Filters:
NameProjectTypeCompare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Compare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Uncompare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Compare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr, Geothermal District Heating Project PED Relevant Case Study Uncompare
Drammen, Jacobs Borchs Gate PED Relevant Case Study Compare
Freiburg im Breisgau, Dietenbach PED Relevant Case Study Compare
Lecce, SmartEnCity SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
Trento, STARDUST STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Malmö, Klimatkontrakt Hyllie PED Relevant Case Study Compare
Kaiserslautern, EnStadt:Pfaff PED Relevant Case Study / PED Lab Compare
Helsinki, mySMARTlife PED Relevant Case Study Compare
Firenze, Novoli-Cascine district on “le PIagge” buildings PED Relevant Case Study Compare
Bolzano, Sinfonia PED Relevant Case Study Compare
Zürich, Hunziker Areal PED Relevant Case Study Compare
Hammarby Sjöstad, Hammarby Sjöstad 2.0 PED Relevant Case Study Compare
Milano, Sharing Cities PED Relevant Case Study Compare
Mieres, District Heating Pozo Barredo PED Relevant Case Study Compare
Lund, Cityfied (demo Linero) PED Relevant Case Study Compare
Espoo, Smart Otaniemi PED Relevant Case Study / PED Lab Compare
Vienna, Zukunftsquartier PED Case Study Compare
Trento, Santa Chiara Open Lab PED Case Study Compare
Paterna, Barrio La Pinada PED Case Study / PED Lab Compare
Bergen, Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru, +CityxChange PED Case Study Compare
Trondheim, NTNU Campus within the Knowledge Axis ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Oslo, Furuset project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Măgurele, Laser Valley – Land of Lights PED Case Study Compare
Elverum, Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bodø, Airport, NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bærum, Fornebu ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Carquefou, Fleuraye west PED Case Study Compare
Åland, Smart Energy PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Uncompare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Uncompare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleHalmstad, Fyllinge
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona
Győr, Geothermal District Heating Project
Romania, Alba Iulia PED
Riga, Ķīpsala, RTU smart student city
Borlänge, Rymdgatan’s Residential Portfolio
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabHalmstad, FyllingeCerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de BarcelonaGyőr, Geothermal District Heating ProjectRomania, Alba Iulia PEDRiga, Ķīpsala, RTU smart student cityBorlänge, Rymdgatan’s Residential Portfolio
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynononoyesyesno
PED relevant case studyyesnoyesnonoyes
PED Lab.noyesnononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesyesyesyesyes
Annual energy surplusnononononoyes
Energy communityyesnonoyesyesyes
Circularitynononononono
Air quality and urban comfortnononoyesnono
Electrificationnononoyesnoyes
Net-zero energy costnononononono
Net-zero emissionnononononono
Self-sufficiency (energy autonomous)nononoyesyesno
Maximise self-sufficiencynononoyesyesyes
Othernoyesyesnonono
Other (A1P004): PV generation/home consumption behaviour emulation at LABEnergy efficient; Carbon-free
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhasePlanning PhaseCompletedImplementation PhasePlanning PhasePlanning Phase
A1P006: Start Date
A1P006: Start date01/2109/2512/1301/2301/24
A1P007: End Date
A1P007: End date01/3012/2610/1812/2712/26
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • General statistical datasets
  • Monitoring data available within the districts,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Open data city platform – different dashboards
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
      • Historical sources,
      • GIS of the municipality,
      • Basic BEMs
        A1P011: Geographic coordinates
        X Coordinate (longitude):12.920542.11214552443609617.86812423.58011209802323524.0816833915.394495
        Y Coordinate (latitude):56.6519441.5003086008059247.65145246.07701527868011556.9524595660.486609
        A1P012: Country
        A1P012: CountrySwedenSpainHungaryRomaniaLatviaSweden
        A1P013: City
        A1P013: CityHalmstadCerdanyola del VallesGyőrAlba IuliaRigaBorlänge
        A1P014: Climate Zone (Köppen Geiger classification)
        A1P014: Climate Zone (Köppen Geiger classification).DwbCsaCfbDfbCfbDsb
        A1P015: District boundary
        A1P015: District boundaryGeographicFunctionalFunctionalGeographicGeographic
        OtherGeographic
        A1P016: Ownership of the case study/PED Lab
        A1P016: Ownership of the case study/PED Lab:MixedPublicMixedPublicPublicMixed
        A1P017: Ownership of the land / physical infrastructure
        A1P017: Ownership of the land / physical infrastructure:Multiple OwnersSingle OwnerMultiple OwnersSingle OwnerMultiple OwnersSingle Owner
        A1P018: Number of buildings in PED
        A1P018: Number of buildings in PED2501510
        A1P019: Conditioned space
        A1P019: Conditioned space [m²]1700003700
        A1P020: Total ground area
        A1P020: Total ground area [m²]1192649945
        A1P021: Floor area ratio: Conditioned space / total ground area
        A1P021: Floor area ratio: Conditioned space / total ground area000010
        A1P022: Financial schemes
        A1P022a: Financing - PRIVATE - Real estateyesnonononono
        A1P022a: Add the value in EUR if available [EUR]
        A1P022b: Financing - PRIVATE - ESCO schemenononononono
        A1P022b: Add the value in EUR if available [EUR]
        A1P022c: Financing - PRIVATE - Othernononononono
        A1P022c: Add the value in EUR if available [EUR]
        A1P022d: Financing - PUBLIC - EU structural fundingnonoyesnonono
        A1P022d: Add the value in EUR if available [EUR]
        A1P022e: Financing - PUBLIC - National fundingnononoyesnono
        A1P022e: Add the value in EUR if available [EUR]
        A1P022f: Financing - PUBLIC - Regional fundingnononoyesnono
        A1P022f: Add the value in EUR if available [EUR]
        A1P022g: Financing - PUBLIC - Municipal fundingnononoyesnono
        A1P022g: Add the value in EUR if available [EUR]
        A1P022h: Financing - PUBLIC - Othernoyesnononono
        A1P022h: Add the value in EUR if available [EUR]
        A1P022i: Financing - RESEARCH FUNDING - EUyesnonoyesyesno
        A1P022i: Add the value in EUR if available [EUR]7500000
        A1P022j: Financing - RESEARCH FUNDING - Nationalnononononono
        A1P022j: Add the value in EUR if available [EUR]
        A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononono
        A1P022k: Add the value in EUR if available [EUR]
        A1P022l: Financing - RESEARCH FUNDING - Othernononononono
        A1P022l: Add the value in EUR if available [EUR]
        A1P022: Other
        A1P023: Economic Targets
        A1P023: Economic Targets
        • Boosting local and sustainable production
        • Job creation,
        • Positive externalities
        • Boosting local businesses,
        • Boosting local and sustainable production
        • Positive externalities,
        • Boosting local businesses,
        • Boosting consumption of local and sustainable products
        A1P023: OtherBoosting sustainability for public schools
        A1P024: More comments:
        A1P024: More comments:
        A1P025: Estimated PED case study / PED LAB costs
        A1P025: Estimated PED case study / PED LAB costs [mil. EUR]3.5
        Contact person for general enquiries
        A1P026: NameMarkus OlofsgårdJose Lopez VicarioChristoph GollnerTudor DrâmbăreanJudith StiekemaJingchun Shen
        A1P027: OrganizationAFRYUniversitat Autonoma Barcelona (UAB)FFGMunicipality of Alba IuliaOASCHögskolan Dalarna
        A1P028: AffiliationOtherResearch Center / UniversityOtherMunicipality / Public BodiesOtherResearch Center / University
        A1P028: OtherMaria Elena Seemannnot for profit private organisation
        A1P029: Emailmarkus.olofsgard@afry.comjose.vicario@uab.catchristoph.gollner@ffg.attudor.drambarean@apulum.rojudith@oascities.orgjih@du.se
        Contact person for other special topics
        A1P030: NameMaria-Elena SeemannXingxing Zhang
        A1P031: Emailmaria.seemann@apulum.roxza@du.se
        Pursuant to the General Data Protection RegulationYesYesYesYesYesYes
        A2P001: Fields of application
        A2P001: Fields of application
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies
        • Energy efficiency,
        • Energy flexibility,
        • Digital technologies
        • Energy efficiency,
        • Energy production
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies,
        • Water use,
        • Construction materials
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Construction materials
        A2P001: Other
        A2P002: Tools/strategies/methods applied for each of the above-selected fields
        A2P002: Tools/strategies/methods applied for each of the above-selected fieldslink based regulation of electricity gridThermal rehabilitation of the main building, and investments in the energy efficiency and consumption fields.A suite of replicable modeling tools will enable stakeholders to analyze planning actions towards positive energy in a cost-effective fashion, aiding their evidence based decision-making process. The tools will be able to model the district’s energy production and demand, optimize for flexibility and simulate mobility and transport. By employing gamification and co-creation approaches, the project will enhance public awareness and engagement in energy efficiency. The project will culminate in the publication of practical guidelines, reusable models, algorithms, and training materials to aid other cities to replicate the digital twin for their districts, fostering widespread adoption of sustainable energy practices.Load calculation and system optimisation: City Energy Analyst Identification of stranded assets for asset owners and investors to understand the carbon risks: CRREM
        A2P003: Application of ISO52000
        A2P003: Application of ISO52000NoYesNoNo
        A2P004: Appliances included in the calculation of the energy balance
        A2P004: Appliances included in the calculation of the energy balanceNoYesYesYes
        A2P005: Mobility included in the calculation of the energy balance
        A2P005: Mobility included in the calculation of the energy balanceYesNoYesNo
        A2P006: Description of how mobility is included (or not included) in the calculation
        A2P006: Description of how mobility is included (or not included) in the calculationThere will be 1 EV station placed nearby the main building. This would be the link to the mobility field.The university operates a fleet of 13 electric vehicles (EV) (61kW power each). There are 5 EV charging stations on campus.
        A2P007: Annual energy demand in buildings / Thermal demand
        A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]80000.6777
        A2P008: Annual energy demand in buildings / Electric Demand
        A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]50000.03656
        A2P009: Annual energy demand for e-mobility
        A2P009: Annual energy demand for e-mobility [GWh/annum]0
        A2P010: Annual energy demand for urban infrastructure
        A2P010: Annual energy demand for urban infrastructure [GWh/annum]0
        A2P011: Annual renewable electricity production on-site during target year
        A2P011: PVyesnonoyesnono
        A2P011: PV - specify production in GWh/annum [GWh/annum]
        A2P011: Windnonononoyesno
        A2P011: Wind - specify production in GWh/annum [GWh/annum]
        A2P011: Hydronononononono
        A2P011: Hydro - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_elnononononono
        A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_peat_elnononononono
        A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
        A2P011: PVT_elnonononoyesyes
        A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.01818
        A2P011: Othernononononono
        A2P011: Other - specify production in GWh/annum [GWh/annum]
        A2P012: Annual renewable thermal production on-site during target year
        A2P012: Geothermalyesnonononono
        A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Solar Thermalnononononono
        A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_heatnonononoyesno
        A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: Waste heat+HPnononononono
        A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_peat_heatnononononono
        A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: PVT_thnononononoyes
        A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]0.0825
        A2P012: Biomass_firewood_thnononononono
        A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Othernononoyesnono
        A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
        A2P013: Renewable resources on-site - Additional notes
        A2P013: Renewable resources on-site - Additional notesConventional power generation: The university’s heat supply is designed as a local centralized heat supply system. Electrical power, generated in combined heat and power (CHP) units, is delivered to the distribution network and sold to energy traders as regulated by local legislation and norms. There are two natural gas burners acting as heat sources (3MW and 6MW capacity), and two CHP units (1.6MW and 0.45MW thermal capacity). All heating is supplied from the CHP plants. Renewable Energy Sources (RES): a wind turbine (3.6 kW) and PV panels (11.7 kW) are connected to the faculty microgrid. In the future it is planned to power the campus entirely from local RES.
        A2P014: Annual energy use
        A2P014: Annual energy use [GWh/annum]0.318
        A2P015: Annual energy delivered
        A2P015: Annual energy delivered [GWh/annum]0.2055
        A2P016: Annual non-renewable electricity production on-site during target year
        A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]0
        A2P017: Annual non-renewable thermal production on-site during target year
        A2P017: Gasnonononoyesno
        A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Coalnononononono
        A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Oilnononononono
        A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Othernononononoyes
        A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]0
        A2P018: Annual renewable electricity imports from outside the boundary during target year
        A2P018: PVnononononono
        A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
        A2P018: Windnononononono
        A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
        A2P018: Hydronononononono
        A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_elnononononono
        A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_peat_elnononononono
        A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: PVT_elnononononono
        A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Othernononoyesnoyes
        A2P018 - Other: specify production in GWh/annum if available [GWh/annum]0.187
        A2P019: Annual renewable thermal imports from outside the boundary during target year
        A2P019: Geothermalnononononono
        A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Solar Thermalnononononono
        A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_heatnononononono
        A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Waste heat+HPnononononono
        A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_peat_heatnononononono
        A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: PVT_thnononononono
        A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_firewood_thnononononono
        A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Othernononoyesnoyes
        A2P019 Other: Please specify imports in GWh/annum [GWh/annum]0
        A2P020: Share of RES on-site / RES outside the boundary
        A2P020: Share of RES on-site / RES outside the boundary000000.53839572192513
        A2P021: GHG-balance calculated for the PED
        A2P021: GHG-balance calculated for the PED [tCO2/annum]6.93
        A2P022: KPIs related to the PED case study / PED Lab
        A2P022: Safety & Securityyesnone
        A2P022: Healthyesthermal comfort diagram
        A2P022: Educationyesnone
        A2P022: Mobilityyesnone
        A2P022: EnergyYesyesnormalized CO2/GHG & Energy intensity
        A2P022: Wateryes
        A2P022: Economic developmentyescost of excess emissions
        A2P022: Housing and Community
        A2P022: Waste
        A2P022: Other
        A2P023: Technological Solutions / Innovations - Energy Generation
        A2P023: Photovoltaicsyesyesnoyesnoyes
        A2P023: Solar thermal collectorsnonoyesyesnoyes
        A2P023: Wind Turbinesnononononono
        A2P023: Geothermal energy systemnonoyesnonoyes
        A2P023: Waste heat recoverynononononoyes
        A2P023: Waste to energynononononono
        A2P023: Polygenerationnononoyesnono
        A2P023: Co-generationnononoyesnono
        A2P023: Heat Pumpnononoyesnoyes
        A2P023: Hydrogennononononono
        A2P023: Hydropower plantnononononono
        A2P023: Biomassnononononono
        A2P023: Biogasnononononono
        A2P023: Other
        A2P024: Technological Solutions / Innovations - Energy Flexibility
        A2P024: A2P024: Information and Communication Technologies (ICT)yesyesnoyesyesyes
        A2P024: Energy management systemnoyesnoyesyesno
        A2P024: Demand-side managementyesyesnoyesyesno
        A2P024: Smart electricity gridyesnonoyesyesno
        A2P024: Thermal Storagenonononoyesyes
        A2P024: Electric Storagenononoyesyesno
        A2P024: District Heating and Coolingnonoyesnoyesyes
        A2P024: Smart metering and demand-responsive control systemsyesnonoyesyesno
        A2P024: P2P – buildingsnononoyesnono
        A2P024: Other
        A2P025: Technological Solutions / Innovations - Energy Efficiency
        A2P025: Deep Retrofittingnoyesnoyesnoyes
        A2P025: Energy efficiency measures in historic buildingsnononononono
        A2P025: High-performance new buildingsnononononono
        A2P025: Smart Public infrastructure (e.g. smart lighting)nononoyesnono
        A2P025: Urban data platformsnononoyesyesno
        A2P025: Mobile applications for citizensnonononoyesno
        A2P025: Building services (HVAC & Lighting)nononoyesyesyes
        A2P025: Smart irrigationnononononono
        A2P025: Digital tracking for waste disposalnononononono
        A2P025: Smart surveillancenononononono
        A2P025: Other
        A2P026: Technological Solutions / Innovations - Mobility
        A2P026: Efficiency of vehicles (public and/or private)nononoyesnono
        A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nononoyesnono
        A2P026: e-Mobilitynononoyesnono
        A2P026: Soft mobility infrastructures and last mile solutionsnononononono
        A2P026: Car-free areanononononono
        A2P026: Other
        A2P027: Mobility strategies - Additional notes
        A2P027: Mobility strategies - Additional notesThe new mobility plan integrates the PED area
        A2P028: Energy efficiency certificates
        A2P028: Energy efficiency certificatesNoYesNoNo
        A2P028: If yes, please specify and/or enter notes
        A2P029: Any other building / district certificates
        A2P029: Any other building / district certificatesNoYesNoNo
        A2P029: If yes, please specify and/or enter notes
        A3P001: Relevant city /national strategy
        A3P001: Relevant city /national strategy
        • Promotion of energy communities (REC/CEC)
        • Smart cities strategies,
        • Urban Renewal Strategies,
        • Energy master planning (SECAP, etc.),
        • New development strategies,
        • Promotion of energy communities (REC/CEC),
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Smart cities strategies,
        • Promotion of energy communities (REC/CEC),
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Promotion of energy communities (REC/CEC),
        • Climate change adaption plan/strategy (e.g. Climate City contract)
        A3P002: Quantitative targets included in the city / national strategy
        A3P002: Quantitative targets included in the city / national strategy40% reduction in emissions by 2030 according to the Convenant of MayorsThe study aligns closely with the decarbonisation and energy reduction pathways of residential multi family buildings with 1.5°C global warming target in Sweden. This study will also contribute to the achievement of the carbon neturality of whole Borlänge city by 2030.
        A3P003: Strategies towards decarbonization of the gas grid
        A3P003: Strategies towards decarbonization of the gas grid
        • Electrification of Heating System based on Heat Pumps
        A3P003: Other
        A3P004: Identification of needs and priorities
        A3P004: Identification of needs and prioritiesThermal rehabilitation Heat pumps Smart system capable o various connections and data export Usage of the energy produced by PVs placed on 3 buildings within the PEDIn our project, we carried out a comprehensive exploration of strategies to achieve positive energy districts in a Swedish residential portfolio. The focus on urban energy transitions necessitates a holistic approach that integrates building retrofit, solar technology exploration, and heating supply optimisation. Exploration of Local Solar Sources: The analysis reveals varying solar irradiance resources throughout the year, emphasizing the importance of strategic placement. Integration of combined photovoltaic and thermal panels into building envelopes demonstrates the potential to cover a significant portion of the energy demand even in Sweden. Heating Supply Optimisation with Solar Technologies: Despite the surplus energy production from on-site solar technology, challenges arise due to temporal energy asymmetry. The introduction of heat pumps emerges as a feasible solution to balance energy gaps, utilising both rejected and free heat. Optimisation scenarios, utilising a combination of geothermal heat pumps, water source heat pumps, and PVT, showcase remarkable reductions in emissions and primary energy consumption. Urban Form and Energy Infrastructure Design: We realised the importance of returning to urban form and energy infrastructure design to optimise future residential portfolio potential. Building layout design, influenced by zoning regulations and innovative typologies, plays a crucial role in achieving district level energy efficiency. Future challenges, including demographic shifts, e-mobility, and climate change, necessitate a more holistic approach to energy infrastructure design, addressing not only heating and electricity demands but also cooling requirements.
        A3P005: Sustainable behaviour
        A3P005: Sustainable behaviourEducation Replacement of the non-performant PVs Professional maintenance of the PV system Reduce of consumptions Intelligent systems to recover heat Intelligent system to permit the usage of domestic water from the heating systemWhile our investigation primarily centres on technical optimisation within Positive Energy District (PED) development, it is essential to acknowledge the broader scope encompassing social and governance dimensions. Specifically, understanding stakeholders' willingness to embrace technical recommendations upon project completion is important. Several potential influencing factors merit exploration, including economic considerations, technical optimisation-associated embodied carbon balance, the general public's technical perceptions, and operational feasibility. Evaluating these aspects holistically not only enhances the efficacy of PED initiatives but also fosters greater acceptance and participation within the communities they serve.
        A3P006: Economic strategies
        A3P006: Economic strategies
        • Local trading
        • Innovative business models
        • Open data business models,
        • Innovative business models,
        • Life Cycle Cost,
        • Circular economy models,
        • Demand management Living Lab
        • Open data business models,
        • Innovative business models,
        • Demand management Living Lab
        • Open data business models,
        • Life Cycle Cost,
        • Circular economy models,
        • Local trading
        A3P006: Other
        A3P007: Social models
        A3P007: Social models
        • Behavioural Change / End-users engagement,
        • Citizen/owner involvement in planning and maintenance
        • Digital Inclusion,
        • Citizen/owner involvement in planning and maintenance,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Citizen Social Research,
        • Policy Forums,
        • Social incentives,
        • Quality of Life,
        • Strategies towards social mix,
        • Affordability,
        • Prevention of energy poverty,
        • Digital Inclusion,
        • Citizen/owner involvement in planning and maintenance,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies
        • Strategies towards (local) community-building,
        • Behavioural Change / End-users engagement,
        • Social incentives,
        • Affordability,
        • Digital Inclusion
        A3P007: Other
        A3P008: Integrated urban strategies
        A3P008: Integrated urban strategies
        • Strategic urban planning
        • District Energy plans
        • Strategic urban planning,
        • District Energy plans,
        • City Vision 2050,
        • SECAP Updates,
        • Building / district Certification
        • Digital twinning and visual 3D models
        • Strategic urban planning,
        • Digital twinning and visual 3D models,
        • District Energy plans,
        • Building / district Certification
        A3P008: Other
        A3P009: Environmental strategies
        A3P009: Environmental strategies
        • Energy Neutral,
        • Carbon-free
        • Energy Neutral,
        • Carbon-free
        • Energy Neutral,
        • Low Emission Zone,
        • Net zero carbon footprint,
        • Carbon-free,
        • Life Cycle approach,
        • Pollutants Reduction,
        • Greening strategies,
        • Sustainable Urban drainage systems (SUDS),
        • Cool Materials,
        • Nature Based Solutions (NBS)
        • Energy Neutral
        • Low Emission Zone,
        • Net zero carbon footprint,
        • Life Cycle approach,
        • Sustainable Urban drainage systems (SUDS)
        A3P009: Other
        A3P010: Legal / Regulatory aspects
        A3P010: Legal / Regulatory aspects
        B1P001: PED/PED relevant concept definition
        B1P001: PED/PED relevant concept definitionPositive energy districtExPEDite aims at creating and deploying a novel digital twin, allowing for real-time monitoring, visualization and management of district-level energy flows. Cities consume 65% of the world’s energy supply and are responsible for 70% of the CO² emissions, hence sharing a lot of the responsibility for climate change. We are faced with the challenge of redesigning our existing cities to make them more sustainable, resilient, inclusive and safe. Developing Positive Energy Districts (PEDs), is a breakthrough way to deal with the issue of urban emissions and applying adaptation and mitigation strategies to climate change, while ensuring that these urban areas generate an annual surplus of renewable energy and net zero greenhouse gas emissions. PEDs must address environmental, economic and social issues, providing solutions to energy consumption, production, emissions, transport & mobility and livability. By constantly monitoring and evaluating parameters through existing and/or novel sensor systems (e.g., renewable energy production/supply, transport conditions, air quality, energy demand, meteorological conditions, etc.), unconventional techniques may be applied to provide more sustainable options for the district’s needs.The Rymdgatan's Residential Portfolio in Sweden presents a compelling case study for its classification as a PED-related research, given its alignment with sustainable behaviours and overarching PED development principles as follows: Inclusivity and Social Equity: The residential portfolio situated in Rymdgatan caters primarily to a low-income community. By focusing on this demographic, the project addresses critical aspects of social equity within sustainable urban development. Ensuring access to energy-efficient housing and amenities for economically disadvantaged populations not only fosters social cohesion but also mitigates energy poverty, a pressing concern in many urban contexts. Multifamily Residential Building: The inclusion of multifamily residential buildings within the portfolio underscores a commitment to density and efficient land use, both essential components of sustainable urban design. Such developments promote resource optimisation by consolidating housing units, thereby reducing per capita energy consumption and infrastructure demands. Moreover, multifamily dwellings often facilitate community engagement and shared resource management, fostering a culture of sustainability among residents. Low Carbon Retrofitting and Transition: The overarching initiative to transition the entire Jakobsgårdarna district. The included Rymdgatan portfolio, towards low carbon retrofitting, represents a significant example of decarbonization and climate resilience. By integrating energy-efficient technologies and renewable energy solutions into existing infrastructure, the project not only reduces carbon emissions but also serves as a blueprint for revitalising old urban environments sustainably. This holistic approach to retrofitting demonstrates a systemic commitment to environmental stewardship and long-term sustainability. Climate Adaptation and Renewable Energy Integration: Despite Sweden's climatic challenges, including lower solar resources during winter months, the Rymdgatan project leverages its geographical context to optimize renewable energy utilization. Sweden's greater solar resource availability during summer and geothermal potentials complement the design's emphasis on seasonal energy planning, where surplus energy generated during peak periods can be stored or redistributed efficiently. By embracing climate-responsive design strategies, the project demonstrates resilience in the face of climate variability while harnessing renewable energy potential effectively.
        B1P002: Motivation behind PED/PED relevant project development
        B1P002: Motivation behind PED/PED relevant project developmentCreation of an area which aims to be sustainable in terms of energy sufficiency and efficiency.Expected outcome 1 Increased number of (tangible) city planning actions for positive clean energy districts using the (proto-)PED design, development and management digital twin tools (based on pre-market research learnings) using open-standards based components which can be reused elsewhere. 2 Increased integration of existing smaller scale management systems (e.g. Building management systems) with open-standards based operational city platforms using sectorial data (e.g. building data, mobility, urban planning, etc.). 3 Enhanced data gathering approaches with identification of relevant multidimensional data sets (e.g. meteorological, load profile, social, geo-spatial, etc.) high-resolution real-time data streams (e.g. renewable energy production, energy consumption), and relevant forecasting data, drawing also on the work of common European data spaces. 4 Increased number of city planning departments / approaches using common data and (replicable) elements and processes. 5 Consolidated city sensor network specifications, complemented by appropriate data gathering approaches for soft data. 6 Improved performance of AI based self-learning systems for optimization of positive clean energy districts and bottom-up complex models. 7 Enhanced innovation capacity of local/regional administrations and accelerated uptake of shared, smart and sustainable zero emission solutions.Borlänge city has committed to become the carbon-neutral city by 2030.
        B1P003: Environment of the case study area
        B2P003: Environment of the case study areaSuburban areaUrban areaUrban areaUrban areaUrban area
        B1P004: Type of district
        B2P004: Type of district
        • New construction
        • New construction
        • Renovation
        • Renovation
        B1P005: Case Study Context
        B1P005: Case Study Context
        • New Development
        • New Development
        • Retrofitting Area
        • Re-use / Transformation Area,
        • Retrofitting Area
        B1P006: Year of construction
        B1P006: Year of construction1990
        B1P007: District population before intervention - Residential
        B1P007: District population before intervention - Residential100
        B1P008: District population after intervention - Residential
        B1P008: District population after intervention - Residential100
        B1P009: District population before intervention - Non-residential
        B1P009: District population before intervention - Non-residential6
        B1P010: District population after intervention - Non-residential
        B1P010: District population after intervention - Non-residential6
        B1P011: Population density before intervention
        B1P011: Population density before intervention00000
        B1P012: Population density after intervention
        B1P012: Population density after intervention00000.010658622423328
        B1P013: Building and Land Use before intervention
        B1P013: Residentialnononononoyes
        B1P013 - Residential: Specify the sqm [m²]4360
        B1P013: Officenononononono
        B1P013 - Office: Specify the sqm [m²]
        B1P013: Industry and Utilitynononononono
        B1P013 - Industry and Utility: Specify the sqm [m²]
        B1P013: Commercialnononononono
        B1P013 - Commercial: Specify the sqm [m²]
        B1P013: Institutionalnononoyesnono
        B1P013 - Institutional: Specify the sqm [m²]
        B1P013: Natural areasyesnonononono
        B1P013 - Natural areas: Specify the sqm [m²]
        B1P013: Recreationalnononononono
        B1P013 - Recreational: Specify the sqm [m²]
        B1P013: Dismissed areasnononononono
        B1P013 - Dismissed areas: Specify the sqm [m²]
        B1P013: Othernononononoyes
        B1P013 - Other: Specify the sqm [m²]706
        B1P014: Building and Land Use after intervention
        B1P014: Residentialnononononoyes
        B1P014 - Residential: Specify the sqm [m²]4360
        B1P014: Officenononononono
        B1P014 - Office: Specify the sqm [m²]
        B1P014: Industry and Utilitynononononono
        B1P014 - Industry and Utility: Specify the sqm [m²]
        B1P014: Commercialnononononono
        B1P014 - Commercial: Specify the sqm [m²]
        B1P014: Institutionalnononoyesnono
        B1P014 - Institutional: Specify the sqm [m²]
        B1P014: Natural areasnononononono
        B1P014 - Natural areas: Specify the sqm [m²]
        B1P014: Recreationalnononononono
        B1P014 - Recreational: Specify the sqm [m²]
        B1P014: Dismissed areasnononononono
        B1P014 - Dismissed areas: Specify the sqm [m²]
        B1P014: Othernononononoyes
        B1P014 - Other: Specify the sqm [m²]706
        B2P001: PED Lab concept definition
        B2P001: PED Lab concept definition
        B2P002: Installation life time
        B2P002: Installation life time
        B2P003: Scale of action
        B2P003: Scale
        B2P004: Operator of the installation
        B2P004: Operator of the installation
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P006: Circular Economy Approach
        B2P006: Do you apply any strategy to reuse and recycling the materials?
        B2P006: Other
        B2P007: Motivation for developing the PED Lab
        B2P007: Motivation for developing the PED Lab
        B2P007: Other
        B2P008: Lead partner that manages the PED Lab
        B2P008: Lead partner that manages the PED Lab
        B2P008: Other
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Other
        B2P010: Synergies between the fields of activities
        B2P010: Synergies between the fields of activities
        B2P011: Available facilities to test urban configurations in PED Lab
        B2P011: Available facilities to test urban configurations in PED Lab
        B2P011: Other
        B2P012: Incubation capacities of PED Lab
        B2P012: Incubation capacities of PED Lab
        B2P013: Availability of the facilities for external people
        B2P013: Availability of the facilities for external people
        B2P014: Monitoring measures
        B2P014: Monitoring measures
        B2P015: Key Performance indicators
        B2P015: Key Performance indicators
        B2P016: Execution of operations
        B2P016: Execution of operations
        B2P017: Capacities
        B2P017: Capacities
        B2P018: Relations with stakeholders
        B2P018: Relations with stakeholders
        B2P019: Available tools
        B2P019: Available tools
        B2P019: Available tools
        B2P020: External accessibility
        B2P020: External accessibility
        C1P001: Unlocking Factors
        C1P001: Recent technological improvements for on-site RES production3 - Moderately important4 - Important1 - Unimportant1 - Unimportant5 - Very important4 - Important
        C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important
        C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important4 - Important1 - Unimportant5 - Very important5 - Very important3 - Moderately important
        C1P001: Storage systems and E-mobility market penetration5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important3 - Moderately important
        C1P001: Decreasing costs of innovative materials1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important
        C1P001: Financial mechanisms to reduce costs and maximize benefits3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important5 - Very important
        C1P001: The ability to predict Multiple Benefits2 - Slightly important2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important4 - Important
        C1P001: The ability to predict the distribution of benefits and impacts4 - Important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important4 - Important
        C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)4 - Important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important5 - Very important
        C1P001: Social acceptance (top-down)4 - Important4 - Important1 - Unimportant3 - Moderately important4 - Important5 - Very important
        C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)4 - Important4 - Important1 - Unimportant2 - Slightly important5 - Very important4 - Important
        C1P001: Presence of integrated urban strategies and plans5 - Very important3 - Moderately important1 - Unimportant5 - Very important4 - Important5 - Very important
        C1P001: Multidisciplinary approaches available for systemic integration4 - Important4 - Important1 - Unimportant2 - Slightly important5 - Very important5 - Very important
        C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects1 - Unimportant5 - Very important1 - Unimportant5 - Very important5 - Very important4 - Important
        C1P001: Availability of RES on site (Local RES)5 - Very important5 - Very important1 - Unimportant5 - Very important4 - Important5 - Very important
        C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders3 - Moderately important4 - Important1 - Unimportant5 - Very important4 - Important2 - Slightly important
        C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
        C1P001: Any other UNLOCKING FACTORS (if any)
        C1P002: Driving Factors
        C1P002: Climate Change adaptation need3 - Moderately important4 - Important1 - Unimportant5 - Very important5 - Very important5 - Very important
        C1P002: Climate Change mitigation need (local RES production and efficiency)3 - Moderately important4 - Important1 - Unimportant5 - Very important4 - Important5 - Very important
        C1P002: Rapid urbanization trend and need of urban expansions2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important4 - Important3 - Moderately important
        C1P002: Urban re-development of existing built environment1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important4 - Important4 - Important
        C1P002: Economic growth need1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important4 - Important4 - Important
        C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)1 - Unimportant5 - Very important1 - Unimportant5 - Very important4 - Important1 - Unimportant
        C1P002: Territorial and market attractiveness1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
        C1P002: Energy autonomy/independence2 - Slightly important5 - Very important1 - Unimportant5 - Very important4 - Important2 - Slightly important
        C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
        C1P002: Any other DRIVING FACTOR (if any)
        C1P003: Administrative barriers
        C1P003: Difficulty in the coordination of high number of partners and authorities1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important4 - Important4 - Important
        C1P003: Lack of good cooperation and acceptance among partners1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant4 - Important4 - Important
        C1P003: Lack of public participation1 - Unimportant4 - Important1 - Unimportant3 - Moderately important4 - Important3 - Moderately important
        C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important4 - Important1 - Unimportant4 - Important3 - Moderately important4 - Important
        C1P003:Long and complex procedures for authorization of project activities1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important5 - Very important
        C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy1 - Unimportant4 - Important1 - Unimportant5 - Very important3 - Moderately important4 - Important
        C1P003: Complicated and non-comprehensive public procurement1 - Unimportant4 - Important1 - Unimportant4 - Important3 - Moderately important5 - Very important
        C1P003: Fragmented and or complex ownership structure1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
        C1P003: City administration & cross-sectoral attitude/approaches (silos)1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important3 - Moderately important5 - Very important
        C1P003: Lack of internal capacities to support energy transition1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important5 - Very important
        C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
        C1P003: Any other Administrative BARRIER (if any)
        C1P004: Policy barriers
        C1P004: Lack of long-term and consistent energy plans and policies4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant5 - Very important
        C1P004: Lack of Cooperation & support between national-regional-local entities1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important
        C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P004: Any other Political BARRIER (if any)
        C1P005: Legal and Regulatory barriers
        C1P005: Inadequate regulations for new technologies1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant4 - Important4 - Important
        C1P005: Regulatory instability1 - Unimportant2 - Slightly important1 - Unimportant4 - Important3 - Moderately important2 - Slightly important
        C1P005: Non-effective regulations1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important3 - Moderately important2 - Slightly important
        C1P005: Unfavorable local regulations for innovative technologies1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant4 - Important4 - Important
        C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important
        C1P005: Insufficient or insecure financial incentives3 - Moderately important2 - Slightly important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important
        C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation1 - Unimportant2 - Slightly important1 - Unimportant4 - Important3 - Moderately important2 - Slightly important
        C1P005: Shortage of proven and tested solutions and examples1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important4 - Important
        C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER (if any)
        C1P006: Environmental barriers
        C1P006: Environmental barriers2 - Slightly important
        C1P007: Technical barriers
        C1P007: Lack of skilled and trained personnel1 - Unimportant2 - Slightly important1 - Unimportant4 - Important4 - Important4 - Important
        C1P007: Deficient planning3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important4 - Important4 - Important
        C1P007: Retrofitting work in dwellings in occupied state1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important
        C1P007: Lack of well-defined process1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important4 - Important2 - Slightly important
        C1P007: Inaccuracy in energy modelling and simulation5 - Very important2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important
        C1P007: Lack/cost of computational scalability1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important
        C1P007: Grid congestion, grid instability1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important4 - Important5 - Very important
        C1P007: Negative effects of project intervention on the natural environment1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important
        C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant
        C1P007: Difficult definition of system boundaries1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
        C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
        C1P007: Any other Thecnical BARRIER (if any)
        C1P008: Social and Cultural barriers
        C1P008: Inertia1 - Unimportant3 - Moderately important1 - Unimportant4 - Important3 - Moderately important2 - Slightly important
        C1P008: Lack of values and interest in energy optimization measurements1 - Unimportant5 - Very important1 - Unimportant4 - Important3 - Moderately important5 - Very important
        C1P008: Low acceptance of new projects and technologies1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important5 - Very important
        C1P008: Difficulty of finding and engaging relevant actors4 - Important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important4 - Important
        C1P008: Lack of trust beyond social network1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important5 - Very important
        C1P008: Rebound effect1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important3 - Moderately important4 - Important
        C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
        C1P008: Exclusion of socially disadvantaged groups1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
        C1P008: Non-energy issues are more important and urgent for actors1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
        C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
        C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
        C1P008: Any other Social BARRIER (if any)
        C1P009: Information and Awareness barriers
        C1P009: Insufficient information on the part of potential users and consumers5 - Very important2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important
        C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important
        C1P009: Lack of awareness among authorities3 - Moderately important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
        C1P009: Information asymmetry causing power asymmetry of established actors2 - Slightly important2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important5 - Very important
        C1P009: High costs of design, material, construction, and installation1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important3 - Moderately important5 - Very important
        C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
        C1P009: Any other Information and Awareness BARRIER (if any)
        C1P010: Financial barriers
        C1P010: Hidden costs1 - Unimportant2 - Slightly important1 - Unimportant4 - Important4 - Important5 - Very important
        C1P010: Insufficient external financial support and funding for project activities1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important3 - Moderately important5 - Very important
        C1P010: Economic crisis1 - Unimportant3 - Moderately important1 - Unimportant4 - Important3 - Moderately important5 - Very important
        C1P010: Risk and uncertainty2 - Slightly important4 - Important1 - Unimportant2 - Slightly important3 - Moderately important5 - Very important
        C1P010: Lack of consolidated and tested business models4 - Important4 - Important1 - Unimportant4 - Important3 - Moderately important5 - Very important
        C1P010: Limited access to capital and cost disincentives1 - Unimportant3 - Moderately important1 - Unimportant4 - Important3 - Moderately important5 - Very important
        C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
        C1P010: Any other Financial BARRIER (if any)
        C1P011: Market barriers
        C1P011: Split incentives1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
        C1P011: Energy price distortion1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important4 - Important
        C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important
        C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
        C1P011: Any other Market BARRIER (if any)
        C1P012: Stakeholders involved
        C1P012: Government/Public Authorities
        • Design/demand aggregation
        • Planning/leading
        • Planning/leading
        • Monitoring/operation/management
        C1P012: Research & Innovation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading
        C1P012: Financial/Funding
        • Planning/leading,
        • Design/demand aggregation,
        • Monitoring/operation/management
        • None
        C1P012: Analyst, ICT and Big Data
        • Monitoring/operation/management
        • Planning/leading,
        • Monitoring/operation/management
        • None
        C1P012: Business process management
        • Design/demand aggregation
        • Monitoring/operation/management
        • None
        C1P012: Urban Services providers
        • Design/demand aggregation
        • Planning/leading,
        • Monitoring/operation/management
        • None
        C1P012: Real Estate developers
        • Construction/implementation
        • Construction/implementation
        • Design/demand aggregation
        C1P012: Design/Construction companies
        • Design/demand aggregation
        • Construction/implementation
        • None
        C1P012: End‐users/Occupants/Energy Citizens
        • Monitoring/operation/management
        • Design/demand aggregation
        • Monitoring/operation/management
        C1P012: Social/Civil Society/NGOs
        • Design/demand aggregation
        • Design/demand aggregation
        • Monitoring/operation/management
        C1P012: Industry/SME/eCommerce
        • Construction/implementation
        • Construction/implementation
        • None
        C1P012: Other
        C1P012: Other (if any)
        Summary

        Authors (framework concept)

        Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

        Contributors (to the content)

        Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

        Implemented by

        Boutik.pt: Filipe Martins, Jamal Khan
        Marek Suchánek (Czech Technical University in Prague)