no | no | no | no |
A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum] | |||||||
A2P019: Biomass_firewood_th | no | no | no | no | no | no | no |
A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum] | |||||||
A2P019: Other | no | no | no | no | no | no | no |
A2P019 Other: Please specify imports in GWh/annum [GWh/annum] | |||||||
A2P020: Share of RES on-site / RES outside the boundary | |||||||
A2P020: Share of RES on-site / RES outside the boundary | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
A2P021: GHG-balance calculated for the PED | |||||||
A2P021: GHG-balance calculated for the PED [tCO2/annum] | 450000 | ||||||
A2P022: KPIs related to the PED case study / PED Lab | |||||||
A2P022: Safety & Security | |||||||
A2P022: Health | CO2) levels, Predicted Mean Vote,Predicted Percentage of Dissatisfied, Temperature, Relative Humidity, Illuminance, Daylight factor, Sound pressure levels | ||||||
A2P022: Education | |||||||
A2P022: Mobility | Maximum 1/3 transport with car | ||||||
A2P022: Energy | Non-renewable primary energy balance, Renewable energy ratio, Grid Purchase factor, Load cover factor/Self-generation, Supply cover factor/Self-consumption, Net energy/Net power, Peak delivered/exported power, Connection capacity credit, Total greenhouse gas emissions | Local energy production 150% of energy need | apply | ||||
A2P022: Water | |||||||
A2P022: Economic development | Investment costs, Share of investments covered by grants, Maintenance-related costs, Requirement-related costs, Operation-related costs, Other costs, Net Present Value, Internal Rate of Return, Economic Value Added, Payback Period, nZEB Cost Comparison | ||||||
A2P022: Housing and Community | Access to services, Affordability of energy, Affordability of housing, Democratic legitimacy, Living conditions, Social cohesion, Personal safety, Energy consciousness | 50% rental apartments and 50% owner apartments | |||||
A2P022: Waste | |||||||
A2P022: Other | |||||||
A2P023: Technological Solutions / Innovations - Energy Generation | |||||||
A2P023: Photovoltaics | yes | yes | yes | yes | yes | no | yes |
A2P023: Solar thermal collectors | no | no | no | yes | no | yes | no |
A2P023: Wind Turbines | no | no | no | yes | no | no | no |
A2P023: Geothermal energy system | no | yes | no | yes | yes | no | no |
A2P023: Waste heat recovery | yes | no | no | yes | yes | no | no |
A2P023: Waste to energy | no | no | no | no | yes | no | no |
A2P023: Polygeneration | no | no | no | yes | yes | no | no |
A2P023: Co-generation | no | no | no | no | no | no | no |
A2P023: Heat Pump | yes | no | yes | yes | yes | yes | no |
A2P023: Hydrogen | no | no | yes | yes | no | no | no |
A2P023: Hydropower plant | no | no | no | no | no | no | no |
A2P023: Biomass | no | no | no | no | yes | no | no |
A2P023: Biogas | no | no | no | no | no | no | no |
A2P023: Other | The technological solutions can vary within the PED Lab area and will be specified case by case. | ||||||
A2P024: Technological Solutions / Innovations - Energy Flexibility | |||||||
A2P024: A2P024: Information and Communication Technologies (ICT) | yes | no | yes | yes | yes | no | yes |
A2P024: Energy management system | yes | yes | yes | yes | yes | no | yes |
A2P024: Demand-side management | yes | yes | yes | yes | yes | no | no |
A2P024: Smart electricity grid | yes | yes | yes | yes | yes | no | yes |
A2P024: Thermal Storage | no | no | yes | yes | yes | no | no |
A2P024: Electric Storage | no | no | yes | yes | yes | no | yes |
A2P024: District Heating and Cooling | yes | no | yes | yes | yes | no | no |
A2P024: Smart metering and demand-responsive control systems | no | no | yes | yes | yes | no | no |
A2P024: P2P – buildings | no | yes | no | no | no | no | no |
A2P024: Other | The technological solutions can vary within the PED Lab area and will be specified case by case. | ||||||
A2P025: Technological Solutions / Innovations - Energy Efficiency | |||||||
A2P025: Deep Retrofitting | no | no | yes | no | no | no | no |
A2P025: Energy efficiency measures in historic buildings | no | no | yes | no | no | no | no |
A2P025: High-performance new buildings | yes | yes | yes | yes | yes | no | no |
A2P025: Smart Public infrastructure (e.g. smart lighting) | yes | no | yes | yes | no | no | no |
A2P025: Urban data platforms | yes | no | yes | yes | no | no | no |
A2P025: Mobile applications for citizens | no | no | yes | no | no | no | no |
A2P025: Building services (HVAC & Lighting) | yes | yes | yes | yes | yes | no | yes |
A2P025: Smart irrigation | no | no | no | no | no | no | no |
A2P025: Digital tracking for waste disposal | no | no | no | yes | no | no | no |
A2P025: Smart surveillance | no | no | no | no | no | yes | no |
A2P025: Other | The technological solutions can vary within the PED Lab area and will be specified case by case. | ||||||
A2P026: Technological Solutions / Innovations - Mobility | |||||||
A2P026: Efficiency of vehicles (public and/or private) | yes | no | yes | no | yes | no | yes |
A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances) | yes | yes | yes | yes | yes | yes | no |
A2P026: e-Mobility | yes | yes | yes | yes | yes | yes | no |
A2P026: Soft mobility infrastructures and last mile solutions | yes | no | no | yes | yes | no | no |
A2P026: Car-free area | no | no | no | yes | no | no | no |
A2P026: Other | |||||||
A2P027: Mobility strategies - Additional notes | |||||||
A2P027: Mobility strategies - Additional notes | Shared mobility: a mobility point will be implemented and ensure the flexible use of different mobility services. | Walkability | Test-Concept for bidirectional charging. | ||||
A2P028: Energy efficiency certificates | |||||||
A2P028: Energy efficiency certificates | No | Yes | No | Yes | Yes | ||
A2P028: If yes, please specify and/or enter notes | Energy Performance Certificate | Miljöbyggnad silver/guld | |||||
A2P029: Any other building / district certificates | |||||||
A2P029: Any other building / district certificates | No | Yes | No | No | |||
A2P029: If yes, please specify and/or enter notes | Klimaaktiv certificate, Greenpass certificate | ||||||
A3P001: Relevant city /national strategy | |||||||
A3P001: Relevant city /national strategy |
|
|
|
|
| ||
A3P002: Quantitative targets included in the city / national strategy | |||||||
A3P002: Quantitative targets included in the city / national strategy | City strategy: Net climate neutrality 2030 | Carbon-Neutral Vantaa by 2030 (min. 80 % reduction of yearly emissions, capture or compensation os the residual 20 %), | |||||
A3P003: Strategies towards decarbonization of the gas grid | |||||||
A3P003: Strategies towards decarbonization of the gas grid |
|
|
| ||||
A3P003: Other | Heating Grid | No gas grid in Brunnshög | |||||
A3P004: Identification of needs and priorities | |||||||
A3P004: Identification of needs and priorities | Local waste heat is utlized to a very large extent. More local electricity production is needed. Need to minimise the use of private cars. | -Allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation -Pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation. | |||||
A3P005: Sustainable behaviour | |||||||
A3P005: Sustainable behaviour | Need to minimise the use of private cars. Need to provide efficient methods for sorce separated waste collection. | -Improving the development of Net Zero Energy Buildings and Flexible Energy buildings. | |||||
A3P006: Economic strategies | |||||||
A3P006: Economic strategies |
|
|
|
|
|
| |
A3P006: Other | Attractivenes | operational savings through efficiency measures | |||||
A3P007: Social models | |||||||
A3P007: Social models |
|
|
|
|
|
|
|
A3P007: Other | |||||||
A3P008: Integrated urban strategies | |||||||
A3P008: Integrated urban strategies |
|
|
|
|
| ||
A3P008: Other | |||||||
A3P009: Environmental strategies | |||||||
A3P009: Environmental strategies |
|
|
|
|
|
|
|
A3P009: Other | Positive Energy Balance for the demo site | ||||||
A3P010: Legal / Regulatory aspects | |||||||
A3P010: Legal / Regulatory aspects | The municipality cannot demand a specific energy solution to private property owners. It has to be voluntary and market based solutions. | - European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013. | |||||
B1P001: PED/PED relevant concept definition | |||||||
B1P001: PED/PED relevant concept definition | Implementation of district level heating system to make heating energy positive and expanding local renewable electricity production. | Vision: The city as a power plant. The ultimate goal is that more energy is produced within the distric boundaries than is being used (heating, electricity & mobility). Energy efficient buildings, efficient mobility, reuse of residual heat and solar electricity are the main methods. | Neutralpath-project is working with the cocept of PCEDs = Positive and Clean Energy Districts (energy-efficient and energy-flexible districts with net zero greenhouse gas emissions and a surplus of renewable energy). Aviapolis Climate-Neutral Lab will work with both PCED and PCED relevant cases within the district. | ||||
B1P002: Motivation behind PED/PED relevant project development | |||||||
B1P002: Motivation behind PED/PED relevant project development | The aim is to build a sustainable city with minimal climate impact and maximum quality of life. PED is an important step to acheive the aims of a very ambitious city development. | According to Vantaa city strategy 2021-2025 Aviapolis area aims to become the greenest airport city in Europe. The district is transforming from a logistics and business focused area to a lively urban district which gives an opportunity to rethink the areas energy solutions. With Neutralpath-project Vantaa aims to support the development of the district's energy system and explore innovative, energy efficient and fossil free district energy solutions. | |||||
B1P003: Environment of the case study area | |||||||
B2P003: Environment of the case study area | Urban area | Suburban area | Urban area | Urban area | |||
B1P004: Type of district | |||||||
B2P004: Type of district |
|
|
|
| |||
B1P005: Case Study Context | |||||||
B1P005: Case Study Context |
|
|
|
|
| ||
B1P006: Year of construction | |||||||
B1P006: Year of construction | 2024 | ||||||
B1P007: District population before intervention - Residential | |||||||
B1P007: District population before intervention - Residential | 0 | ||||||
B1P008: District population after intervention - Residential | |||||||
B1P008: District population after intervention - Residential | 14000 | 18000 | |||||
B1P009: District population before intervention - Non-residential | |||||||
B1P009: District population before intervention - Non-residential | 2000 | ||||||
B1P010: District population after intervention - Non-residential | |||||||
B1P010: District population after intervention - Non-residential | 10000 | 22000 | |||||
B1P011: Population density before intervention | |||||||
B1P011: Population density before intervention | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
B1P012: Population density after intervention | |||||||
B1P012: Population density after intervention | 0.041379310344828 | 0 | 0 | 0.026666666666667 | 0 | 0 | 0 |
B1P013: Building and Land Use before intervention | |||||||
B1P013: Residential | yes | no | no | no | yes | no | no |
B1P013 - Residential: Specify the sqm [m²] | |||||||
B1P013: Office | yes | no | no | yes | yes | no | no |
B1P013 - Office: Specify the sqm [m²] | 60000 | ||||||
B1P013: Industry and Utility | yes | no | no | no | yes | no | no |
B1P013 - Industry and Utility: Specify the sqm [m²] | |||||||
B1P013: Commercial | no | no | no | no | yes | no | no |
B1P013 - Commercial: Specify the sqm [m²] | |||||||
B1P013: Institutional | no | no | no | no | yes | no | no |
B1P013 - Institutional: Specify the sqm [m²] | |||||||
B1P013: Natural areas | no | yes | no | yes | no | no | no |
B1P013 - Natural areas: Specify the sqm [m²] | 2000000 | ||||||
B1P013: Recreational | no | no | no | no | yes | no | no |
B1P013 - Recreational: Specify the sqm [m²] | |||||||
B1P013: Dismissed areas | yes | no | no | no | yes | no | no |
B1P013 - Dismissed areas: Specify the sqm [m²] | |||||||
B1P013: Other | no | no | no | yes | no | no | no |
B1P013 - Other: Specify the sqm [m²] | Outdoor parking: 100000 | ||||||
B1P014: Building and Land Use after intervention | |||||||
B1P014: Residential | yes | yes | no | yes | yes | no | no |
B1P014 - Residential: Specify the sqm [m²] | 600000 | ||||||
B1P014: Office | yes | no | no | yes | yes | no | no |
B1P014 - Office: Specify the sqm [m²] | 650000 | ||||||
B1P014: Industry and Utility | no | no | no | no | yes | no | no |
B1P014 - Industry and Utility: Specify the sqm [m²] | |||||||
B1P014: Commercial | yes | no | no | no | yes | no | no |
B1P014 - Commercial: Specify the sqm [m²] | |||||||
B1P014: Institutional | no | no | no | yes | yes | no | no |
B1P014 - Institutional: Specify the sqm [m²] | 50000 | ||||||
B1P014: Natural areas | no | yes | no | no | no | no | no |
B1P014 - Natural areas: Specify the sqm [m²] | |||||||
B1P014: Recreational | yes | no | no | yes | yes | no | no |
B1P014 - Recreational: Specify the sqm [m²] | 400000 | ||||||
B1P014: Dismissed areas | no | no | no | no | no | no | no |
B1P014 - Dismissed areas: Specify the sqm [m²] | |||||||
B1P014: Other | no | no | no | no | no | no | no |
B1P014 - Other: Specify the sqm [m²] | |||||||
B2P001: PED Lab concept definition | |||||||
B2P001: PED Lab concept definition | Neutralpath-project is working with the cocept of PCEDs = Positive and Clean Energy Districts (energy-efficient and energy-flexible districts with net zero greenhouse gas emissions and a surplus of renewable energy). Aviapolis Climate-Neutral Lab will work with both PCED and PCED relevant cases within the district. | addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation | |||||
B2P002: Installation life time | |||||||
B2P002: Installation life time | |||||||
B2P003: Scale of action | |||||||
B2P003: Scale | District | District | Virtual | ||||
B2P004: Operator of the installation | |||||||
B2P004: Operator of the installation | The City of Vantaa manages the lab, working closely with landowners and other stakeholders such as energy companies, solution providers, universities and citizens. | IREC | |||||
B2P005: Replication framework: Applied strategy to reuse and recycling the materials | |||||||
B2P005: Replication framework: Applied strategy to reuse and recycling the materials | |||||||
B2P006: Circular Economy Approach | |||||||
B2P006: Do you apply any strategy to reuse and recycling the materials? | Yes | No | |||||
B2P006: Other | |||||||
B2P007: Motivation for developing the PED Lab | |||||||
B2P007: Motivation for developing the PED Lab |
|
|
| ||||
B2P007: Other | |||||||
B2P008: Lead partner that manages the PED Lab | |||||||
B2P008: Lead partner that manages the PED Lab | Municipality | Municipality | Research center/University | ||||
B2P008: Other | |||||||
B2P009: Collaborative partners that participate in the PED Lab | |||||||
B2P009: Collaborative partners that participate in the PED Lab |
|
| |||||
B2P009: Other | |||||||
B2P010: Synergies between the fields of activities | |||||||
B2P010: Synergies between the fields of activities | |||||||
B2P011: Available facilities to test urban configurations in PED Lab | |||||||
B2P011: Available facilities to test urban configurations in PED Lab |
|
| |||||
B2P011: Other | |||||||
B2P012: Incubation capacities of PED Lab | |||||||
B2P012: Incubation capacities of PED Lab |
|
| |||||
B2P013: Availability of the facilities for external people | |||||||
B2P013: Availability of the facilities for external people | |||||||
B2P014: Monitoring measures | |||||||
B2P014: Monitoring measures |
|
| |||||
B2P015: Key Performance indicators | |||||||
B2P015: Key Performance indicators |
|
|
| ||||
B2P016: Execution of operations | |||||||
B2P016: Execution of operations | |||||||
B2P017: Capacities | |||||||
B2P017: Capacities | - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. | ||||||
B2P018: Relations with stakeholders | |||||||
B2P018: Relations with stakeholders | |||||||
B2P019: Available tools | |||||||
B2P019: Available tools |
|
| |||||
B2P019: Available tools | |||||||
B2P020: External accessibility | |||||||
B2P020: External accessibility | To follow the lab and Vantaa's activities in Neutralpath, fill in the following form: https://neutralpath.eu/fi/tayta-lomake-liittyaksesi-cn-labiin/ | ||||||
C1P001: Unlocking Factors | |||||||
C1P001: Recent technological improvements for on-site RES production | 5 - Very important | 1 - Unimportant | 5 - Very important | 5 - Very important | 5 - Very important | 1 - Unimportant | |
C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock | 4 - Important | 1 - Unimportant | 5 - Very important | 5 - Very important | 4 - Important | 1 - Unimportant | |
C1P001: Energy Communities, P2P, Prosumers concepts | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 3 - Moderately important | |
C1P001: Storage systems and E-mobility market penetration | 4 - Important | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 5 - Very important | 5 - Very important | |
C1P001: Decreasing costs of innovative materials | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 4 - Important | 4 - Important | 3 - Moderately important | |
C1P001: Financial mechanisms to reduce costs and maximize benefits | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 5 - Very important | |
C1P001: The ability to predict Multiple Benefits | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 2 - Slightly important | 4 - Important | 4 - Important | |
C1P001: The ability to predict the distribution of benefits and impacts | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 4 - Important | |
C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up) | 5 - Very important | 1 - Unimportant | 5 - Very important | 4 - Important | 3 - Moderately important | 1 - Unimportant | |
C1P001: Social acceptance (top-down) | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 4 - Important | 1 - Unimportant | |
C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.) | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 5 - Very important | 5 - Very important | 1 - Unimportant | |
C1P001: Presence of integrated urban strategies and plans | 4 - Important | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 5 - Very important | 1 - Unimportant | |
C1P001: Multidisciplinary approaches available for systemic integration | 5 - Very important | 1 - Unimportant | 5 - Very important | 5 - Very important | 4 - Important | 4 - Important | |
C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 5 - Very important | |
C1P001: Availability of RES on site (Local RES) | 4 - Important | 1 - Unimportant | 5 - Very important | 5 - Very important | 5 - Very important | 4 - Important | |
C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders | 5 - Very important | 1 - Unimportant | 5 - Very important | 2 - Slightly important | 5 - Very important | 5 - Very important | |
C1P001: Any other UNLOCKING FACTORS | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | |
C1P001: Any other UNLOCKING FACTORS (if any) | Real-estate market situation | ||||||
C1P002: Driving Factors | |||||||
C1P002: Climate Change adaptation need | 5 - Very important | 1 - Unimportant | 5 - Very important | 5 - Very important | 4 - Important | 4 - Important | |
C1P002: Climate Change mitigation need (local RES production and efficiency) | 5 - Very important | 1 - Unimportant | 5 - Very important | 5 - Very important | 5 - Very important | 4 - Important | |
C1P002: Rapid urbanization trend and need of urban expansions | 4 - Important | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 5 - Very important | 1 - Unimportant | |
C1P002: Urban re-development of existing built environment | 5 - Very important | 1 - Unimportant | 5 - Very important | 5 - Very important | 5 - Very important | 4 - Important | |
C1P002: Economic growth need | 4 - Important | 1 - Unimportant | 5 - Very important | 4 - Important | 4 - Important | 4 - Important | |
C1P002: Improved local environmental quality (air, noise, aesthetics, etc.) | 4 - Important | 1 - Unimportant | 5 - Very important | 5 - Very important | 4 - Important | 4 - Important | |
C1P002: Territorial and market attractiveness | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 5 - Very important | 5 - Very important | 1 - Unimportant | |
C1P002: Energy autonomy/independence | 2 - Slightly important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 5 - Very important | |
C1P002: Any other DRIVING FACTOR | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P002: Any other DRIVING FACTOR (if any) | |||||||
C1P003: Administrative barriers | |||||||
C1P003: Difficulty in the coordination of high number of partners and authorities | 4 - Important | 1 - Unimportant | 5 - Very important | 5 - Very important | 4 - Important | 4 - Important | |
C1P003: Lack of good cooperation and acceptance among partners | 5 - Very important | 1 - Unimportant | 5 - Very important | 5 - Very important | 5 - Very important | 1 - Unimportant | |
C1P003: Lack of public participation | 4 - Important | 1 - Unimportant | 5 - Very important | 2 - Slightly important | 3 - Moderately important | 2 - Slightly important | |
C1P003: Lack of institutions/mechanisms to disseminate information | 4 - Important | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | |
C1P003:Long and complex procedures for authorization of project activities | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 4 - Important | 1 - Unimportant | 5 - Very important | |
C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | |
C1P003: Complicated and non-comprehensive public procurement | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 2 - Slightly important | 3 - Moderately important | |
C1P003: Fragmented and or complex ownership structure | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 2 - Slightly important | 5 - Very important | 5 - Very important | |
C1P003: City administration & cross-sectoral attitude/approaches (silos) | 4 - Important | 1 - Unimportant | 5 - Very important | 5 - Very important | 2 - Slightly important | 4 - Important | |
C1P003: Lack of internal capacities to support energy transition | 4 - Important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 4 - Important | |
C1P003: Any other Administrative BARRIER | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | |
C1P003: Any other Administrative BARRIER (if any) | |||||||
C1P004: Policy barriers | |||||||
C1P004: Lack of long-term and consistent energy plans and policies | 4 - Important | 1 - Unimportant | 5 - Very important | 5 - Very important | 3 - Moderately important | 1 - Unimportant | |
C1P004: Lacking or fragmented local political commitment and support on the long term | 4 - Important | 1 - Unimportant | 5 - Very important | 5 - Very important | 3 - Moderately important | 1 - Unimportant | |
C1P004: Lack of Cooperation & support between national-regional-local entities | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 2 - Slightly important | 3 - Moderately important | 2 - Slightly important | |
C1P004: Any other Political BARRIER | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P004: Any other Political BARRIER (if any) | |||||||
C1P005: Legal and Regulatory barriers | |||||||
C1P005: Inadequate regulations for new technologies | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 5 - Very important | 3 - Moderately important | 5 - Very important | |
C1P005: Regulatory instability | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 5 - Very important | 5 - Very important | 2 - Slightly important | |
C1P005: Non-effective regulations | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 2 - Slightly important | 4 - Important | 2 - Slightly important | |
C1P005: Unfavorable local regulations for innovative technologies | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 4 - Important | |
C1P005: Building code and land-use planning hindering innovative technologies | 4 - Important | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 2 - Slightly important | 3 - Moderately important | |
C1P005: Insufficient or insecure financial incentives | 5 - Very important | 1 - Unimportant | 5 - Very important | 5 - Very important | 5 - Very important | 5 - Very important | |
C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation | 2 - Slightly important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant | |
C1P005: Shortage of proven and tested solutions and examples | 2 - Slightly important | 1 - Unimportant | 5 - Very important | 4 - Important | 2 - Slightly important | 4 - Important | |
C1P005: Any other Legal and Regulatory BARRIER | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 4 - Important | |
C1P005: Any other Legal and Regulatory BARRIER (if any) | |||||||
C1P006: Environmental barriers | |||||||
C1P006: Environmental barriers | ? | ||||||
C1P007: Technical barriers | |||||||
C1P007: Lack of skilled and trained personnel | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 5 - Very important | 3 - Moderately important | 5 - Very important | |
C1P007: Deficient planning | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 5 - Very important | |
C1P007: Retrofitting work in dwellings in occupied state | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P007: Lack of well-defined process | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 1 - Unimportant | 4 - Important | |
C1P007: Inaccuracy in energy modelling and simulation | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 2 - Slightly important | 1 - Unimportant | 5 - Very important | |
C1P007: Lack/cost of computational scalability | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 4 - Important | |
C1P007: Grid congestion, grid instability | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 4 - Important | 1 - Unimportant | 5 - Very important | |
C1P007: Negative effects of project intervention on the natural environment | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 5 - Very important | 3 - Moderately important | 1 - Unimportant | |
C1P007: Energy retrofitting work in dense and/or historical urban environment | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P007: Difficult definition of system boundaries | 2 - Slightly important | 1 - Unimportant | 5 - Very important | 2 - Slightly important | 3 - Moderately important | 1 - Unimportant | |
C1P007: Any other Thecnical BARRIER | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P007: Any other Thecnical BARRIER (if any) | |||||||
C1P008: Social and Cultural barriers | |||||||
C1P008: Inertia | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 4 - Important | 4 - Important | |
C1P008: Lack of values and interest in energy optimization measurements | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 4 - Important | 3 - Moderately important | 5 - Very important | |
C1P008: Low acceptance of new projects and technologies | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 2 - Slightly important | 1 - Unimportant | 5 - Very important | |
C1P008: Difficulty of finding and engaging relevant actors | 4 - Important | 1 - Unimportant | 5 - Very important | 5 - Very important | 1 - Unimportant | 5 - Very important | |
C1P008: Lack of trust beyond social network | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | |
C1P008: Rebound effect | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 4 - Important | |
C1P008: Hostile or passive attitude towards environmentalism | 2 - Slightly important | 1 - Unimportant | 5 - Very important | 4 - Important | 2 - Slightly important | 5 - Very important | |
C1P008: Exclusion of socially disadvantaged groups | 4 - Important | 1 - Unimportant | 5 - Very important | 4 - Important | 3 - Moderately important | 1 - Unimportant | |
C1P008: Non-energy issues are more important and urgent for actors | 2 - Slightly important | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | |
C1P008: Hostile or passive attitude towards energy collaboration | 2 - Slightly important | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | |
C1P008: Any other Social BARRIER | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P008: Any other Social BARRIER (if any) | |||||||
C1P009: Information and Awareness barriers | |||||||
C1P009: Insufficient information on the part of potential users and consumers | 4 - Important | 1 - Unimportant | 5 - Very important | 4 - Important | 4 - Important | 1 - Unimportant | |
C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts | 4 - Important | 1 - Unimportant | 5 - Very important | 4 - Important | 1 - Unimportant | 5 - Very important | |
C1P009: Lack of awareness among authorities | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 2 - Slightly important | |
C1P009: Information asymmetry causing power asymmetry of established actors | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 2 - Slightly important | 2 - Slightly important | 1 - Unimportant | |
C1P009: High costs of design, material, construction, and installation | 4 - Important | 1 - Unimportant | 5 - Very important | 5 - Very important | 4 - Important | 5 - Very important | |
C1P009: Any other Information and Awareness BARRIER | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P009: Any other Information and Awareness BARRIER (if any) | |||||||
C1P010: Financial barriers | |||||||
C1P010: Hidden costs | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 5 - Very important | |
C1P010: Insufficient external financial support and funding for project activities | 4 - Important | 1 - Unimportant | 5 - Very important | 2 - Slightly important | 2 - Slightly important | 5 - Very important | |
C1P010: Economic crisis | 4 - Important | 1 - Unimportant | 5 - Very important | 5 - Very important | 2 - Slightly important | 4 - Important | |
C1P010: Risk and uncertainty | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 5 - Very important | 4 - Important | 5 - Very important | |
C1P010: Lack of consolidated and tested business models | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 4 - Important | 5 - Very important | 5 - Very important | |
C1P010: Limited access to capital and cost disincentives | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 5 - Very important | 2 - Slightly important | ||
C1P010: Any other Financial BARRIER | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P010: Any other Financial BARRIER (if any) | |||||||
C1P011: Market barriers | |||||||
C1P011: Split incentives | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 2 - Slightly important | 4 - Important | |
C1P011: Energy price distortion | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 2 - Slightly important | 5 - Very important | |
C1P011: Energy market concentration, gatekeeper actors (DSOs) | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 2 - Slightly important | 2 - Slightly important | 5 - Very important | |
C1P011: Any other Market BARRIER | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P011: Any other Market BARRIER (if any) | |||||||
C1P012: Stakeholders involved | |||||||
C1P012: Government/Public Authorities |
|
|
|
| |||
C1P012: Research & Innovation |
|
|
|
| |||
C1P012: Financial/Funding |
|
|
| ||||
C1P012: Analyst, ICT and Big Data |
|
|
|
| |||
C1P012: Business process management |
|
|
| ||||
C1P012: Urban Services providers |
|
|
| ||||
C1P012: Real Estate developers |
|
|
|
| |||
C1P012: Design/Construction companies |
|
|
|
| |||
C1P012: End‐users/Occupants/Energy Citizens |
|
|
|
| |||
C1P012: Social/Civil Society/NGOs |
|
|
| ||||
C1P012: Industry/SME/eCommerce |
|
|
|
| |||
C1P012: Other |
| ||||||
C1P012: Other (if any) | |||||||
Summary |
Authors (framework concept)
Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)
Contributors (to the content)
Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)
Implemented by
Boutik.pt: Filipe Martins, Jamal Khan
Marek Suchánek (Czech Technical University in Prague)