Filters:
NameProjectTypeCompare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Compare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Compare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Uncompare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Uncompare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
Lecce, SmartEnCity SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
Firenze, Novoli-Cascine district on “le PIagge” buildings PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Uncompare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Uncompare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleHalmstad, Fyllinge
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab
Aveiro, Aradas district
Barcelona, SEILAB & Energy SmartLab
Furuset project, Oslo
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabHalmstad, FyllingeBucharest, The Bucharest University of Economic Studies (ASE) PED LabAveiro, Aradas districtBarcelona, SEILAB & Energy SmartLabFuruset project, Oslo
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynonononoyes
PED relevant case studyyesnoyesnono
PED Lab.noyesnoyesno
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesyesnoyes
Annual energy surplusnonononono
Energy communityyesnoyesyesno
Circularitynonononono
Air quality and urban comfortnonononono
Electrificationnonoyesyesno
Net-zero energy costnonononono
Net-zero emissionnononoyesyes
Self-sufficiency (energy autonomous)nononoyesno
Maximise self-sufficiencynonononono
Othernoyesnoyesyes
Other (A1P004)Smart BuildingsGreen ITEnergy efficient; Sustainable neighbourhood; Social aspects/affordability
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhasePlanning PhasePlanning PhaseIn operationIn operation
A1P006: Start Date
A1P006: Start date01/2103/2512/2301/2011
A1P007: End Date
A1P007: End date01/3012/2711/2602/2013
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • General statistical datasets
  • General statistical datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
        A1P011: Geographic coordinates
        X Coordinate (longitude):12.9205426.09739432591498-8.65952.110.896711
        Y Coordinate (latitude):56.6519444.4472496751992940.635341.359.941823
        A1P012: Country
        A1P012: CountrySwedenRomaniaPortugalSpainNorway
        A1P013: City
        A1P013: CityHalmstadBucharestAlveiro (Aradas)Barcelona and TarragonaOslo
        A1P014: Climate Zone (Köppen Geiger classification)
        A1P014: Climate Zone (Köppen Geiger classification).DwbCsaCsbCsaCfb
        A1P015: District boundary
        A1P015: District boundaryGeographicGeographicGeographicVirtual
        Other
        A1P016: Ownership of the case study/PED Lab
        A1P016: Ownership of the case study/PED Lab:MixedPublicPublicPublicMixed
        A1P017: Ownership of the land / physical infrastructure
        A1P017: Ownership of the land / physical infrastructure:Multiple OwnersSingle OwnerMultiple OwnersSingle OwnerMultiple Owners
        A1P018: Number of buildings in PED
        A1P018: Number of buildings in PED2500
        A1P019: Conditioned space
        A1P019: Conditioned space [m²]
        A1P020: Total ground area
        A1P020: Total ground area [m²]4858930000870000
        A1P021: Floor area ratio: Conditioned space / total ground area
        A1P021: Floor area ratio: Conditioned space / total ground area00000
        A1P022: Financial schemes
        A1P022a: Financing - PRIVATE - Real estateyesnononono
        A1P022a: Add the value in EUR if available [EUR]
        A1P022b: Financing - PRIVATE - ESCO schemenonononono
        A1P022b: Add the value in EUR if available [EUR]
        A1P022c: Financing - PRIVATE - Othernonononono
        A1P022c: Add the value in EUR if available [EUR]
        A1P022d: Financing - PUBLIC - EU structural fundingnonononono
        A1P022d: Add the value in EUR if available [EUR]
        A1P022e: Financing - PUBLIC - National fundingnonoyesnono
        A1P022e: Add the value in EUR if available [EUR]
        A1P022f: Financing - PUBLIC - Regional fundingnonononono
        A1P022f: Add the value in EUR if available [EUR]
        A1P022g: Financing - PUBLIC - Municipal fundingnonononono
        A1P022g: Add the value in EUR if available [EUR]
        A1P022h: Financing - PUBLIC - Othernoyesnonono
        A1P022h: Add the value in EUR if available [EUR]
        A1P022i: Financing - RESEARCH FUNDING - EUyesnononono
        A1P022i: Add the value in EUR if available [EUR]
        A1P022j: Financing - RESEARCH FUNDING - Nationalnonononono
        A1P022j: Add the value in EUR if available [EUR]
        A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononono
        A1P022k: Add the value in EUR if available [EUR]
        A1P022l: Financing - RESEARCH FUNDING - Othernonononono
        A1P022l: Add the value in EUR if available [EUR]
        A1P022: Other
        A1P023: Economic Targets
        A1P023: Economic Targets
        • Boosting local and sustainable production
        • Job creation,
        • Boosting local and sustainable production
        A1P023: Other
        A1P024: More comments:
        A1P024: More comments:Semi-Virtual Energy Integration Laboratory (SEILAB) The Energy Smart Lab is an infrastructure conceived as a flexible and versatile platform for innovative technological developments for both industry and competitive R+D projects. The areas of expertise of this laboratory pivot around the following technologies: – Power Electronics for the integration and control of the elements within a building or community: Renewable Energy Sources (RES), Energy Storage Systems and Electric Vehicles (EV) – ICT Platform for smart communications and energy management of systems, building, networks and communities. – Energy System Integration technologies for smart and flexible buildings and grids including RES and EV. The laboratory operation is based on the hardware emulation approach, which allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation. The laboratory is pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.
        A1P025: Estimated PED case study / PED LAB costs
        A1P025: Estimated PED case study / PED LAB costs [mil. EUR]
        Contact person for general enquiries
        A1P026: NameMarkus OlofsgårdAdela BaraDr. Gonçalo Homem De Almeida Rodriguez CorreiaDr. Jaume Salom, Dra. Cristina CorcheroChristoph Gollner
        A1P027: OrganizationAFRYThe Bucharest University of Economic StudiesDelft University of TechnologyIRECFFG
        A1P028: AffiliationOtherResearch Center / UniversityResearch Center / UniversityResearch Center / UniversityOther
        A1P028: Other
        A1P029: Emailmarkus.olofsgard@afry.comBara.adela@ie.ase.rog.correia@tudelft.nlJsalom@irec.catchristoph.gollner@ffg.at
        Contact person for other special topics
        A1P030: NameQiaochu Fan
        A1P031: Emailq.fan-1@tudelft.nl
        Pursuant to the General Data Protection RegulationYesYesYesYesYes
        A2P001: Fields of application
        A2P001: Fields of application
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies
        • Energy efficiency,
        • Energy flexibility,
        • Digital technologies,
        • Indoor air quality
        • Energy efficiency,
        • Energy flexibility,
        • E-mobility,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies
        • Energy efficiency,
        • Energy flexibility,
        • Energy production
        A2P001: Other
        A2P002: Tools/strategies/methods applied for each of the above-selected fields
        A2P002: Tools/strategies/methods applied for each of the above-selected fieldslink based regulation of electricity gridEnergy SmartLab capacities - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. Energy SmartLab systems - SAFT Li-ion battery: maximum stored energy 20000 Wh, rated power 150 kW, rated discharge current 200 A, rated charge current 34 A, operating voltage 189 V – 227 V – 254 V, capacity 82 Ah. – Ultracapacitors: maximum stored energy 57 Wh, rated power 10 kW, rated current 20 A, peak current (<1s) 200 Apk, operating voltage 250 V – 500 V, capacity 1,65 F. – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah - 5 microgrid emulators (emulated power 5.5 kVA, max generation connected 10kVA, max consumption connected 10 kVA) - 1 grid emulator (Rated power: 200 kVA, Rated current per phase: 350 A, Rated current per neutral conductor: 35)
        A2P003: Application of ISO52000
        A2P003: Application of ISO52000No
        A2P004: Appliances included in the calculation of the energy balance
        A2P004: Appliances included in the calculation of the energy balanceNoYes
        A2P005: Mobility included in the calculation of the energy balance
        A2P005: Mobility included in the calculation of the energy balanceYesYes
        A2P006: Description of how mobility is included (or not included) in the calculation
        A2P006: Description of how mobility is included (or not included) in the calculation– Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah
        A2P007: Annual energy demand in buildings / Thermal demand
        A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]
        A2P008: Annual energy demand in buildings / Electric Demand
        A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]
        A2P009: Annual energy demand for e-mobility
        A2P009: Annual energy demand for e-mobility [GWh/annum]
        A2P010: Annual energy demand for urban infrastructure
        A2P010: Annual energy demand for urban infrastructure [GWh/annum]
        A2P011: Annual renewable electricity production on-site during target year
        A2P011: PVyesnonoyesno
        A2P011: PV - specify production in GWh/annum [GWh/annum]
        A2P011: Windnonononono
        A2P011: Wind - specify production in GWh/annum [GWh/annum]
        A2P011: Hydrononononono
        A2P011: Hydro - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_elnonononono
        A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_peat_elnonononono
        A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
        A2P011: PVT_elnonononono
        A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
        A2P011: Othernonononono
        A2P011: Other - specify production in GWh/annum [GWh/annum]
        A2P012: Annual renewable thermal production on-site during target year
        A2P012: Geothermalyesnononono
        A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Solar Thermalnonononono
        A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_heatnonononono
        A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: Waste heat+HPnonononono
        A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_peat_heatnonononono
        A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: PVT_thnonononono
        A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_firewood_thnonononono
        A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Othernonononono
        A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
        A2P013: Renewable resources on-site - Additional notes
        A2P013: Renewable resources on-site - Additional notes
        A2P014: Annual energy use
        A2P014: Annual energy use [GWh/annum]
        A2P015: Annual energy delivered
        A2P015: Annual energy delivered [GWh/annum]
        A2P016: Annual non-renewable electricity production on-site during target year
        A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]
        A2P017: Annual non-renewable thermal production on-site during target year
        A2P017: Gasnononoyesno
        A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Coalnonononono
        A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Oilnonononono
        A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Othernonononono
        A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P018: Annual renewable electricity imports from outside the boundary during target year
        A2P018: PVnonononono
        A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
        A2P018: Windnonononono
        A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
        A2P018: Hydrononononono
        A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_elnonononono
        A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_peat_elnonononono
        A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: PVT_elnonononono
        A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Othernonononono
        A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
        A2P019: Annual renewable thermal imports from outside the boundary during target year
        A2P019: Geothermalnonononono
        A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Solar Thermalnonononono
        A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_heatnonononono
        A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Waste heat+HPnonononono
        A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_peat_heatnonononono
        A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: PVT_thnonononono
        A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_firewood_thnonononono
        A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Othernonononono
        A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
        A2P020: Share of RES on-site / RES outside the boundary
        A2P020: Share of RES on-site / RES outside the boundary00000
        A2P021: GHG-balance calculated for the PED
        A2P021: GHG-balance calculated for the PED [tCO2/annum]
        A2P022: KPIs related to the PED case study / PED Lab
        A2P022: Safety & Security
        A2P022: Health
        A2P022: Education
        A2P022: MobilityImproved accessibility to V2G-related transport options, focusing on inclusivity and equitable adoption in urban districtsMode of transport; Access to public transport
        A2P022: EnergyYesTarget zero greenhouse gas emissions through the adoption of EVs with V2G capabilities, aiming to reduce reliance on fossil fuels and enhance local grid stabilityEnergy efficiency in buildings; Net energy need; Gross energy need; Total energy need
        A2P022: Water
        A2P022: Economic developmentDevelopment of viable business models for V2G that allow decentralized energy markets to integrate with the grid, enhancing local economic resilience
        A2P022: Housing and CommunityDelivery and proximity to amenities
        A2P022: Waste
        A2P022: OtherGHG emissions; Power/load; Life cycle cost (LCC); Demographic needs and consultation plan; Public Space
        A2P023: Technological Solutions / Innovations - Energy Generation
        A2P023: Photovoltaicsyesnoyesyesno
        A2P023: Solar thermal collectorsnonononono
        A2P023: Wind Turbinesnonoyesnono
        A2P023: Geothermal energy systemnonononono
        A2P023: Waste heat recoverynonononono
        A2P023: Waste to energynonononono
        A2P023: Polygenerationnonononono
        A2P023: Co-generationnonononono
        A2P023: Heat Pumpnonononono
        A2P023: Hydrogennonononono
        A2P023: Hydropower plantnonononono
        A2P023: Biomassnonononono
        A2P023: Biogasnonononono
        A2P023: OtherPhotovoltaics are considered for the next years
        A2P024: Technological Solutions / Innovations - Energy Flexibility
        A2P024: A2P024: Information and Communication Technologies (ICT)yesyesnoyesno
        A2P024: Energy management systemnoyesyesyesno
        A2P024: Demand-side managementyesyesyesnono
        A2P024: Smart electricity gridyesnoyesyesno
        A2P024: Thermal Storagenonononono
        A2P024: Electric Storagenonoyesyesno
        A2P024: District Heating and Coolingnonononono
        A2P024: Smart metering and demand-responsive control systemsyesnononono
        A2P024: P2P – buildingsnonononono
        A2P024: Other
        A2P025: Technological Solutions / Innovations - Energy Efficiency
        A2P025: Deep Retrofittingnoyesyesnono
        A2P025: Energy efficiency measures in historic buildingsnoyesnonono
        A2P025: High-performance new buildingsnonononono
        A2P025: Smart Public infrastructure (e.g. smart lighting)nonoyesnono
        A2P025: Urban data platformsnonoyesnono
        A2P025: Mobile applications for citizensnonononono
        A2P025: Building services (HVAC & Lighting)noyesnoyesno
        A2P025: Smart irrigationnonononono
        A2P025: Digital tracking for waste disposalnonononono
        A2P025: Smart surveillancenoyesnonono
        A2P025: Other
        A2P026: Technological Solutions / Innovations - Mobility
        A2P026: Efficiency of vehicles (public and/or private)nonoyesyesno
        A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nonoyesnono
        A2P026: e-Mobilitynonoyesnono
        A2P026: Soft mobility infrastructures and last mile solutionsnonononono
        A2P026: Car-free areanonononono
        A2P026: Other
        A2P027: Mobility strategies - Additional notes
        A2P027: Mobility strategies - Additional notes
        A2P028: Energy efficiency certificates
        A2P028: Energy efficiency certificatesNo
        A2P028: If yes, please specify and/or enter notes
        A2P029: Any other building / district certificates
        A2P029: Any other building / district certificatesNo
        A2P029: If yes, please specify and/or enter notes
        A3P001: Relevant city /national strategy
        A3P001: Relevant city /national strategy
        • Promotion of energy communities (REC/CEC)
        • Smart cities strategies,
        • New development strategies
        • Urban Renewal Strategies
        A3P002: Quantitative targets included in the city / national strategy
        A3P002: Quantitative targets included in the city / national strategy
        A3P003: Strategies towards decarbonization of the gas grid
        A3P003: Strategies towards decarbonization of the gas grid
        A3P003: Other
        A3P004: Identification of needs and priorities
        A3P004: Identification of needs and priorities-Allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation -Pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.
        A3P005: Sustainable behaviour
        A3P005: Sustainable behaviour-Improving the development of Net Zero Energy Buildings and Flexible Energy buildings.
        A3P006: Economic strategies
        A3P006: Economic strategies
        • Local trading
        • Innovative business models,
        • Demand management Living Lab
        • Innovative business models,
        • Local trading,
        • Existing incentives
        • Demand management Living Lab
        A3P006: Other
        A3P007: Social models
        A3P007: Social models
        • Behavioural Change / End-users engagement,
        • Citizen/owner involvement in planning and maintenance
        • Digital Inclusion,
        • Citizen/owner involvement in planning and maintenance,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Social incentives,
        • Prevention of energy poverty,
        • Digital Inclusion
        • Digital Inclusion,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        A3P007: Other
        A3P008: Integrated urban strategies
        A3P008: Integrated urban strategies
        • Strategic urban planning
        • Digital twinning and visual 3D models
        • Strategic urban planning,
        • District Energy plans
        A3P008: Other
        A3P009: Environmental strategies
        A3P009: Environmental strategies
        • Energy Neutral,
        • Carbon-free
        • Energy Neutral,
        • Low Emission Zone,
        • Nature Based Solutions (NBS)
        • Energy Neutral,
        • Low Emission Zone,
        • Pollutants Reduction,
        • Greening strategies
        • Energy Neutral
        A3P009: Other
        A3P010: Legal / Regulatory aspects
        A3P010: Legal / Regulatory aspects- European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.
        B1P001: PED/PED relevant concept definition
        B1P001: PED/PED relevant concept definition
        B1P002: Motivation behind PED/PED relevant project development
        B1P002: Motivation behind PED/PED relevant project development
        B1P003: Environment of the case study area
        B2P003: Environment of the case study areaSuburban area
        B1P004: Type of district
        B2P004: Type of district
        • New construction
        • New construction,
        • Renovation
        B1P005: Case Study Context
        B1P005: Case Study Context
        • New Development
        • New Development,
        • Retrofitting Area
        B1P006: Year of construction
        B1P006: Year of construction
        B1P007: District population before intervention - Residential
        B1P007: District population before intervention - Residential
        B1P008: District population after intervention - Residential
        B1P008: District population after intervention - Residential
        B1P009: District population before intervention - Non-residential
        B1P009: District population before intervention - Non-residential
        B1P010: District population after intervention - Non-residential
        B1P010: District population after intervention - Non-residential
        B1P011: Population density before intervention
        B1P011: Population density before intervention0000
        B1P012: Population density after intervention
        B1P012: Population density after intervention0000
        B1P013: Building and Land Use before intervention
        B1P013: Residentialnonononono
        B1P013 - Residential: Specify the sqm [m²]
        B1P013: Officenonononono
        B1P013 - Office: Specify the sqm [m²]
        B1P013: Industry and Utilitynonononono
        B1P013 - Industry and Utility: Specify the sqm [m²]
        B1P013: Commercialnonononono
        B1P013 - Commercial: Specify the sqm [m²]
        B1P013: Institutionalnonononono
        B1P013 - Institutional: Specify the sqm [m²]
        B1P013: Natural areasyesnononono
        B1P013 - Natural areas: Specify the sqm [m²]
        B1P013: Recreationalnonononono
        B1P013 - Recreational: Specify the sqm [m²]
        B1P013: Dismissed areasnonononono
        B1P013 - Dismissed areas: Specify the sqm [m²]
        B1P013: Othernonononono
        B1P013 - Other: Specify the sqm [m²]
        B1P014: Building and Land Use after intervention
        B1P014: Residentialnonononoyes
        B1P014 - Residential: Specify the sqm [m²]
        B1P014: Officenonononoyes
        B1P014 - Office: Specify the sqm [m²]
        B1P014: Industry and Utilitynonononoyes
        B1P014 - Industry and Utility: Specify the sqm [m²]
        B1P014: Commercialnonononono
        B1P014 - Commercial: Specify the sqm [m²]
        B1P014: Institutionalnonononono
        B1P014 - Institutional: Specify the sqm [m²]
        B1P014: Natural areasnonononono
        B1P014 - Natural areas: Specify the sqm [m²]
        B1P014: Recreationalnonononono
        B1P014 - Recreational: Specify the sqm [m²]
        B1P014: Dismissed areasnonononono
        B1P014 - Dismissed areas: Specify the sqm [m²]
        B1P014: Othernonononono
        B1P014 - Other: Specify the sqm [m²]
        B2P001: PED Lab concept definition
        B2P001: PED Lab concept definitionaddressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation
        B2P002: Installation life time
        B2P002: Installation life time
        B2P003: Scale of action
        B2P003: ScaleVirtual
        B2P004: Operator of the installation
        B2P004: Operator of the installationIREC
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P006: Circular Economy Approach
        B2P006: Do you apply any strategy to reuse and recycling the materials?No
        B2P006: Other
        B2P007: Motivation for developing the PED Lab
        B2P007: Motivation for developing the PED Lab
        • Strategic,
        • Private
        B2P007: Other
        B2P008: Lead partner that manages the PED Lab
        B2P008: Lead partner that manages the PED LabResearch center/University
        B2P008: Other
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Other
        B2P010: Synergies between the fields of activities
        B2P010: Synergies between the fields of activities
        B2P011: Available facilities to test urban configurations in PED Lab
        B2P011: Available facilities to test urban configurations in PED Lab
        • Demand-side management,
        • Energy storage,
        • Energy networks,
        • Efficiency measures,
        • Information and Communication Technologies (ICT)
        B2P011: Other
        B2P012: Incubation capacities of PED Lab
        B2P012: Incubation capacities of PED Lab
        • Monitoring and evaluation infrastructure,
        • Tools for prototyping and modelling,
        • Tools, spaces, events for testing and validation
        B2P013: Availability of the facilities for external people
        B2P013: Availability of the facilities for external people
        B2P014: Monitoring measures
        B2P014: Monitoring measures
        • Equipment
        B2P015: Key Performance indicators
        B2P015: Key Performance indicators
        • Energy,
        • Environmental
        B2P016: Execution of operations
        B2P016: Execution of operations
        B2P017: Capacities
        B2P017: Capacities- Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network.
        B2P018: Relations with stakeholders
        B2P018: Relations with stakeholders
        B2P019: Available tools
        B2P019: Available tools
        • Energy modelling
        B2P019: Available tools
        B2P020: External accessibility
        B2P020: External accessibility
        C1P001: Unlocking Factors
        C1P001: Recent technological improvements for on-site RES production3 - Moderately important4 - Important5 - Very important1 - Unimportant1 - Unimportant
        C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
        C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important4 - Important5 - Very important3 - Moderately important1 - Unimportant
        C1P001: Storage systems and E-mobility market penetration5 - Very important3 - Moderately important5 - Very important5 - Very important1 - Unimportant
        C1P001: Decreasing costs of innovative materials1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
        C1P001: Financial mechanisms to reduce costs and maximize benefits3 - Moderately important3 - Moderately important5 - Very important5 - Very important1 - Unimportant
        C1P001: The ability to predict Multiple Benefits2 - Slightly important2 - Slightly important4 - Important4 - Important1 - Unimportant
        C1P001: The ability to predict the distribution of benefits and impacts4 - Important3 - Moderately important4 - Important4 - Important1 - Unimportant
        C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)4 - Important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant
        C1P001: Social acceptance (top-down)4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant
        C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)4 - Important4 - Important5 - Very important1 - Unimportant1 - Unimportant
        C1P001: Presence of integrated urban strategies and plans5 - Very important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
        C1P001: Multidisciplinary approaches available for systemic integration4 - Important4 - Important4 - Important4 - Important1 - Unimportant
        C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects1 - Unimportant5 - Very important5 - Very important5 - Very important1 - Unimportant
        C1P001: Availability of RES on site (Local RES)5 - Very important5 - Very important5 - Very important4 - Important1 - Unimportant
        C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders3 - Moderately important4 - Important5 - Very important5 - Very important1 - Unimportant
        C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P001: Any other UNLOCKING FACTORS (if any)
        C1P002: Driving Factors
        C1P002: Climate Change adaptation need3 - Moderately important4 - Important4 - Important4 - Important1 - Unimportant
        C1P002: Climate Change mitigation need (local RES production and efficiency)3 - Moderately important4 - Important5 - Very important4 - Important1 - Unimportant
        C1P002: Rapid urbanization trend and need of urban expansions2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
        C1P002: Urban re-development of existing built environment1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant
        C1P002: Economic growth need1 - Unimportant2 - Slightly important3 - Moderately important4 - Important1 - Unimportant
        C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)1 - Unimportant5 - Very important5 - Very important4 - Important1 - Unimportant
        C1P002: Territorial and market attractiveness1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
        C1P002: Energy autonomy/independence2 - Slightly important5 - Very important5 - Very important5 - Very important1 - Unimportant
        C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P002: Any other DRIVING FACTOR (if any)
        C1P003: Administrative barriers
        C1P003: Difficulty in the coordination of high number of partners and authorities1 - Unimportant2 - Slightly important4 - Important4 - Important1 - Unimportant
        C1P003: Lack of good cooperation and acceptance among partners1 - Unimportant2 - Slightly important4 - Important1 - Unimportant1 - Unimportant
        C1P003: Lack of public participation1 - Unimportant4 - Important5 - Very important2 - Slightly important1 - Unimportant
        C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant
        C1P003:Long and complex procedures for authorization of project activities1 - Unimportant4 - Important3 - Moderately important5 - Very important1 - Unimportant
        C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy1 - Unimportant4 - Important3 - Moderately important5 - Very important1 - Unimportant
        C1P003: Complicated and non-comprehensive public procurement1 - Unimportant4 - Important3 - Moderately important3 - Moderately important1 - Unimportant
        C1P003: Fragmented and or complex ownership structure1 - Unimportant2 - Slightly important2 - Slightly important5 - Very important1 - Unimportant
        C1P003: City administration & cross-sectoral attitude/approaches (silos)1 - Unimportant2 - Slightly important3 - Moderately important4 - Important1 - Unimportant
        C1P003: Lack of internal capacities to support energy transition1 - Unimportant3 - Moderately important4 - Important4 - Important1 - Unimportant
        C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
        C1P003: Any other Administrative BARRIER (if any)
        C1P004: Policy barriers
        C1P004: Lack of long-term and consistent energy plans and policies4 - Important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant
        C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
        C1P004: Lack of Cooperation & support between national-regional-local entities1 - Unimportant3 - Moderately important4 - Important2 - Slightly important1 - Unimportant
        C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P004: Any other Political BARRIER (if any)
        C1P005: Legal and Regulatory barriers
        C1P005: Inadequate regulations for new technologies1 - Unimportant2 - Slightly important5 - Very important5 - Very important1 - Unimportant
        C1P005: Regulatory instability1 - Unimportant2 - Slightly important4 - Important2 - Slightly important1 - Unimportant
        C1P005: Non-effective regulations1 - Unimportant2 - Slightly important3 - Moderately important2 - Slightly important1 - Unimportant
        C1P005: Unfavorable local regulations for innovative technologies1 - Unimportant2 - Slightly important4 - Important4 - Important1 - Unimportant
        C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant2 - Slightly important4 - Important3 - Moderately important1 - Unimportant
        C1P005: Insufficient or insecure financial incentives3 - Moderately important2 - Slightly important5 - Very important5 - Very important1 - Unimportant
        C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant
        C1P005: Shortage of proven and tested solutions and examples1 - Unimportant2 - Slightly important4 - Important4 - Important1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER (if any)
        C1P006: Environmental barriers
        C1P006: Environmental barriers
        C1P007: Technical barriers
        C1P007: Lack of skilled and trained personnel1 - Unimportant2 - Slightly important4 - Important5 - Very important1 - Unimportant
        C1P007: Deficient planning3 - Moderately important2 - Slightly important4 - Important5 - Very important1 - Unimportant
        C1P007: Retrofitting work in dwellings in occupied state1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P007: Lack of well-defined process1 - Unimportant2 - Slightly important4 - Important4 - Important1 - Unimportant
        C1P007: Inaccuracy in energy modelling and simulation5 - Very important2 - Slightly important4 - Important5 - Very important1 - Unimportant
        C1P007: Lack/cost of computational scalability1 - Unimportant2 - Slightly important4 - Important4 - Important1 - Unimportant
        C1P007: Grid congestion, grid instability1 - Unimportant2 - Slightly important5 - Very important5 - Very important1 - Unimportant
        C1P007: Negative effects of project intervention on the natural environment1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P007: Difficult definition of system boundaries1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Any other Thecnical BARRIER (if any)
        C1P008: Social and Cultural barriers
        C1P008: Inertia1 - Unimportant3 - Moderately important4 - Important4 - Important1 - Unimportant
        C1P008: Lack of values and interest in energy optimization measurements1 - Unimportant5 - Very important5 - Very important5 - Very important1 - Unimportant
        C1P008: Low acceptance of new projects and technologies1 - Unimportant3 - Moderately important5 - Very important5 - Very important1 - Unimportant
        C1P008: Difficulty of finding and engaging relevant actors4 - Important3 - Moderately important4 - Important5 - Very important1 - Unimportant
        C1P008: Lack of trust beyond social network1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant
        C1P008: Rebound effect1 - Unimportant2 - Slightly important3 - Moderately important4 - Important1 - Unimportant
        C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant4 - Important3 - Moderately important5 - Very important1 - Unimportant
        C1P008: Exclusion of socially disadvantaged groups1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P008: Non-energy issues are more important and urgent for actors1 - Unimportant2 - Slightly important4 - Important1 - Unimportant1 - Unimportant
        C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Any other Social BARRIER (if any)
        C1P009: Information and Awareness barriers
        C1P009: Insufficient information on the part of potential users and consumers5 - Very important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant
        C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts1 - Unimportant3 - Moderately important4 - Important5 - Very important1 - Unimportant
        C1P009: Lack of awareness among authorities3 - Moderately important4 - Important3 - Moderately important2 - Slightly important1 - Unimportant
        C1P009: Information asymmetry causing power asymmetry of established actors2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P009: High costs of design, material, construction, and installation1 - Unimportant2 - Slightly important5 - Very important5 - Very important1 - Unimportant
        C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P009: Any other Information and Awareness BARRIER (if any)
        C1P010: Financial barriers
        C1P010: Hidden costs1 - Unimportant2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant
        C1P010: Insufficient external financial support and funding for project activities1 - Unimportant2 - Slightly important4 - Important5 - Very important1 - Unimportant
        C1P010: Economic crisis1 - Unimportant3 - Moderately important3 - Moderately important4 - Important1 - Unimportant
        C1P010: Risk and uncertainty2 - Slightly important4 - Important4 - Important5 - Very important1 - Unimportant
        C1P010: Lack of consolidated and tested business models4 - Important4 - Important5 - Very important5 - Very important1 - Unimportant
        C1P010: Limited access to capital and cost disincentives1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant
        C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P010: Any other Financial BARRIER (if any)
        C1P011: Market barriers
        C1P011: Split incentives1 - Unimportant3 - Moderately important4 - Important4 - Important1 - Unimportant
        C1P011: Energy price distortion1 - Unimportant3 - Moderately important5 - Very important5 - Very important1 - Unimportant
        C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant3 - Moderately important5 - Very important5 - Very important1 - Unimportant
        C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P011: Any other Market BARRIER (if any)
        C1P012: Stakeholders involved
        C1P012: Government/Public Authorities
        • Design/demand aggregation
        C1P012: Research & Innovation
        C1P012: Financial/Funding
        C1P012: Analyst, ICT and Big Data
        • Monitoring/operation/management
        C1P012: Business process management
        • Design/demand aggregation
        C1P012: Urban Services providers
        • Design/demand aggregation
        C1P012: Real Estate developers
        • Construction/implementation
        C1P012: Design/Construction companies
        • Design/demand aggregation
        C1P012: End‐users/Occupants/Energy Citizens
        • Monitoring/operation/management
        C1P012: Social/Civil Society/NGOs
        • Design/demand aggregation
        C1P012: Industry/SME/eCommerce
        • Construction/implementation
        C1P012: Other
        C1P012: Other (if any)
        Summary

        Authors (framework concept)

        Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

        Contributors (to the content)

        Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

        Implemented by

        Boutik.pt: Filipe Martins, Jamal Khan
        Marek Suchánek (Czech Technical University in Prague)