Filters:
NameProjectTypeCompare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Compare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Compare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Uncompare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Uncompare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Uncompare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study
Lund, Brunnshög district PED Case Study Uncompare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleHalmstad, Fyllinge
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab
Cityfied (demo Linero), Lund
Riga, Ķīpsala, RTU smart student city
Lund, Brunnshög district
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabHalmstad, FyllingeBucharest, The Bucharest University of Economic Studies (ASE) PED LabCityfied (demo Linero), LundRiga, Ķīpsala, RTU smart student cityLund, Brunnshög district
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynononoyesyes
PED relevant case studyyesnoyesnono
PED Lab.noyesnonono
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesyesyesyes
Annual energy surplusnonononoyes
Energy communityyesnonoyesyes
Circularitynonononoyes
Air quality and urban comfortnonononoyes
Electrificationnonononoyes
Net-zero energy costnonononono
Net-zero emissionnonoyesnoyes
Self-sufficiency (energy autonomous)nononoyesno
Maximise self-sufficiencynononoyesno
Othernoyesyesnoyes
Other (A1P004)Smart BuildingsSocial aspects/affordabilityHolistic approach on city planning; Minimise car traffic - walkability; Local service; Climate neutral buildings 2030;
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhasePlanning PhaseCompletedPlanning PhaseIn operation
A1P006: Start Date
A1P006: Start date01/2103/2501/1401/242015
A1P007: End Date
A1P007: End date01/3012/2712/1912/262040
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • General statistical datasets
  • Monitoring data available within the districts,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
A1P009: OtherGIS open dataset is under construction
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
      A1P011: Geographic coordinates
      X Coordinate (longitude):12.9205426.0973943259149813.24337524.0816833913.232469400769599
      Y Coordinate (latitude):56.6519444.4472496751992955.69922356.9524595655.71989792207193
      A1P012: Country
      A1P012: CountrySwedenRomaniaSwedenLatviaSweden
      A1P013: City
      A1P013: CityHalmstadBucharestLundRigaLund
      A1P014: Climate Zone (Köppen Geiger classification)
      A1P014: Climate Zone (Köppen Geiger classification).DwbCsaCfbCfbDfb
      A1P015: District boundary
      A1P015: District boundaryGeographicGeographicGeographicGeographic
      Other
      A1P016: Ownership of the case study/PED Lab
      A1P016: Ownership of the case study/PED Lab:MixedPublicMixedPublicPublic
      A1P017: Ownership of the land / physical infrastructure
      A1P017: Ownership of the land / physical infrastructure:Multiple OwnersSingle OwnerMultiple OwnersMultiple OwnersMultiple Owners
      A1P018: Number of buildings in PED
      A1P018: Number of buildings in PED25015200
      A1P019: Conditioned space
      A1P019: Conditioned space [m²]1700001500000
      A1P020: Total ground area
      A1P020: Total ground area [m²]485800001192641500000
      A1P021: Floor area ratio: Conditioned space / total ground area
      A1P021: Floor area ratio: Conditioned space / total ground area00011
      A1P022: Financial schemes
      A1P022a: Financing - PRIVATE - Real estateyesnononoyes
      A1P022a: Add the value in EUR if available [EUR]99999999
      A1P022b: Financing - PRIVATE - ESCO schemenonononono
      A1P022b: Add the value in EUR if available [EUR]
      A1P022c: Financing - PRIVATE - Othernonononono
      A1P022c: Add the value in EUR if available [EUR]
      A1P022d: Financing - PUBLIC - EU structural fundingnonononoyes
      A1P022d: Add the value in EUR if available [EUR]1000000
      A1P022e: Financing - PUBLIC - National fundingnonononoyes
      A1P022e: Add the value in EUR if available [EUR]30000000
      A1P022f: Financing - PUBLIC - Regional fundingnonononoyes
      A1P022f: Add the value in EUR if available [EUR]30000000
      A1P022g: Financing - PUBLIC - Municipal fundingnonononoyes
      A1P022g: Add the value in EUR if available [EUR]180000000
      A1P022h: Financing - PUBLIC - Othernoyesyesnono
      A1P022h: Add the value in EUR if available [EUR]
      A1P022i: Financing - RESEARCH FUNDING - EUyesnonoyesyes
      A1P022i: Add the value in EUR if available [EUR]75000002000000
      A1P022j: Financing - RESEARCH FUNDING - Nationalnonononono
      A1P022j: Add the value in EUR if available [EUR]
      A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononono
      A1P022k: Add the value in EUR if available [EUR]
      A1P022l: Financing - RESEARCH FUNDING - Othernonoyesnono
      A1P022l: Add the value in EUR if available [EUR]
      A1P022: Other
      A1P023: Economic Targets
      A1P023: Economic Targets
      • Boosting local and sustainable production
      • Boosting local businesses,
      • Boosting local and sustainable production
      • Other
      A1P023: OtherWorld class sustainable living and research environments
      A1P024: More comments:
      A1P024: More comments:
      A1P025: Estimated PED case study / PED LAB costs
      A1P025: Estimated PED case study / PED LAB costs [mil. EUR]
      Contact person for general enquiries
      A1P026: NameMarkus OlofsgårdAdela BaraChristoph GollnerJudith StiekemaMarkus Paulsson
      A1P027: OrganizationAFRYThe Bucharest University of Economic StudiesFFGOASCCity of Lund
      A1P028: AffiliationOtherResearch Center / UniversityOtherOtherMunicipality / Public Bodies
      A1P028: Othernot for profit private organisation
      A1P029: Emailmarkus.olofsgard@afry.comBara.adela@ie.ase.rochristoph.gollner@ffg.atjudith@oascities.orgmarkus.paulsson@lund.se
      Contact person for other special topics
      A1P030: NameEva Dalman
      A1P031: Emaileva.dalman@lund.se
      Pursuant to the General Data Protection RegulationYesYesYesYesYes
      A2P001: Fields of application
      A2P001: Fields of application
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies
      • Energy efficiency,
      • Energy flexibility,
      • Digital technologies,
      • Indoor air quality
      • Energy efficiency,
      • Energy production
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies,
      • Water use,
      • Waste management,
      • Construction materials,
      • Other
      A2P001: OtherWalkability and biking
      A2P002: Tools/strategies/methods applied for each of the above-selected fields
      A2P002: Tools/strategies/methods applied for each of the above-selected fieldslink based regulation of electricity gridA suite of replicable modeling tools will enable stakeholders to analyze planning actions towards positive energy in a cost-effective fashion, aiding their evidence based decision-making process. The tools will be able to model the district’s energy production and demand, optimize for flexibility and simulate mobility and transport. By employing gamification and co-creation approaches, the project will enhance public awareness and engagement in energy efficiency. The project will culminate in the publication of practical guidelines, reusable models, algorithms, and training materials to aid other cities to replicate the digital twin for their districts, fostering widespread adoption of sustainable energy practices.LundaMaTs methodology for traffic and city planning. LundaEko - Lund's programme for ecological sustainability. Municipally owned land is sold to property developers on environmental conditions.
      A2P003: Application of ISO52000
      A2P003: Application of ISO52000NoNoNo
      A2P004: Appliances included in the calculation of the energy balance
      A2P004: Appliances included in the calculation of the energy balanceNoYesYes
      A2P005: Mobility included in the calculation of the energy balance
      A2P005: Mobility included in the calculation of the energy balanceYesYesYes
      A2P006: Description of how mobility is included (or not included) in the calculation
      A2P006: Description of how mobility is included (or not included) in the calculationThe university operates a fleet of 13 electric vehicles (EV) (61kW power each). There are 5 EV charging stations on campus.Today electrically charged vehicles are included in the energy balance. In the future also other fuels should be included.
      A2P007: Annual energy demand in buildings / Thermal demand
      A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]800025
      A2P008: Annual energy demand in buildings / Electric Demand
      A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]500030
      A2P009: Annual energy demand for e-mobility
      A2P009: Annual energy demand for e-mobility [GWh/annum]
      A2P010: Annual energy demand for urban infrastructure
      A2P010: Annual energy demand for urban infrastructure [GWh/annum]
      A2P011: Annual renewable electricity production on-site during target year
      A2P011: PVyesnononoyes
      A2P011: PV - specify production in GWh/annum [GWh/annum]
      A2P011: Windnononoyesyes
      A2P011: Wind - specify production in GWh/annum [GWh/annum]
      A2P011: Hydrononononono
      A2P011: Hydro - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_elnonononono
      A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_peat_elnonononono
      A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
      A2P011: PVT_elnononoyesno
      A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
      A2P011: Othernonononono
      A2P011: Other - specify production in GWh/annum [GWh/annum]
      A2P012: Annual renewable thermal production on-site during target year
      A2P012: Geothermalyesnononono
      A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Solar Thermalnonononono
      A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_heatnononoyesno
      A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: Waste heat+HPnonononoyes
      A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]200
      A2P012: Biomass_peat_heatnonononono
      A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: PVT_thnonononono
      A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_firewood_thnonononono
      A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Othernonononono
      A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
      A2P013: Renewable resources on-site - Additional notes
      A2P013: Renewable resources on-site - Additional notesConventional power generation: The university’s heat supply is designed as a local centralized heat supply system. Electrical power, generated in combined heat and power (CHP) units, is delivered to the distribution network and sold to energy traders as regulated by local legislation and norms. There are two natural gas burners acting as heat sources (3MW and 6MW capacity), and two CHP units (1.6MW and 0.45MW thermal capacity). All heating is supplied from the CHP plants. Renewable Energy Sources (RES): a wind turbine (3.6 kW) and PV panels (11.7 kW) are connected to the faculty microgrid. In the future it is planned to power the campus entirely from local RES.
      A2P014: Annual energy use
      A2P014: Annual energy use [GWh/annum]
      A2P015: Annual energy delivered
      A2P015: Annual energy delivered [GWh/annum]
      A2P016: Annual non-renewable electricity production on-site during target year
      A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]0
      A2P017: Annual non-renewable thermal production on-site during target year
      A2P017: Gasnononoyesno
      A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Coalnonononono
      A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Oilnonononono
      A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Othernonononono
      A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P018: Annual renewable electricity imports from outside the boundary during target year
      A2P018: PVnonononoyes
      A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
      A2P018: Windnonononoyes
      A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
      A2P018: Hydrononononoyes
      A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_elnonononoyes
      A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_peat_elnonononono
      A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: PVT_elnonononono
      A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Othernonononono
      A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
      A2P019: Annual renewable thermal imports from outside the boundary during target year
      A2P019: Geothermalnonononono
      A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Solar Thermalnonononono
      A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_heatnonononono
      A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Waste heat+HPnonononono
      A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_peat_heatnonononono
      A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: PVT_thnonononono
      A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_firewood_thnonononono
      A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Othernonononono
      A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
      A2P020: Share of RES on-site / RES outside the boundary
      A2P020: Share of RES on-site / RES outside the boundary00000
      A2P021: GHG-balance calculated for the PED
      A2P021: GHG-balance calculated for the PED [tCO2/annum]
      A2P022: KPIs related to the PED case study / PED Lab
      A2P022: Safety & Security
      A2P022: Health
      A2P022: Education
      A2P022: MobilityMaximum 1/3 transport with car
      A2P022: EnergyYesLocal energy production 150% of energy need
      A2P022: Water
      A2P022: Economic development
      A2P022: Housing and Community50% rental apartments and 50% owner apartments
      A2P022: Waste
      A2P022: Other
      A2P023: Technological Solutions / Innovations - Energy Generation
      A2P023: Photovoltaicsyesnoyesnoyes
      A2P023: Solar thermal collectorsnonoyesnoyes
      A2P023: Wind Turbinesnonononoyes
      A2P023: Geothermal energy systemnonononoyes
      A2P023: Waste heat recoverynonononoyes
      A2P023: Waste to energynonononono
      A2P023: Polygenerationnonononoyes
      A2P023: Co-generationnonononono
      A2P023: Heat Pumpnonoyesnoyes
      A2P023: Hydrogennonononoyes
      A2P023: Hydropower plantnonononono
      A2P023: Biomassnonononono
      A2P023: Biogasnonononono
      A2P023: OtherPhotovoltaics are considered for the next years
      A2P024: Technological Solutions / Innovations - Energy Flexibility
      A2P024: A2P024: Information and Communication Technologies (ICT)yesyesnoyesyes
      A2P024: Energy management systemnoyesnoyesyes
      A2P024: Demand-side managementyesyesnoyesyes
      A2P024: Smart electricity gridyesnonoyesyes
      A2P024: Thermal Storagenononoyesyes
      A2P024: Electric Storagenononoyesyes
      A2P024: District Heating and Coolingnonoyesyesyes
      A2P024: Smart metering and demand-responsive control systemsyesnonoyesyes
      A2P024: P2P – buildingsnonononono
      A2P024: Other
      A2P025: Technological Solutions / Innovations - Energy Efficiency
      A2P025: Deep Retrofittingnoyesyesnono
      A2P025: Energy efficiency measures in historic buildingsnoyesnonono
      A2P025: High-performance new buildingsnonononoyes
      A2P025: Smart Public infrastructure (e.g. smart lighting)nonononoyes
      A2P025: Urban data platformsnononoyesyes
      A2P025: Mobile applications for citizensnononoyesno
      A2P025: Building services (HVAC & Lighting)noyesnoyesyes
      A2P025: Smart irrigationnonononono
      A2P025: Digital tracking for waste disposalnonononoyes
      A2P025: Smart surveillancenoyesnonono
      A2P025: Other
      A2P026: Technological Solutions / Innovations - Mobility
      A2P026: Efficiency of vehicles (public and/or private)nonononono
      A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nonononoyes
      A2P026: e-Mobilitynonononoyes
      A2P026: Soft mobility infrastructures and last mile solutionsnonononoyes
      A2P026: Car-free areanonononoyes
      A2P026: Other
      A2P027: Mobility strategies - Additional notes
      A2P027: Mobility strategies - Additional notesWalkability
      A2P028: Energy efficiency certificates
      A2P028: Energy efficiency certificatesNoNoYes
      A2P028: If yes, please specify and/or enter notesMiljöbyggnad silver/guld
      A2P029: Any other building / district certificates
      A2P029: Any other building / district certificatesNoNoNo
      A2P029: If yes, please specify and/or enter notes
      A3P001: Relevant city /national strategy
      A3P001: Relevant city /national strategy
      • Promotion of energy communities (REC/CEC)
      • Smart cities strategies
      • Smart cities strategies,
      • Promotion of energy communities (REC/CEC),
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Climate change adaption plan/strategy (e.g. Climate City contract)
      A3P002: Quantitative targets included in the city / national strategy
      A3P002: Quantitative targets included in the city / national strategyCity strategy: Net climate neutrality 2030
      A3P003: Strategies towards decarbonization of the gas grid
      A3P003: Strategies towards decarbonization of the gas grid
      A3P003: OtherNo gas grid in Brunnshög
      A3P004: Identification of needs and priorities
      A3P004: Identification of needs and prioritiesLocal waste heat is utlized to a very large extent. More local electricity production is needed. Need to minimise the use of private cars.
      A3P005: Sustainable behaviour
      A3P005: Sustainable behaviourNeed to minimise the use of private cars. Need to provide efficient methods for sorce separated waste collection.
      A3P006: Economic strategies
      A3P006: Economic strategies
      • Local trading
      • Innovative business models,
      • Demand management Living Lab
      • Open data business models,
      • Innovative business models,
      • Demand management Living Lab
      • PPP models,
      • Other
      A3P006: OtherAttractivenes
      A3P007: Social models
      A3P007: Social models
      • Behavioural Change / End-users engagement,
      • Citizen/owner involvement in planning and maintenance
      • Digital Inclusion,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Quality of Life,
      • Strategies towards social mix
      A3P007: Other
      A3P008: Integrated urban strategies
      A3P008: Integrated urban strategies
      • Strategic urban planning
      • Digital twinning and visual 3D models
      • Digital twinning and visual 3D models
      • Strategic urban planning,
      • Digital twinning and visual 3D models,
      • City Vision 2050,
      • SECAP Updates
      A3P008: Other
      A3P009: Environmental strategies
      A3P009: Environmental strategies
      • Energy Neutral,
      • Carbon-free
      • Energy Neutral
      • Net zero carbon footprint,
      • Greening strategies,
      • Sustainable Urban drainage systems (SUDS),
      • Nature Based Solutions (NBS)
      A3P009: Other
      A3P010: Legal / Regulatory aspects
      A3P010: Legal / Regulatory aspectsThe municipality cannot demand a specific energy solution to private property owners. It has to be voluntary and market based solutions.
      B1P001: PED/PED relevant concept definition
      B1P001: PED/PED relevant concept definitionExPEDite aims at creating and deploying a novel digital twin, allowing for real-time monitoring, visualization and management of district-level energy flows. Cities consume 65% of the world’s energy supply and are responsible for 70% of the CO² emissions, hence sharing a lot of the responsibility for climate change. We are faced with the challenge of redesigning our existing cities to make them more sustainable, resilient, inclusive and safe. Developing Positive Energy Districts (PEDs), is a breakthrough way to deal with the issue of urban emissions and applying adaptation and mitigation strategies to climate change, while ensuring that these urban areas generate an annual surplus of renewable energy and net zero greenhouse gas emissions. PEDs must address environmental, economic and social issues, providing solutions to energy consumption, production, emissions, transport & mobility and livability. By constantly monitoring and evaluating parameters through existing and/or novel sensor systems (e.g., renewable energy production/supply, transport conditions, air quality, energy demand, meteorological conditions, etc.), unconventional techniques may be applied to provide more sustainable options for the district’s needs.Vision: The city as a power plant. The ultimate goal is that more energy is produced within the distric boundaries than is being used (heating, electricity & mobility). Energy efficient buildings, efficient mobility, reuse of residual heat and solar electricity are the main methods.
      B1P002: Motivation behind PED/PED relevant project development
      B1P002: Motivation behind PED/PED relevant project developmentExpected outcome 1 Increased number of (tangible) city planning actions for positive clean energy districts using the (proto-)PED design, development and management digital twin tools (based on pre-market research learnings) using open-standards based components which can be reused elsewhere. 2 Increased integration of existing smaller scale management systems (e.g. Building management systems) with open-standards based operational city platforms using sectorial data (e.g. building data, mobility, urban planning, etc.). 3 Enhanced data gathering approaches with identification of relevant multidimensional data sets (e.g. meteorological, load profile, social, geo-spatial, etc.) high-resolution real-time data streams (e.g. renewable energy production, energy consumption), and relevant forecasting data, drawing also on the work of common European data spaces. 4 Increased number of city planning departments / approaches using common data and (replicable) elements and processes. 5 Consolidated city sensor network specifications, complemented by appropriate data gathering approaches for soft data. 6 Improved performance of AI based self-learning systems for optimization of positive clean energy districts and bottom-up complex models. 7 Enhanced innovation capacity of local/regional administrations and accelerated uptake of shared, smart and sustainable zero emission solutions.The aim is to build a sustainable city with minimal climate impact and maximum quality of life. PED is an important step to acheive the aims of a very ambitious city development.
      B1P003: Environment of the case study area
      B2P003: Environment of the case study areaSuburban areaUrban areaUrban areaUrban area
      B1P004: Type of district
      B2P004: Type of district
      • New construction
      • Renovation
      • New construction
      B1P005: Case Study Context
      B1P005: Case Study Context
      • New Development
      • Retrofitting Area
      • New Development
      B1P006: Year of construction
      B1P006: Year of construction
      B1P007: District population before intervention - Residential
      B1P007: District population before intervention - Residential0
      B1P008: District population after intervention - Residential
      B1P008: District population after intervention - Residential18000
      B1P009: District population before intervention - Non-residential
      B1P009: District population before intervention - Non-residential2000
      B1P010: District population after intervention - Non-residential
      B1P010: District population after intervention - Non-residential22000
      B1P011: Population density before intervention
      B1P011: Population density before intervention0000
      B1P012: Population density after intervention
      B1P012: Population density after intervention0000.026666666666667
      B1P013: Building and Land Use before intervention
      B1P013: Residentialnonoyesnono
      B1P013 - Residential: Specify the sqm [m²]
      B1P013: Officenonononoyes
      B1P013 - Office: Specify the sqm [m²]60000
      B1P013: Industry and Utilitynonononono
      B1P013 - Industry and Utility: Specify the sqm [m²]
      B1P013: Commercialnonononono
      B1P013 - Commercial: Specify the sqm [m²]
      B1P013: Institutionalnonononono
      B1P013 - Institutional: Specify the sqm [m²]
      B1P013: Natural areasyesnononoyes
      B1P013 - Natural areas: Specify the sqm [m²]2000000
      B1P013: Recreationalnonononono
      B1P013 - Recreational: Specify the sqm [m²]
      B1P013: Dismissed areasnonononono
      B1P013 - Dismissed areas: Specify the sqm [m²]
      B1P013: Othernonononoyes
      B1P013 - Other: Specify the sqm [m²]Outdoor parking: 100000
      B1P014: Building and Land Use after intervention
      B1P014: Residentialnonoyesnoyes
      B1P014 - Residential: Specify the sqm [m²]600000
      B1P014: Officenonononoyes
      B1P014 - Office: Specify the sqm [m²]650000
      B1P014: Industry and Utilitynonononono
      B1P014 - Industry and Utility: Specify the sqm [m²]
      B1P014: Commercialnonononono
      B1P014 - Commercial: Specify the sqm [m²]
      B1P014: Institutionalnonononoyes
      B1P014 - Institutional: Specify the sqm [m²]50000
      B1P014: Natural areasnonononono
      B1P014 - Natural areas: Specify the sqm [m²]
      B1P014: Recreationalnonononoyes
      B1P014 - Recreational: Specify the sqm [m²]400000
      B1P014: Dismissed areasnonononono
      B1P014 - Dismissed areas: Specify the sqm [m²]
      B1P014: Othernonononono
      B1P014 - Other: Specify the sqm [m²]
      B2P001: PED Lab concept definition
      B2P001: PED Lab concept definition
      B2P002: Installation life time
      B2P002: Installation life time
      B2P003: Scale of action
      B2P003: ScaleDistrict
      B2P004: Operator of the installation
      B2P004: Operator of the installation
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P006: Circular Economy Approach
      B2P006: Do you apply any strategy to reuse and recycling the materials?
      B2P006: Other
      B2P007: Motivation for developing the PED Lab
      B2P007: Motivation for developing the PED Lab
      B2P007: Other
      B2P008: Lead partner that manages the PED Lab
      B2P008: Lead partner that manages the PED Lab
      B2P008: Other
      B2P009: Collaborative partners that participate in the PED Lab
      B2P009: Collaborative partners that participate in the PED Lab
      B2P009: Other
      B2P010: Synergies between the fields of activities
      B2P010: Synergies between the fields of activities
      B2P011: Available facilities to test urban configurations in PED Lab
      B2P011: Available facilities to test urban configurations in PED Lab
      B2P011: Other
      B2P012: Incubation capacities of PED Lab
      B2P012: Incubation capacities of PED Lab
      B2P013: Availability of the facilities for external people
      B2P013: Availability of the facilities for external people
      B2P014: Monitoring measures
      B2P014: Monitoring measures
      B2P015: Key Performance indicators
      B2P015: Key Performance indicators
      B2P016: Execution of operations
      B2P016: Execution of operations
      B2P017: Capacities
      B2P017: Capacities
      B2P018: Relations with stakeholders
      B2P018: Relations with stakeholders
      B2P019: Available tools
      B2P019: Available tools
      B2P019: Available tools
      B2P020: External accessibility
      B2P020: External accessibility
      C1P001: Unlocking Factors
      C1P001: Recent technological improvements for on-site RES production3 - Moderately important4 - Important1 - Unimportant5 - Very important5 - Very important
      C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important
      C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important4 - Important1 - Unimportant5 - Very important5 - Very important
      C1P001: Storage systems and E-mobility market penetration5 - Very important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important
      C1P001: Decreasing costs of innovative materials1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important
      C1P001: Financial mechanisms to reduce costs and maximize benefits3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important
      C1P001: The ability to predict Multiple Benefits2 - Slightly important2 - Slightly important1 - Unimportant5 - Very important2 - Slightly important
      C1P001: The ability to predict the distribution of benefits and impacts4 - Important3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important
      C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)4 - Important3 - Moderately important1 - Unimportant5 - Very important4 - Important
      C1P001: Social acceptance (top-down)4 - Important4 - Important1 - Unimportant4 - Important3 - Moderately important
      C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)4 - Important4 - Important1 - Unimportant5 - Very important5 - Very important
      C1P001: Presence of integrated urban strategies and plans5 - Very important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important
      C1P001: Multidisciplinary approaches available for systemic integration4 - Important4 - Important1 - Unimportant5 - Very important5 - Very important
      C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects1 - Unimportant5 - Very important1 - Unimportant5 - Very important3 - Moderately important
      C1P001: Availability of RES on site (Local RES)5 - Very important5 - Very important1 - Unimportant4 - Important5 - Very important
      C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders3 - Moderately important4 - Important1 - Unimportant4 - Important2 - Slightly important
      C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P001: Any other UNLOCKING FACTORS (if any)
      C1P002: Driving Factors
      C1P002: Climate Change adaptation need3 - Moderately important4 - Important1 - Unimportant5 - Very important5 - Very important
      C1P002: Climate Change mitigation need (local RES production and efficiency)3 - Moderately important4 - Important1 - Unimportant4 - Important5 - Very important
      C1P002: Rapid urbanization trend and need of urban expansions2 - Slightly important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
      C1P002: Urban re-development of existing built environment1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important
      C1P002: Economic growth need1 - Unimportant2 - Slightly important1 - Unimportant4 - Important4 - Important
      C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)1 - Unimportant5 - Very important1 - Unimportant4 - Important5 - Very important
      C1P002: Territorial and market attractiveness1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important
      C1P002: Energy autonomy/independence2 - Slightly important5 - Very important1 - Unimportant4 - Important1 - Unimportant
      C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P002: Any other DRIVING FACTOR (if any)
      C1P003: Administrative barriers
      C1P003: Difficulty in the coordination of high number of partners and authorities1 - Unimportant2 - Slightly important1 - Unimportant4 - Important5 - Very important
      C1P003: Lack of good cooperation and acceptance among partners1 - Unimportant2 - Slightly important1 - Unimportant4 - Important5 - Very important
      C1P003: Lack of public participation1 - Unimportant4 - Important1 - Unimportant4 - Important2 - Slightly important
      C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important
      C1P003:Long and complex procedures for authorization of project activities1 - Unimportant4 - Important1 - Unimportant3 - Moderately important4 - Important
      C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P003: Complicated and non-comprehensive public procurement1 - Unimportant4 - Important1 - Unimportant3 - Moderately important3 - Moderately important
      C1P003: Fragmented and or complex ownership structure1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important2 - Slightly important
      C1P003: City administration & cross-sectoral attitude/approaches (silos)1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important
      C1P003: Lack of internal capacities to support energy transition1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P003: Any other Administrative BARRIER (if any)
      C1P004: Policy barriers
      C1P004: Lack of long-term and consistent energy plans and policies4 - Important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
      C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
      C1P004: Lack of Cooperation & support between national-regional-local entities1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important
      C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P004: Any other Political BARRIER (if any)
      C1P005: Legal and Regulatory barriers
      C1P005: Inadequate regulations for new technologies1 - Unimportant2 - Slightly important1 - Unimportant4 - Important5 - Very important
      C1P005: Regulatory instability1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important
      C1P005: Non-effective regulations1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important2 - Slightly important
      C1P005: Unfavorable local regulations for innovative technologies1 - Unimportant2 - Slightly important1 - Unimportant4 - Important3 - Moderately important
      C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important
      C1P005: Insufficient or insecure financial incentives3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important
      C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P005: Shortage of proven and tested solutions and examples1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important4 - Important
      C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P005: Any other Legal and Regulatory BARRIER (if any)
      C1P006: Environmental barriers
      C1P006: Environmental barriers?
      C1P007: Technical barriers
      C1P007: Lack of skilled and trained personnel1 - Unimportant2 - Slightly important1 - Unimportant4 - Important5 - Very important
      C1P007: Deficient planning3 - Moderately important2 - Slightly important1 - Unimportant4 - Important3 - Moderately important
      C1P007: Retrofitting work in dwellings in occupied state1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P007: Lack of well-defined process1 - Unimportant2 - Slightly important1 - Unimportant4 - Important4 - Important
      C1P007: Inaccuracy in energy modelling and simulation5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important
      C1P007: Lack/cost of computational scalability1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P007: Grid congestion, grid instability1 - Unimportant2 - Slightly important1 - Unimportant4 - Important4 - Important
      C1P007: Negative effects of project intervention on the natural environment1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important
      C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P007: Difficult definition of system boundaries1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important2 - Slightly important
      C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P007: Any other Thecnical BARRIER (if any)
      C1P008: Social and Cultural barriers
      C1P008: Inertia1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important
      C1P008: Lack of values and interest in energy optimization measurements1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important4 - Important
      C1P008: Low acceptance of new projects and technologies1 - Unimportant3 - Moderately important1 - Unimportant4 - Important2 - Slightly important
      C1P008: Difficulty of finding and engaging relevant actors4 - Important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important
      C1P008: Lack of trust beyond social network1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important
      C1P008: Rebound effect1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant4 - Important1 - Unimportant3 - Moderately important4 - Important
      C1P008: Exclusion of socially disadvantaged groups1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important4 - Important
      C1P008: Non-energy issues are more important and urgent for actors1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important
      C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important
      C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P008: Any other Social BARRIER (if any)
      C1P009: Information and Awareness barriers
      C1P009: Insufficient information on the part of potential users and consumers5 - Very important2 - Slightly important1 - Unimportant3 - Moderately important4 - Important
      C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important4 - Important
      C1P009: Lack of awareness among authorities3 - Moderately important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important
      C1P009: Information asymmetry causing power asymmetry of established actors2 - Slightly important2 - Slightly important1 - Unimportant3 - Moderately important2 - Slightly important
      C1P009: High costs of design, material, construction, and installation1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important
      C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P009: Any other Information and Awareness BARRIER (if any)
      C1P010: Financial barriers
      C1P010: Hidden costs1 - Unimportant2 - Slightly important1 - Unimportant4 - Important3 - Moderately important
      C1P010: Insufficient external financial support and funding for project activities1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important2 - Slightly important
      C1P010: Economic crisis1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important
      C1P010: Risk and uncertainty2 - Slightly important4 - Important1 - Unimportant3 - Moderately important5 - Very important
      C1P010: Lack of consolidated and tested business models4 - Important4 - Important1 - Unimportant3 - Moderately important4 - Important
      C1P010: Limited access to capital and cost disincentives1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important
      C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P010: Any other Financial BARRIER (if any)
      C1P011: Market barriers
      C1P011: Split incentives1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important
      C1P011: Energy price distortion1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important
      C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important
      C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P011: Any other Market BARRIER (if any)
      C1P012: Stakeholders involved
      C1P012: Government/Public Authorities
      • Design/demand aggregation
      • Planning/leading
      • Planning/leading,
      • Monitoring/operation/management
      C1P012: Research & Innovation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Design/demand aggregation
      C1P012: Financial/Funding
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Construction/implementation
      C1P012: Analyst, ICT and Big Data
      • Monitoring/operation/management
      • Planning/leading,
      • Monitoring/operation/management
      • Monitoring/operation/management
      C1P012: Business process management
      • Design/demand aggregation
      • Monitoring/operation/management
      • Design/demand aggregation,
      • Construction/implementation
      C1P012: Urban Services providers
      • Design/demand aggregation
      • Planning/leading,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Real Estate developers
      • Construction/implementation
      • Construction/implementation
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Design/Construction companies
      • Design/demand aggregation
      • Construction/implementation
      • Design/demand aggregation,
      • Construction/implementation
      C1P012: End‐users/Occupants/Energy Citizens
      • Monitoring/operation/management
      • Design/demand aggregation
      • Monitoring/operation/management
      C1P012: Social/Civil Society/NGOs
      • Design/demand aggregation
      • Design/demand aggregation
      • None
      C1P012: Industry/SME/eCommerce
      • Construction/implementation
      • Construction/implementation
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Other
      C1P012: Other (if any)
      Summary

      Authors (framework concept)

      Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

      Contributors (to the content)

      Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

      Implemented by

      Boutik.pt: Filipe Martins, Jamal Khan
      Marek Suchánek (Czech Technical University in Prague)