Filters:
NameProjectTypeCompare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Compare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Compare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Uncompare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Uncompare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Uncompare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr, Geothermal District Heating Project PED Relevant Case Study Compare
Drammen, Jacobs Borchs Gate PED Relevant Case Study Compare
Freiburg im Breisgau, Dietenbach PED Relevant Case Study Compare
Lecce, SmartEnCity SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
Trento, STARDUST STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Malmö, Klimatkontrakt Hyllie PED Relevant Case Study Compare
Kaiserslautern, EnStadt:Pfaff PED Relevant Case Study / PED Lab Compare
Helsinki, mySMARTlife PED Relevant Case Study Compare
Firenze, Novoli-Cascine district on “le PIagge” buildings PED Relevant Case Study Compare
Bolzano, Sinfonia PED Relevant Case Study Compare
Zürich, Hunziker Areal PED Relevant Case Study Compare
Hammarby Sjöstad, Hammarby Sjöstad 2.0 PED Relevant Case Study Compare
Milano, Sharing Cities PED Relevant Case Study Compare
Mieres, District Heating Pozo Barredo PED Relevant Case Study Compare
Lund, Cityfied (demo Linero) PED Relevant Case Study Compare
Espoo, Smart Otaniemi PED Relevant Case Study / PED Lab Compare
Vienna, Zukunftsquartier PED Case Study Compare
Trento, Santa Chiara Open Lab PED Case Study Compare
Paterna, Barrio La Pinada PED Case Study / PED Lab Compare
Bergen, Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru, +CityxChange PED Case Study Compare
Trondheim, NTNU Campus within the Knowledge Axis ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Oslo, Furuset project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Măgurele, Laser Valley – Land of Lights PED Case Study Compare
Elverum, Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bodø, Airport, NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bærum, Fornebu ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Carquefou, Fleuraye west PED Case Study Compare
Åland, Smart Energy PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Uncompare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Uncompare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Uncompare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleHalmstad, Fyllinge
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab
Barcelona, SEILAB & Energy SmartLab
Tartu, Annelinn
Riga, Ķīpsala, RTU smart student city
Leon, Former Sugar Factory district
Zaragoza, Actur
Trondheim, Svartlamon
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabHalmstad, FyllingeBucharest, The Bucharest University of Economic Studies (ASE) PED LabBarcelona, SEILAB & Energy SmartLabTartu, AnnelinnRiga, Ķīpsala, RTU smart student cityLeon, Former Sugar Factory districtZaragoza, ActurTrondheim, Svartlamon
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynonononoyesyesnono
PED relevant case studyyesnonoyesnonoyesno
PED Lab.noyesyesnonononoyes
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesnoyesyesnoyesyes
Annual energy surplusnononononoyesyesno
Energy communityyesnoyesyesyesnonoyes
Circularitynononononononono
Air quality and urban comfortnononononononono
Electrificationnonoyesyesnonoyesno
Net-zero energy costnononononononono
Net-zero emissionnonoyesnononoyesno
Self-sufficiency (energy autonomous)nonoyesnoyesnonono
Maximise self-sufficiencynonononoyesyesnono
Othernoyesyesnonononono
Other (A1P004)Smart BuildingsGreen IT
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhasePlanning PhaseIn operationPlanning PhasePlanning PhasePlanning PhasePlanning PhasePlanning Phase
A1P006: Start Date
A1P006: Start date01/2103/2501/201112/2301/2412/1801/2311/24
A1P007: End Date
A1P007: End date01/3012/2702/201311/2612/2612/2303/26
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • General statistical datasets
  • General statistical datasets
  • Monitoring data available within the districts,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
        •  https://makingcity.eu/wp-content/uploads/2021/12/MakingCity_D4_3_Analysis_of_FWC_candidate_areas_to_become_a_PED_Final.pdf.
          A1P011: Geographic coordinates
          X Coordinate (longitude):12.9205426.097394325914982.126.748124.08168339-5.584795-0.889110.42
          Y Coordinate (latitude):56.6519444.4472496751992941.358.370856.9524595642.59339141.648863.4363
          A1P012: Country
          A1P012: CountrySwedenRomaniaSpainEstoniaLatviaSpainSpainNorway
          A1P013: City
          A1P013: CityHalmstadBucharestBarcelona and TarragonaTartuRigaLeonZaragozaTrondheim
          A1P014: Climate Zone (Köppen Geiger classification)
          A1P014: Climate Zone (Köppen Geiger classification).DwbCsaCsaDfbCfbCsbBSkCfb
          A1P015: District boundary
          A1P015: District boundaryGeographicGeographicVirtualGeographicGeographicGeographicGeographicVirtual
          Other
          A1P016: Ownership of the case study/PED Lab
          A1P016: Ownership of the case study/PED Lab:MixedPublicPublicPublicPublicMixedPublicPrivate
          A1P017: Ownership of the land / physical infrastructure
          A1P017: Ownership of the land / physical infrastructure:Multiple OwnersSingle OwnerSingle OwnerMultiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersMultiple Owners
          A1P018: Number of buildings in PED
          A1P018: Number of buildings in PED250015216
          A1P019: Conditioned space
          A1P019: Conditioned space [m²]17000016.06900
          A1P020: Total ground area
          A1P020: Total ground area [m²]485540000011926473.145693200
          A1P021: Floor area ratio: Conditioned space / total ground area
          A1P021: Floor area ratio: Conditioned space / total ground area00001000
          A1P022: Financial schemes
          A1P022a: Financing - PRIVATE - Real estateyesnonononononono
          A1P022a: Add the value in EUR if available [EUR]
          A1P022b: Financing - PRIVATE - ESCO schemenononononononono
          A1P022b: Add the value in EUR if available [EUR]
          A1P022c: Financing - PRIVATE - Othernononononononono
          A1P022c: Add the value in EUR if available [EUR]
          A1P022d: Financing - PUBLIC - EU structural fundingnononononononono
          A1P022d: Add the value in EUR if available [EUR]
          A1P022e: Financing - PUBLIC - National fundingnononoyesnononoyes
          A1P022e: Add the value in EUR if available [EUR]
          A1P022f: Financing - PUBLIC - Regional fundingnononononononono
          A1P022f: Add the value in EUR if available [EUR]
          A1P022g: Financing - PUBLIC - Municipal fundingnononononononono
          A1P022g: Add the value in EUR if available [EUR]
          A1P022h: Financing - PUBLIC - Othernoyesnononononono
          A1P022h: Add the value in EUR if available [EUR]
          A1P022i: Financing - RESEARCH FUNDING - EUyesnononoyesnonono
          A1P022i: Add the value in EUR if available [EUR]7500000
          A1P022j: Financing - RESEARCH FUNDING - Nationalnononononononono
          A1P022j: Add the value in EUR if available [EUR]
          A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononononono
          A1P022k: Add the value in EUR if available [EUR]
          A1P022l: Financing - RESEARCH FUNDING - Othernononononononono
          A1P022l: Add the value in EUR if available [EUR]
          A1P022: Other
          A1P023: Economic Targets
          A1P023: Economic Targets
          • Boosting local and sustainable production
          • Job creation,
          • Boosting local and sustainable production
          • Boosting local businesses,
          • Boosting local and sustainable production
          A1P023: Other
          A1P024: More comments:
          A1P024: More comments:Semi-Virtual Energy Integration Laboratory (SEILAB) The Energy Smart Lab is an infrastructure conceived as a flexible and versatile platform for innovative technological developments for both industry and competitive R+D projects. The areas of expertise of this laboratory pivot around the following technologies: – Power Electronics for the integration and control of the elements within a building or community: Renewable Energy Sources (RES), Energy Storage Systems and Electric Vehicles (EV) – ICT Platform for smart communications and energy management of systems, building, networks and communities. – Energy System Integration technologies for smart and flexible buildings and grids including RES and EV. The laboratory operation is based on the hardware emulation approach, which allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation. The laboratory is pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.
          A1P025: Estimated PED case study / PED LAB costs
          A1P025: Estimated PED case study / PED LAB costs [mil. EUR]0.02
          Contact person for general enquiries
          A1P026: NameMarkus OlofsgårdAdela BaraDr. Jaume Salom, Dra. Cristina CorcheroDr. Gonçalo Homem De Almeida Rodriguez CorreiaJudith StiekemaBegoña Gonzalo OrdenClara LorenteTatiana González Grandón; Raymundo E. Torres-Olguin
          A1P027: OrganizationAFRYThe Bucharest University of Economic StudiesIRECDelft University of TechnologyOASCMunicipality of LeonCIRCENTNU
          A1P028: AffiliationOtherResearch Center / UniversityResearch Center / UniversityResearch Center / UniversityOtherOtherResearch Center / UniversityResearch Center / University
          A1P028: Othernot for profit private organisationMunicipality of Leon - ILRUV
          A1P029: Emailmarkus.olofsgard@afry.comBara.adela@ie.ase.roJsalom@irec.catg.correia@tudelft.nljudith@oascities.orgbegona.gonzalo@aytoleon.esCLORENTEM@FCIRCE.COMtatiana.c.g.grandon@ntnu.no
          Contact person for other special topics
          A1P030: NameQiaochu FanMonica Prada CorralRaymundo E. Torres-Olguin
          A1P031: Emailq.fan-1@tudelft.nlMonica.Prada@ilruv.esraymundo.torres-olguin@sintef.no
          Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYes
          A2P001: Fields of application
          A2P001: Fields of application
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies
          • Energy efficiency,
          • Energy flexibility,
          • Digital technologies,
          • Indoor air quality
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies
          • Energy efficiency,
          • Energy flexibility,
          • E-mobility,
          • Urban comfort (pollution, heat island, noise level etc.),
          • Digital technologies
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Construction materials
          • Energy flexibility,
          • Digital technologies
          A2P001: Other
          A2P002: Tools/strategies/methods applied for each of the above-selected fields
          A2P002: Tools/strategies/methods applied for each of the above-selected fieldslink based regulation of electricity gridEnergy SmartLab capacities - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. Energy SmartLab systems - SAFT Li-ion battery: maximum stored energy 20000 Wh, rated power 150 kW, rated discharge current 200 A, rated charge current 34 A, operating voltage 189 V – 227 V – 254 V, capacity 82 Ah. – Ultracapacitors: maximum stored energy 57 Wh, rated power 10 kW, rated current 20 A, peak current (<1s) 200 Apk, operating voltage 250 V – 500 V, capacity 1,65 F. – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah - 5 microgrid emulators (emulated power 5.5 kVA, max generation connected 10kVA, max consumption connected 10 kVA) - 1 grid emulator (Rated power: 200 kVA, Rated current per phase: 350 A, Rated current per neutral conductor: 35)A suite of replicable modeling tools will enable stakeholders to analyze planning actions towards positive energy in a cost-effective fashion, aiding their evidence based decision-making process. The tools will be able to model the district’s energy production and demand, optimize for flexibility and simulate mobility and transport. By employing gamification and co-creation approaches, the project will enhance public awareness and engagement in energy efficiency. The project will culminate in the publication of practical guidelines, reusable models, algorithms, and training materials to aid other cities to replicate the digital twin for their districts, fostering widespread adoption of sustainable energy practices.Energy efficiency: - buildings energy retrofit Energy production: - installation of new photovoltaic (PV) systems for renewable on-site energy production; Energy flexibility: - testing share energy solutions (public-private stakeholders) Digital technologies - smart city platform - smart energy management E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services implementation.
          A2P003: Application of ISO52000
          A2P003: Application of ISO52000NoNoNo
          A2P004: Appliances included in the calculation of the energy balance
          A2P004: Appliances included in the calculation of the energy balanceNoYesYesNo
          A2P005: Mobility included in the calculation of the energy balance
          A2P005: Mobility included in the calculation of the energy balanceYesYesYesNo
          A2P006: Description of how mobility is included (or not included) in the calculation
          A2P006: Description of how mobility is included (or not included) in the calculation– Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 AhThe university operates a fleet of 13 electric vehicles (EV) (61kW power each). There are 5 EV charging stations on campus.
          A2P007: Annual energy demand in buildings / Thermal demand
          A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]80003.4914
          A2P008: Annual energy demand in buildings / Electric Demand
          A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]50000.5790
          A2P009: Annual energy demand for e-mobility
          A2P009: Annual energy demand for e-mobility [GWh/annum]0
          A2P010: Annual energy demand for urban infrastructure
          A2P010: Annual energy demand for urban infrastructure [GWh/annum]9
          A2P011: Annual renewable electricity production on-site during target year
          A2P011: PVyesnoyesnonoyesnono
          A2P011: PV - specify production in GWh/annum [GWh/annum]1.24
          A2P011: Windnonononoyesnonono
          A2P011: Wind - specify production in GWh/annum [GWh/annum]
          A2P011: Hydronononononoyesnono
          A2P011: Hydro - specify production in GWh/annum [GWh/annum]1.28
          A2P011: Biomass_elnononononononono
          A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
          A2P011: Biomass_peat_elnononononononono
          A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
          A2P011: PVT_elnonononoyesyesnono
          A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.28
          A2P011: Othernononononononono
          A2P011: Other - specify production in GWh/annum [GWh/annum]
          A2P012: Annual renewable thermal production on-site during target year
          A2P012: Geothermalyesnonononononono
          A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
          A2P012: Solar Thermalnononononononono
          A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_heatnonononoyesnonono
          A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
          A2P012: Waste heat+HPnononononononono
          A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_peat_heatnononononononono
          A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
          A2P012: PVT_thnononononoyesnono
          A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_firewood_thnononononononono
          A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
          A2P012: Othernononononoyesnono
          A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
          A2P013: Renewable resources on-site - Additional notes
          A2P013: Renewable resources on-site - Additional notesConventional power generation: The university’s heat supply is designed as a local centralized heat supply system. Electrical power, generated in combined heat and power (CHP) units, is delivered to the distribution network and sold to energy traders as regulated by local legislation and norms. There are two natural gas burners acting as heat sources (3MW and 6MW capacity), and two CHP units (1.6MW and 0.45MW thermal capacity). All heating is supplied from the CHP plants. Renewable Energy Sources (RES): a wind turbine (3.6 kW) and PV panels (11.7 kW) are connected to the faculty microgrid. In the future it is planned to power the campus entirely from local RES.
          A2P014: Annual energy use
          A2P014: Annual energy use [GWh/annum]
          A2P015: Annual energy delivered
          A2P015: Annual energy delivered [GWh/annum]
          A2P016: Annual non-renewable electricity production on-site during target year
          A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]0
          A2P017: Annual non-renewable thermal production on-site during target year
          A2P017: Gasnonoyesnoyesnonono
          A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Coalnononononononono
          A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Oilnononononononono
          A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Othernononononononono
          A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P018: Annual renewable electricity imports from outside the boundary during target year
          A2P018: PVnononononononono
          A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
          A2P018: Windnononononononono
          A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
          A2P018: Hydronononononononono
          A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_elnononononononono
          A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_peat_elnononononononono
          A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: PVT_elnononononononono
          A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Othernononononononono
          A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
          A2P019: Annual renewable thermal imports from outside the boundary during target year
          A2P019: Geothermalnononononononono
          A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Solar Thermalnononononononono
          A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_heatnononononononono
          A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Waste heat+HPnononononononono
          A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_peat_heatnononononononono
          A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
          A2P019: PVT_thnononononononono
          A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_firewood_thnononononononono
          A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Othernononononononono
          A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
          A2P020: Share of RES on-site / RES outside the boundary
          A2P020: Share of RES on-site / RES outside the boundary00000000
          A2P021: GHG-balance calculated for the PED
          A2P021: GHG-balance calculated for the PED [tCO2/annum]
          A2P022: KPIs related to the PED case study / PED Lab
          A2P022: Safety & Security
          A2P022: Health
          A2P022: Education
          A2P022: MobilityImproved accessibility to V2G-related transport options, focusing on inclusivity and equitable adoption in urban districts
          A2P022: EnergyYesTarget zero greenhouse gas emissions through the adoption of EVs with V2G capabilities, aiming to reduce reliance on fossil fuels and enhance local grid stabilityYes
          A2P022: Water
          A2P022: Economic developmentDevelopment of viable business models for V2G that allow decentralized energy markets to integrate with the grid, enhancing local economic resilience
          A2P022: Housing and Community
          A2P022: Waste
          A2P022: Other
          A2P023: Technological Solutions / Innovations - Energy Generation
          A2P023: Photovoltaicsyesnoyesyesnoyesyesyes
          A2P023: Solar thermal collectorsnononononoyesnono
          A2P023: Wind Turbinesnononoyesnononono
          A2P023: Geothermal energy systemnonononononoyesno
          A2P023: Waste heat recoverynononononononono
          A2P023: Waste to energynononononononono
          A2P023: Polygenerationnononononononono
          A2P023: Co-generationnononononononono
          A2P023: Heat Pumpnononononoyesyesno
          A2P023: Hydrogennononononononono
          A2P023: Hydropower plantnononononoyesnono
          A2P023: Biomassnononononononono
          A2P023: Biogasnononononononono
          A2P023: OtherPhotovoltaics are considered for the next yearsBatteries
          A2P024: Technological Solutions / Innovations - Energy Flexibility
          A2P024: A2P024: Information and Communication Technologies (ICT)yesyesyesnoyesyesnoyes
          A2P024: Energy management systemnoyesyesyesyesyesyesyes
          A2P024: Demand-side managementyesyesnoyesyesyesnono
          A2P024: Smart electricity gridyesnoyesyesyesnonono
          A2P024: Thermal Storagenonononoyesnonono
          A2P024: Electric Storagenonoyesyesyesnonono
          A2P024: District Heating and Coolingnonononoyesnonono
          A2P024: Smart metering and demand-responsive control systemsyesnononoyesnonono
          A2P024: P2P – buildingsnononononoyesnoyes
          A2P024: Other
          A2P025: Technological Solutions / Innovations - Energy Efficiency
          A2P025: Deep Retrofittingnoyesnoyesnoyesnono
          A2P025: Energy efficiency measures in historic buildingsnoyesnononoyesnono
          A2P025: High-performance new buildingsnononononononono
          A2P025: Smart Public infrastructure (e.g. smart lighting)nononoyesnononoyes
          A2P025: Urban data platformsnononoyesyesyesnoyes
          A2P025: Mobile applications for citizensnonononoyesnonono
          A2P025: Building services (HVAC & Lighting)noyesyesnoyesnonono
          A2P025: Smart irrigationnononononononono
          A2P025: Digital tracking for waste disposalnononononononono
          A2P025: Smart surveillancenoyesnononononono
          A2P025: Other
          A2P026: Technological Solutions / Innovations - Mobility
          A2P026: Efficiency of vehicles (public and/or private)nonoyesyesnoyesnono
          A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nononoyesnononono
          A2P026: e-Mobilitynononoyesnoyesyesno
          A2P026: Soft mobility infrastructures and last mile solutionsnononononoyesnono
          A2P026: Car-free areanononononononono
          A2P026: Other
          A2P027: Mobility strategies - Additional notes
          A2P027: Mobility strategies - Additional notes
          A2P028: Energy efficiency certificates
          A2P028: Energy efficiency certificatesNoNoYesYes
          A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Spain it is mandatory in order to buy or rent a house or a dwelling)
          A2P029: Any other building / district certificates
          A2P029: Any other building / district certificatesNoNoNo
          A2P029: If yes, please specify and/or enter notes
          A3P001: Relevant city /national strategy
          A3P001: Relevant city /national strategy
          • Promotion of energy communities (REC/CEC)
          • Smart cities strategies,
          • New development strategies
          • Smart cities strategies,
          • Promotion of energy communities (REC/CEC),
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Smart cities strategies,
          • Energy master planning (SECAP, etc.)
          • Climate change adaption plan/strategy (e.g. Climate City contract)
          A3P002: Quantitative targets included in the city / national strategy
          A3P002: Quantitative targets included in the city / national strategy
          A3P003: Strategies towards decarbonization of the gas grid
          A3P003: Strategies towards decarbonization of the gas grid
          • Electrification of Heating System based on Heat Pumps
          A3P003: Other
          A3P004: Identification of needs and priorities
          A3P004: Identification of needs and priorities-Allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation -Pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.
          A3P005: Sustainable behaviour
          A3P005: Sustainable behaviour-Improving the development of Net Zero Energy Buildings and Flexible Energy buildings.
          A3P006: Economic strategies
          A3P006: Economic strategies
          • Local trading
          • Innovative business models,
          • Demand management Living Lab
          • Demand management Living Lab
          • Innovative business models,
          • Local trading,
          • Existing incentives
          • Open data business models,
          • Innovative business models,
          • Demand management Living Lab
          • Local trading,
          • Existing incentives
          A3P006: Other
          A3P007: Social models
          A3P007: Social models
          • Behavioural Change / End-users engagement,
          • Citizen/owner involvement in planning and maintenance
          • Digital Inclusion,
          • Citizen/owner involvement in planning and maintenance,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Digital Inclusion,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Behavioural Change / End-users engagement,
          • Social incentives,
          • Prevention of energy poverty,
          • Digital Inclusion
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies
          • Strategies towards (local) community-building,
          • Behavioural Change / End-users engagement,
          • Citizen/owner involvement in planning and maintenance,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Co-creation / Citizen engagement strategies
          A3P007: Other
          A3P008: Integrated urban strategies
          A3P008: Integrated urban strategies
          • Strategic urban planning
          • Digital twinning and visual 3D models
          • Strategic urban planning,
          • District Energy plans
          • Digital twinning and visual 3D models
          • Strategic urban planning,
          • City Vision 2050,
          • SECAP Updates
          A3P008: Other
          A3P009: Environmental strategies
          A3P009: Environmental strategies
          • Energy Neutral,
          • Carbon-free
          • Energy Neutral,
          • Low Emission Zone,
          • Pollutants Reduction,
          • Greening strategies
          • Energy Neutral,
          • Low Emission Zone,
          • Nature Based Solutions (NBS)
          • Energy Neutral
          • Low Emission Zone
          A3P009: Other
          A3P010: Legal / Regulatory aspects
          A3P010: Legal / Regulatory aspects- European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.
          B1P001: PED/PED relevant concept definition
          B1P001: PED/PED relevant concept definitionExPEDite aims at creating and deploying a novel digital twin, allowing for real-time monitoring, visualization and management of district-level energy flows. Cities consume 65% of the world’s energy supply and are responsible for 70% of the CO² emissions, hence sharing a lot of the responsibility for climate change. We are faced with the challenge of redesigning our existing cities to make them more sustainable, resilient, inclusive and safe. Developing Positive Energy Districts (PEDs), is a breakthrough way to deal with the issue of urban emissions and applying adaptation and mitigation strategies to climate change, while ensuring that these urban areas generate an annual surplus of renewable energy and net zero greenhouse gas emissions. PEDs must address environmental, economic and social issues, providing solutions to energy consumption, production, emissions, transport & mobility and livability. By constantly monitoring and evaluating parameters through existing and/or novel sensor systems (e.g., renewable energy production/supply, transport conditions, air quality, energy demand, meteorological conditions, etc.), unconventional techniques may be applied to provide more sustainable options for the district’s needs.
          B1P002: Motivation behind PED/PED relevant project development
          B1P002: Motivation behind PED/PED relevant project developmentExpected outcome 1 Increased number of (tangible) city planning actions for positive clean energy districts using the (proto-)PED design, development and management digital twin tools (based on pre-market research learnings) using open-standards based components which can be reused elsewhere. 2 Increased integration of existing smaller scale management systems (e.g. Building management systems) with open-standards based operational city platforms using sectorial data (e.g. building data, mobility, urban planning, etc.). 3 Enhanced data gathering approaches with identification of relevant multidimensional data sets (e.g. meteorological, load profile, social, geo-spatial, etc.) high-resolution real-time data streams (e.g. renewable energy production, energy consumption), and relevant forecasting data, drawing also on the work of common European data spaces. 4 Increased number of city planning departments / approaches using common data and (replicable) elements and processes. 5 Consolidated city sensor network specifications, complemented by appropriate data gathering approaches for soft data. 6 Improved performance of AI based self-learning systems for optimization of positive clean energy districts and bottom-up complex models. 7 Enhanced innovation capacity of local/regional administrations and accelerated uptake of shared, smart and sustainable zero emission solutions.
          B1P003: Environment of the case study area
          B2P003: Environment of the case study areaSuburban areaUrban areaUrban areaUrban area
          B1P004: Type of district
          B2P004: Type of district
          • New construction
          • New construction,
          • Renovation
          • Renovation
          B1P005: Case Study Context
          B1P005: Case Study Context
          • New Development
          • Re-use / Transformation Area,
          • Retrofitting Area,
          • Preservation Area
          • Retrofitting Area
          B1P006: Year of construction
          B1P006: Year of construction
          B1P007: District population before intervention - Residential
          B1P007: District population before intervention - Residential
          B1P008: District population after intervention - Residential
          B1P008: District population after intervention - Residential
          B1P009: District population before intervention - Non-residential
          B1P009: District population before intervention - Non-residential
          B1P010: District population after intervention - Non-residential
          B1P010: District population after intervention - Non-residential
          B1P011: Population density before intervention
          B1P011: Population density before intervention0000000
          B1P012: Population density after intervention
          B1P012: Population density after intervention0000000
          B1P013: Building and Land Use before intervention
          B1P013: Residentialnononononoyesnono
          B1P013 - Residential: Specify the sqm [m²]
          B1P013: Officenononononononono
          B1P013 - Office: Specify the sqm [m²]
          B1P013: Industry and Utilitynononononononono
          B1P013 - Industry and Utility: Specify the sqm [m²]
          B1P013: Commercialnononononononono
          B1P013 - Commercial: Specify the sqm [m²]
          B1P013: Institutionalnononononononono
          B1P013 - Institutional: Specify the sqm [m²]
          B1P013: Natural areasyesnonononononono
          B1P013 - Natural areas: Specify the sqm [m²]
          B1P013: Recreationalnononononononono
          B1P013 - Recreational: Specify the sqm [m²]
          B1P013: Dismissed areasnononononononono
          B1P013 - Dismissed areas: Specify the sqm [m²]
          B1P013: Othernononononoyesnono
          B1P013 - Other: Specify the sqm [m²]
          B1P014: Building and Land Use after intervention
          B1P014: Residentialnononononoyesnono
          B1P014 - Residential: Specify the sqm [m²]
          B1P014: Officenononononononono
          B1P014 - Office: Specify the sqm [m²]
          B1P014: Industry and Utilitynononononononono
          B1P014 - Industry and Utility: Specify the sqm [m²]
          B1P014: Commercialnononononononono
          B1P014 - Commercial: Specify the sqm [m²]
          B1P014: Institutionalnononononononono
          B1P014 - Institutional: Specify the sqm [m²]
          B1P014: Natural areasnononononononono
          B1P014 - Natural areas: Specify the sqm [m²]
          B1P014: Recreationalnononononononono
          B1P014 - Recreational: Specify the sqm [m²]
          B1P014: Dismissed areasnononononononono
          B1P014 - Dismissed areas: Specify the sqm [m²]
          B1P014: Othernononononoyesnono
          B1P014 - Other: Specify the sqm [m²]
          B2P001: PED Lab concept definition
          B2P001: PED Lab concept definitionaddressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation
          B2P002: Installation life time
          B2P002: Installation life time
          B2P003: Scale of action
          B2P003: ScaleVirtual
          B2P004: Operator of the installation
          B2P004: Operator of the installationIREC
          B2P005: Replication framework: Applied strategy to reuse and recycling the materials
          B2P005: Replication framework: Applied strategy to reuse and recycling the materials
          B2P006: Circular Economy Approach
          B2P006: Do you apply any strategy to reuse and recycling the materials?No
          B2P006: Other
          B2P007: Motivation for developing the PED Lab
          B2P007: Motivation for developing the PED Lab
          • Strategic,
          • Private
          B2P007: Other
          B2P008: Lead partner that manages the PED Lab
          B2P008: Lead partner that manages the PED LabResearch center/University
          B2P008: Other
          B2P009: Collaborative partners that participate in the PED Lab
          B2P009: Collaborative partners that participate in the PED Lab
          B2P009: Other
          B2P010: Synergies between the fields of activities
          B2P010: Synergies between the fields of activities
          B2P011: Available facilities to test urban configurations in PED Lab
          B2P011: Available facilities to test urban configurations in PED Lab
          • Demand-side management,
          • Energy storage,
          • Energy networks,
          • Efficiency measures,
          • Information and Communication Technologies (ICT)
          B2P011: Other
          B2P012: Incubation capacities of PED Lab
          B2P012: Incubation capacities of PED Lab
          • Monitoring and evaluation infrastructure,
          • Tools for prototyping and modelling,
          • Tools, spaces, events for testing and validation
          B2P013: Availability of the facilities for external people
          B2P013: Availability of the facilities for external people
          B2P014: Monitoring measures
          B2P014: Monitoring measures
          • Equipment
          B2P015: Key Performance indicators
          B2P015: Key Performance indicators
          • Energy,
          • Environmental
          B2P016: Execution of operations
          B2P016: Execution of operations
          B2P017: Capacities
          B2P017: Capacities- Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network.
          B2P018: Relations with stakeholders
          B2P018: Relations with stakeholders
          B2P019: Available tools
          B2P019: Available tools
          • Energy modelling
          B2P019: Available tools
          B2P020: External accessibility
          B2P020: External accessibility
          C1P001: Unlocking Factors
          C1P001: Recent technological improvements for on-site RES production3 - Moderately important4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important
          C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important4 - Important3 - Moderately important5 - Very important5 - Very important1 - Unimportant2 - Slightly important5 - Very important
          C1P001: Storage systems and E-mobility market penetration5 - Very important3 - Moderately important5 - Very important5 - Very important4 - Important1 - Unimportant1 - Unimportant4 - Important
          C1P001: Decreasing costs of innovative materials1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant
          C1P001: Financial mechanisms to reduce costs and maximize benefits3 - Moderately important3 - Moderately important5 - Very important5 - Very important5 - Very important1 - Unimportant4 - Important4 - Important
          C1P001: The ability to predict Multiple Benefits2 - Slightly important2 - Slightly important4 - Important4 - Important5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important
          C1P001: The ability to predict the distribution of benefits and impacts4 - Important3 - Moderately important4 - Important4 - Important5 - Very important1 - Unimportant5 - Very important2 - Slightly important
          C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)4 - Important3 - Moderately important1 - Unimportant5 - Very important5 - Very important1 - Unimportant4 - Important4 - Important
          C1P001: Social acceptance (top-down)4 - Important4 - Important1 - Unimportant4 - Important4 - Important1 - Unimportant5 - Very important4 - Important
          C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)4 - Important4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant4 - Important5 - Very important
          C1P001: Presence of integrated urban strategies and plans5 - Very important3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant4 - Important2 - Slightly important
          C1P001: Multidisciplinary approaches available for systemic integration4 - Important4 - Important4 - Important4 - Important5 - Very important1 - Unimportant4 - Important2 - Slightly important
          C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects1 - Unimportant5 - Very important5 - Very important5 - Very important5 - Very important1 - Unimportant4 - Important4 - Important
          C1P001: Availability of RES on site (Local RES)5 - Very important5 - Very important4 - Important5 - Very important4 - Important1 - Unimportant5 - Very important4 - Important
          C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders3 - Moderately important4 - Important5 - Very important5 - Very important4 - Important1 - Unimportant5 - Very important3 - Moderately important
          C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P001: Any other UNLOCKING FACTORS (if any)
          C1P002: Driving Factors
          C1P002: Climate Change adaptation need3 - Moderately important4 - Important4 - Important4 - Important5 - Very important1 - Unimportant5 - Very important4 - Important
          C1P002: Climate Change mitigation need (local RES production and efficiency)3 - Moderately important4 - Important4 - Important5 - Very important4 - Important1 - Unimportant5 - Very important4 - Important
          C1P002: Rapid urbanization trend and need of urban expansions2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
          C1P002: Urban re-development of existing built environment1 - Unimportant1 - Unimportant4 - Important4 - Important4 - Important1 - Unimportant4 - Important3 - Moderately important
          C1P002: Economic growth need1 - Unimportant2 - Slightly important4 - Important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
          C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)1 - Unimportant5 - Very important4 - Important5 - Very important4 - Important1 - Unimportant1 - Unimportant4 - Important
          C1P002: Territorial and market attractiveness1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant4 - Important
          C1P002: Energy autonomy/independence2 - Slightly important5 - Very important5 - Very important5 - Very important4 - Important1 - Unimportant1 - Unimportant4 - Important
          C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P002: Any other DRIVING FACTOR (if any)
          C1P003: Administrative barriers
          C1P003: Difficulty in the coordination of high number of partners and authorities1 - Unimportant2 - Slightly important4 - Important4 - Important4 - Important1 - Unimportant5 - Very important5 - Very important
          C1P003: Lack of good cooperation and acceptance among partners1 - Unimportant2 - Slightly important1 - Unimportant4 - Important4 - Important1 - Unimportant4 - Important4 - Important
          C1P003: Lack of public participation1 - Unimportant4 - Important2 - Slightly important5 - Very important4 - Important1 - Unimportant1 - Unimportant4 - Important
          C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important4 - Important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
          C1P003:Long and complex procedures for authorization of project activities1 - Unimportant4 - Important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important
          C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy1 - Unimportant4 - Important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important
          C1P003: Complicated and non-comprehensive public procurement1 - Unimportant4 - Important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important
          C1P003: Fragmented and or complex ownership structure1 - Unimportant2 - Slightly important5 - Very important2 - Slightly important3 - Moderately important1 - Unimportant5 - Very important4 - Important
          C1P003: City administration & cross-sectoral attitude/approaches (silos)1 - Unimportant2 - Slightly important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important
          C1P003: Lack of internal capacities to support energy transition1 - Unimportant3 - Moderately important4 - Important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
          C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P003: Any other Administrative BARRIER (if any)
          C1P004: Policy barriers
          C1P004: Lack of long-term and consistent energy plans and policies4 - Important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important5 - Very important
          C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
          C1P004: Lack of Cooperation & support between national-regional-local entities1 - Unimportant3 - Moderately important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
          C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
          C1P004: Any other Political BARRIER (if any)
          C1P005: Legal and Regulatory barriers
          C1P005: Inadequate regulations for new technologies1 - Unimportant2 - Slightly important5 - Very important5 - Very important4 - Important1 - Unimportant2 - Slightly important4 - Important
          C1P005: Regulatory instability1 - Unimportant2 - Slightly important2 - Slightly important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P005: Non-effective regulations1 - Unimportant2 - Slightly important2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important
          C1P005: Unfavorable local regulations for innovative technologies1 - Unimportant2 - Slightly important4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
          C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant2 - Slightly important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
          C1P005: Insufficient or insecure financial incentives3 - Moderately important2 - Slightly important5 - Very important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
          C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
          C1P005: Shortage of proven and tested solutions and examples1 - Unimportant2 - Slightly important4 - Important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
          C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P005: Any other Legal and Regulatory BARRIER (if any)
          C1P006: Environmental barriers
          C1P006: Environmental barriers
          C1P007: Technical barriers
          C1P007: Lack of skilled and trained personnel1 - Unimportant2 - Slightly important5 - Very important4 - Important4 - Important1 - Unimportant1 - Unimportant4 - Important
          C1P007: Deficient planning3 - Moderately important2 - Slightly important5 - Very important4 - Important4 - Important1 - Unimportant1 - Unimportant4 - Important
          C1P007: Retrofitting work in dwellings in occupied state1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
          C1P007: Lack of well-defined process1 - Unimportant2 - Slightly important4 - Important4 - Important4 - Important1 - Unimportant4 - Important3 - Moderately important
          C1P007: Inaccuracy in energy modelling and simulation5 - Very important2 - Slightly important5 - Very important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important
          C1P007: Lack/cost of computational scalability1 - Unimportant2 - Slightly important4 - Important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
          C1P007: Grid congestion, grid instability1 - Unimportant2 - Slightly important5 - Very important5 - Very important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
          C1P007: Negative effects of project intervention on the natural environment1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
          C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
          C1P007: Difficult definition of system boundaries1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important
          C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P007: Any other Thecnical BARRIER (if any)
          C1P008: Social and Cultural barriers
          C1P008: Inertia1 - Unimportant3 - Moderately important4 - Important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important
          C1P008: Lack of values and interest in energy optimization measurements1 - Unimportant5 - Very important5 - Very important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
          C1P008: Low acceptance of new projects and technologies1 - Unimportant3 - Moderately important5 - Very important5 - Very important4 - Important1 - Unimportant1 - Unimportant4 - Important
          C1P008: Difficulty of finding and engaging relevant actors4 - Important3 - Moderately important5 - Very important4 - Important3 - Moderately important1 - Unimportant2 - Slightly important4 - Important
          C1P008: Lack of trust beyond social network1 - Unimportant2 - Slightly important3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important4 - Important
          C1P008: Rebound effect1 - Unimportant2 - Slightly important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
          C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant4 - Important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
          C1P008: Exclusion of socially disadvantaged groups1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant4 - Important5 - Very important
          C1P008: Non-energy issues are more important and urgent for actors1 - Unimportant2 - Slightly important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important
          C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
          C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P008: Any other Social BARRIER (if any)
          C1P009: Information and Awareness barriers
          C1P009: Insufficient information on the part of potential users and consumers5 - Very important2 - Slightly important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
          C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts1 - Unimportant3 - Moderately important5 - Very important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
          C1P009: Lack of awareness among authorities3 - Moderately important4 - Important2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
          C1P009: Information asymmetry causing power asymmetry of established actors2 - Slightly important2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
          C1P009: High costs of design, material, construction, and installation1 - Unimportant2 - Slightly important5 - Very important5 - Very important3 - Moderately important1 - Unimportant5 - Very important4 - Important
          C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P009: Any other Information and Awareness BARRIER (if any)
          C1P010: Financial barriers
          C1P010: Hidden costs1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant5 - Very important
          C1P010: Insufficient external financial support and funding for project activities1 - Unimportant2 - Slightly important5 - Very important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
          C1P010: Economic crisis1 - Unimportant3 - Moderately important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
          C1P010: Risk and uncertainty2 - Slightly important4 - Important5 - Very important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
          C1P010: Lack of consolidated and tested business models4 - Important4 - Important5 - Very important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
          C1P010: Limited access to capital and cost disincentives1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
          C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P010: Any other Financial BARRIER (if any)
          C1P011: Market barriers
          C1P011: Split incentives1 - Unimportant3 - Moderately important4 - Important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
          C1P011: Energy price distortion1 - Unimportant3 - Moderately important5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
          C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant3 - Moderately important5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant4 - Important
          C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P011: Any other Market BARRIER (if any)
          C1P012: Stakeholders involved
          C1P012: Government/Public Authorities
          • Design/demand aggregation
          • Planning/leading
          C1P012: Research & Innovation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Financial/Funding
          • Planning/leading,
          • Design/demand aggregation,
          • Monitoring/operation/management
          C1P012: Analyst, ICT and Big Data
          • Monitoring/operation/management
          • Planning/leading,
          • Monitoring/operation/management
          C1P012: Business process management
          • Design/demand aggregation
          • Monitoring/operation/management
          C1P012: Urban Services providers
          • Design/demand aggregation
          • Planning/leading,
          • Monitoring/operation/management
          C1P012: Real Estate developers
          • Construction/implementation
          • Construction/implementation
          C1P012: Design/Construction companies
          • Design/demand aggregation
          • Construction/implementation
          C1P012: End‐users/Occupants/Energy Citizens
          • Monitoring/operation/management
          • Design/demand aggregation
          C1P012: Social/Civil Society/NGOs
          • Design/demand aggregation
          • Design/demand aggregation
          C1P012: Industry/SME/eCommerce
          • Construction/implementation
          • Construction/implementation
          C1P012: Other
          C1P012: Other (if any)
          Summary

          Authors (framework concept)

          Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

          Contributors (to the content)

          Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

          Implemented by

          Boutik.pt: Filipe Martins, Jamal Khan
          Marek Suchánek (Czech Technical University in Prague)