Filters:
NameProjectTypeCompare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Compare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Compare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Compare
Pamplona OPEN4CEC PED Lab Uncompare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr, Geothermal District Heating Project PED Relevant Case Study Compare
Drammen, Jacobs Borchs Gate PED Relevant Case Study Compare
Freiburg im Breisgau, Dietenbach PED Relevant Case Study Compare
Lecce, SmartEnCity SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
Trento, STARDUST STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Malmö, Klimatkontrakt Hyllie PED Relevant Case Study Uncompare
Kaiserslautern, EnStadt:Pfaff PED Relevant Case Study / PED Lab Compare
Helsinki, mySMARTlife PED Relevant Case Study Compare
Firenze, Novoli-Cascine district on “le PIagge” buildings PED Relevant Case Study Compare
Bolzano, Sinfonia PED Relevant Case Study Compare
Zürich, Hunziker Areal PED Relevant Case Study Compare
Hammarby Sjöstad, Hammarby Sjöstad 2.0 PED Relevant Case Study Compare
Milano, Sharing Cities PED Relevant Case Study Compare
Mieres, District Heating Pozo Barredo PED Relevant Case Study Compare
Lund, Cityfied (demo Linero) PED Relevant Case Study Compare
Espoo, Smart Otaniemi PED Relevant Case Study / PED Lab Compare
Vienna, Zukunftsquartier PED Case Study Compare
Trento, Santa Chiara Open Lab PED Case Study Compare
Paterna, Barrio La Pinada PED Case Study / PED Lab Compare
Bergen, Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru, +CityxChange PED Case Study Compare
Trondheim, NTNU Campus within the Knowledge Axis ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Oslo, Furuset project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Măgurele, Laser Valley – Land of Lights PED Case Study Compare
Elverum, Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bodø, Airport, NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bærum, Fornebu ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Carquefou, Fleuraye west PED Case Study Compare
Åland, Smart Energy PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Uncompare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Uncompare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Uncompare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Uncompare
TitleHalmstad, Fyllinge
Malmö, Klimatkontrakt Hyllie
Izmir, District of Karşıyaka
Istanbul, Ozyegin University Campus
Pamplona
Kifissia, Energy community
Barcelona, SEILAB & Energy SmartLab
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabHalmstad, FyllingeMalmö, Klimatkontrakt HyllieIzmir, District of KarşıyakaIstanbul, Ozyegin University CampusPamplonaKifissia, Energy communityBarcelona, SEILAB & Energy SmartLab
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynonoyesnononono
PED relevant case studyyesyesnoyesnoyesno
PED Lab.nonononoyesnoyes
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesyesyesyesnono
Annual energy surplusnonoyesnononono
Energy communityyesnononoyesyesyes
Circularitynonononononono
Air quality and urban comfortnonoyesyesnoyesno
Electrificationnononoyesnoyesyes
Net-zero energy costnonoyesnononono
Net-zero emissionnoyesnonononoyes
Self-sufficiency (energy autonomous)nonononononoyes
Maximise self-sufficiencynonoyesnononono
Othernoyesnoyesnonoyes
Other (A1P004)Carbon-free; Sustainable neighbourhoodalmost nZEB districtGreen IT
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhaseIn operationPlanning PhaseImplementation PhaseImplementation PhasePlanning PhaseIn operation
A1P006: Start Date
A1P006: Start date01/2101/1110/2210/2406/2401/2011
A1P007: End Date
A1P007: End date01/3010/2510/2807/2802/2013
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • General statistical datasets
  • Monitoring data available within the districts
  • General statistical datasets
  • General statistical datasets
A1P009: OtherOther
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
          A1P011: Geographic coordinates
          X Coordinate (longitude):12.9205412.97518127.11004929.258300-1.6432323.8145882.1
          Y Coordinate (latitude):56.6519455.56150438.49605441.03060042.8168738.07734941.3
          A1P012: Country
          A1P012: CountrySwedenSwedenTurkeyTurkeySpainGreeceSpain
          A1P013: City
          A1P013: CityHalmstadMalmöİzmirIstanbulPamplonaMunicipality of KifissiaBarcelona and Tarragona
          A1P014: Climate Zone (Köppen Geiger classification)
          A1P014: Climate Zone (Köppen Geiger classification).DwbCfbCsaCfaCfbCsaCsa
          A1P015: District boundary
          A1P015: District boundaryGeographicGeographicGeographicGeographicVirtualVirtual
          OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhood
          A1P016: Ownership of the case study/PED Lab
          A1P016: Ownership of the case study/PED Lab:MixedMixedPrivatePrivateMixedPublic
          A1P017: Ownership of the land / physical infrastructure
          A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersMultiple OwnersSingle OwnerMultiple OwnersSingle Owner
          A1P018: Number of buildings in PED
          A1P018: Number of buildings in PED25021150
          A1P019: Conditioned space
          A1P019: Conditioned space [m²]102795
          A1P020: Total ground area
          A1P020: Total ground area [m²]32600285.40023550000
          A1P021: Floor area ratio: Conditioned space / total ground area
          A1P021: Floor area ratio: Conditioned space / total ground area0030000
          A1P022: Financial schemes
          A1P022a: Financing - PRIVATE - Real estateyesnonoyesnonono
          A1P022a: Add the value in EUR if available [EUR]
          A1P022b: Financing - PRIVATE - ESCO schemenonononononono
          A1P022b: Add the value in EUR if available [EUR]
          A1P022c: Financing - PRIVATE - Othernonononononono
          A1P022c: Add the value in EUR if available [EUR]
          A1P022d: Financing - PUBLIC - EU structural fundingnonononononono
          A1P022d: Add the value in EUR if available [EUR]
          A1P022e: Financing - PUBLIC - National fundingnonononononono
          A1P022e: Add the value in EUR if available [EUR]
          A1P022f: Financing - PUBLIC - Regional fundingnonononononono
          A1P022f: Add the value in EUR if available [EUR]
          A1P022g: Financing - PUBLIC - Municipal fundingnonononoyesnono
          A1P022g: Add the value in EUR if available [EUR]
          A1P022h: Financing - PUBLIC - Othernonononononono
          A1P022h: Add the value in EUR if available [EUR]
          A1P022i: Financing - RESEARCH FUNDING - EUyesnoyesyesnonono
          A1P022i: Add the value in EUR if available [EUR]1193355
          A1P022j: Financing - RESEARCH FUNDING - Nationalnonoyesnononono
          A1P022j: Add the value in EUR if available [EUR]
          A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononono
          A1P022k: Add the value in EUR if available [EUR]
          A1P022l: Financing - RESEARCH FUNDING - Othernonononononono
          A1P022l: Add the value in EUR if available [EUR]
          A1P022: Other
          A1P023: Economic Targets
          A1P023: Economic Targets
          • Boosting local and sustainable production
          • Positive externalities,
          • Boosting local and sustainable production
          • Positive externalities,
          • Boosting local and sustainable production,
          • Boosting consumption of local and sustainable products
          • Job creation,
          • Boosting local and sustainable production
          A1P023: Other
          A1P024: More comments:
          A1P024: More comments:In addition to having the most energy efficient academic building in Turkey, the university campus also has 3 buildings with LEED NC Campus certificate and LEED BD+C Gold certificate. In addition, it aims to continuously improve the energy efficiency objectives on campus in an innovative way. For this purpose, energy management and storage systems are being installed in the Dormitory 6 building, which is used as the demo area of the LEGOFIT project, for the purpose of turning it into a PED project.Semi-Virtual Energy Integration Laboratory (SEILAB) The Energy Smart Lab is an infrastructure conceived as a flexible and versatile platform for innovative technological developments for both industry and competitive R+D projects. The areas of expertise of this laboratory pivot around the following technologies: – Power Electronics for the integration and control of the elements within a building or community: Renewable Energy Sources (RES), Energy Storage Systems and Electric Vehicles (EV) – ICT Platform for smart communications and energy management of systems, building, networks and communities. – Energy System Integration technologies for smart and flexible buildings and grids including RES and EV. The laboratory operation is based on the hardware emulation approach, which allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation. The laboratory is pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.
          A1P025: Estimated PED case study / PED LAB costs
          A1P025: Estimated PED case study / PED LAB costs [mil. EUR]1
          Contact person for general enquiries
          A1P026: NameMarkus OlofsgårdChristoph GollnerOzlem SenyolCem KeskinOscar Puyal LAtorreArtemis Giavasoglou, Kleopatra KalampokaDr. Jaume Salom, Dra. Cristina Corchero
          A1P027: OrganizationAFRYFFGKarsiyaka MunicipalityCenter for Energy, Environment and Economy, Ozyegin UniversityEndef Engineering SLMunicipality of Kifissia – SPARCS local teamIREC
          A1P028: AffiliationOtherOtherMunicipality / Public BodiesResearch Center / UniversitySME / IndustryMunicipality / Public BodiesResearch Center / University
          A1P028: Other
          A1P029: Emailmarkus.olofsgard@afry.comchristoph.gollner@ffg.atozlemkocaer2@gmail.comcem.keskin@ozyegin.edu.troscar.puyal@endef.comgiavasoglou@kifissia.grJsalom@irec.cat
          Contact person for other special topics
          A1P030: NameHasan Burak CavkaM. Pınar MengüçStavros Zapantis - vice mayor
          A1P031: Emailhasancavka@iyte.edu.trpinar.menguc@ozyegin.edu.trstavros.zapantis@gmail.com
          Pursuant to the General Data Protection RegulationYesYesYesYesYesYes
          A2P001: Fields of application
          A2P001: Fields of application
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies
          • Energy production,
          • Waste management
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • Urban comfort (pollution, heat island, noise level etc.)
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies,
          • Waste management,
          • Indoor air quality,
          • Construction materials
          • Energy efficiency
          • Energy production
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies
          A2P001: Other
          A2P002: Tools/strategies/methods applied for each of the above-selected fields
          A2P002: Tools/strategies/methods applied for each of the above-selected fieldslink based regulation of electricity gridMethods involve studying the feasibility of digital PED references for the case cities about their energy, environmental, and economic performance by EnergyPlus tool. In case of insufficient energy data and the need of high resolution data, ‘Gaussian mixture model and expectation-maximization algorithm’ and ‘time-series decomposition-recombination’ method will be used to supplement data to EnergyPlus. The feasibility results will be returned to stakeholders for iterative discussion, and the iterative results will be used to update digital references. Replication plans are developed based on such a cooperation process for strategies to implement PEDs. If a PED is demonstrated during the project period, the measured data will be used to verify the feasibility model to optimize previous results (WP7– R3 & R4). In the MAKING-CITY project, the overall PED design method is developed, which will be further optimised in this project. In addition, PED-ACT will use the methods and knowledge, including how to choose a suitable PED in a city, energy balance calculation, and technologies available for PED. The RUGGEDISED project outputs the governance model into the replication plan in PED-ACT. Its ‘smart city open-data decision platform’ will illustrate an excellent example for the database in PED-ACT. The IEA EBC Annex 83 and Cost Action 19126 create the basis for data collection, developing existing PED databases, characterization of PED, and review of regulations of PED, as well as development of simulation tools. The UBEM project further enables a detailed high-resolution energy balance calculation of PED.LEED NC Campus + LEGOFIT Project Energy Efficiency: Tri- generation, Compliance with ISO 50001, ASHRAE 90.1, energy efficient appliances, HVAC and lighting Energy flexibility: Energy demand management Energy production: Solar PVs Onsite + (to be installed more) E-mobility: EV Charging stations Indoor Air Quality: Energy Management System, Compliance with ASHRAE 62.1, ASHRAE 55 Construction materials: Passive systems, LEED certified buildings, innovative materials such as PCM Waste Management: Zero waste documentEnergy SmartLab capacities - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. Energy SmartLab systems - SAFT Li-ion battery: maximum stored energy 20000 Wh, rated power 150 kW, rated discharge current 200 A, rated charge current 34 A, operating voltage 189 V – 227 V – 254 V, capacity 82 Ah. – Ultracapacitors: maximum stored energy 57 Wh, rated power 10 kW, rated current 20 A, peak current (<1s) 200 Apk, operating voltage 250 V – 500 V, capacity 1,65 F. – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah - 5 microgrid emulators (emulated power 5.5 kVA, max generation connected 10kVA, max consumption connected 10 kVA) - 1 grid emulator (Rated power: 200 kVA, Rated current per phase: 350 A, Rated current per neutral conductor: 35)
          A2P003: Application of ISO52000
          A2P003: Application of ISO52000NoYesYes
          A2P004: Appliances included in the calculation of the energy balance
          A2P004: Appliances included in the calculation of the energy balanceNoYesYesYes
          A2P005: Mobility included in the calculation of the energy balance
          A2P005: Mobility included in the calculation of the energy balanceYesNoNoYes
          A2P006: Description of how mobility is included (or not included) in the calculation
          A2P006: Description of how mobility is included (or not included) in the calculationMobility is not included in the calculations.Not included, the campus is a non car area except emergencies– Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah
          A2P007: Annual energy demand in buildings / Thermal demand
          A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]3.862
          A2P008: Annual energy demand in buildings / Electric Demand
          A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]1.226
          A2P009: Annual energy demand for e-mobility
          A2P009: Annual energy demand for e-mobility [GWh/annum]
          A2P010: Annual energy demand for urban infrastructure
          A2P010: Annual energy demand for urban infrastructure [GWh/annum]
          A2P011: Annual renewable electricity production on-site during target year
          A2P011: PVyesnoyesyesnoyesyes
          A2P011: PV - specify production in GWh/annum [GWh/annum]1.028
          A2P011: Windnonononononono
          A2P011: Wind - specify production in GWh/annum [GWh/annum]
          A2P011: Hydrononononononono
          A2P011: Hydro - specify production in GWh/annum [GWh/annum]
          A2P011: Biomass_elnonononononono
          A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
          A2P011: Biomass_peat_elnonononononono
          A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
          A2P011: PVT_elnonononononono
          A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
          A2P011: Othernonononononono
          A2P011: Other - specify production in GWh/annum [GWh/annum]
          A2P012: Annual renewable thermal production on-site during target year
          A2P012: Geothermalyesnononononono
          A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
          A2P012: Solar Thermalnonononononono
          A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_heatnonononononono
          A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
          A2P012: Waste heat+HPnonononononono
          A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_peat_heatnonononononono
          A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
          A2P012: PVT_thnonononononono
          A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_firewood_thnonononononono
          A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
          A2P012: Othernonononononono
          A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
          A2P013: Renewable resources on-site - Additional notes
          A2P013: Renewable resources on-site - Additional notes
          A2P014: Annual energy use
          A2P014: Annual energy use [GWh/annum]5.0883.5
          A2P015: Annual energy delivered
          A2P015: Annual energy delivered [GWh/annum]
          A2P016: Annual non-renewable electricity production on-site during target year
          A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]
          A2P017: Annual non-renewable thermal production on-site during target year
          A2P017: Gasnonoyesnononoyes
          A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Coalnonononononono
          A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Oilnonononononono
          A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Othernonononononono
          A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P018: Annual renewable electricity imports from outside the boundary during target year
          A2P018: PVnonoyesyesnonono
          A2P018 - PV: specify production in GWh/annum if available [GWh/annum]0.7070.00045547
          A2P018: Windnonononononono
          A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
          A2P018: Hydrononononononono
          A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_elnonononononono
          A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_peat_elnonononononono
          A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: PVT_elnonononononono
          A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Othernonononononono
          A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
          A2P019: Annual renewable thermal imports from outside the boundary during target year
          A2P019: Geothermalnonononononono
          A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Solar Thermalnonononononono
          A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_heatnonononononono
          A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Waste heat+HPnonononononono
          A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_peat_heatnonononononono
          A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
          A2P019: PVT_thnonononononono
          A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_firewood_thnonononononono
          A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Othernonononononono
          A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
          A2P020: Share of RES on-site / RES outside the boundary
          A2P020: Share of RES on-site / RES outside the boundary001.45403111739750000
          A2P021: GHG-balance calculated for the PED
          A2P021: GHG-balance calculated for the PED [tCO2/annum]
          A2P022: KPIs related to the PED case study / PED Lab
          A2P022: Safety & Security
          A2P022: Health
          A2P022: Education
          A2P022: Mobility
          A2P022: Energy
          A2P022: Water
          A2P022: Economic development
          A2P022: Housing and CommunityNumber of people interested in participating in an energy community
          A2P022: Waste
          A2P022: Other
          A2P023: Technological Solutions / Innovations - Energy Generation
          A2P023: Photovoltaicsyesyesyesyesyesnoyes
          A2P023: Solar thermal collectorsnoyesnonononono
          A2P023: Wind Turbinesnononoyesnonono
          A2P023: Geothermal energy systemnoyesnonononono
          A2P023: Waste heat recoverynoyesnonononono
          A2P023: Waste to energynonononononono
          A2P023: Polygenerationnonononononono
          A2P023: Co-generationnononoyesnonono
          A2P023: Heat Pumpnoyesyesyesnonono
          A2P023: Hydrogennonononononono
          A2P023: Hydropower plantnonononononono
          A2P023: Biomassnonononononono
          A2P023: Biogasnonononononono
          A2P023: Other
          A2P024: Technological Solutions / Innovations - Energy Flexibility
          A2P024: A2P024: Information and Communication Technologies (ICT)yesnonoyesnonoyes
          A2P024: Energy management systemnononoyesnonoyes
          A2P024: Demand-side managementyesnonoyesnonono
          A2P024: Smart electricity gridyesnononononoyes
          A2P024: Thermal Storagenonononononono
          A2P024: Electric Storagenononoyesnonoyes
          A2P024: District Heating and Coolingnoyesnoyesnonono
          A2P024: Smart metering and demand-responsive control systemsyesnonoyesyesnono
          A2P024: P2P – buildingsnonononononono
          A2P024: Other
          A2P025: Technological Solutions / Innovations - Energy Efficiency
          A2P025: Deep Retrofittingnonoyesnononono
          A2P025: Energy efficiency measures in historic buildingsnonononononono
          A2P025: High-performance new buildingsnononoyesnonono
          A2P025: Smart Public infrastructure (e.g. smart lighting)nonononononono
          A2P025: Urban data platformsnonononononono
          A2P025: Mobile applications for citizensnonononononono
          A2P025: Building services (HVAC & Lighting)nonoyesyesnonoyes
          A2P025: Smart irrigationnononoyesnonono
          A2P025: Digital tracking for waste disposalnonononononono
          A2P025: Smart surveillancenononoyesyesnono
          A2P025: Other
          A2P026: Technological Solutions / Innovations - Mobility
          A2P026: Efficiency of vehicles (public and/or private)nonononononoyes
          A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nonononononono
          A2P026: e-Mobilitynononoyesnonono
          A2P026: Soft mobility infrastructures and last mile solutionsnononoyesnonono
          A2P026: Car-free areanononoyesnonono
          A2P026: Other
          A2P027: Mobility strategies - Additional notes
          A2P027: Mobility strategies - Additional notes
          A2P028: Energy efficiency certificates
          A2P028: Energy efficiency certificatesNoNoYes
          A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwelling
          A2P029: Any other building / district certificates
          A2P029: Any other building / district certificatesNoNoYes
          A2P029: If yes, please specify and/or enter notesLEED BD+C, LEED NC CAMPUS
          A3P001: Relevant city /national strategy
          A3P001: Relevant city /national strategy
          • Promotion of energy communities (REC/CEC)
          • Urban Renewal Strategies,
          • Energy master planning (SECAP, etc.)
          • Energy master planning (SECAP, etc.),
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Smart cities strategies,
          • Energy master planning (SECAP, etc.),
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Energy master planning (SECAP, etc.),
          • Promotion of energy communities (REC/CEC)
          • Smart cities strategies,
          • New development strategies
          A3P002: Quantitative targets included in the city / national strategy
          A3P002: Quantitative targets included in the city / national strategyKarşıyaka Municipality is the first local government in Turkey to sign the Covenant of Mayors in 2011. During this period, the greenhouse gas inventory of the district was carried out three times and reduction targets were set for 2020 and 2030. In the 2021 Sustainable Energy and Climate Action Plan prepared as of the end of 2021, Karşıyaka Municipality has targeted a 40% reduction in its emissions for 2030 compared to the base year 2018. In the 2021 Sustainable Energy and Climate Action Plan, Karşıyaka Municipality aims to reduce its greenhouse gas emissions from 3.96 tCO2e / person in 2018 to 2.37 tCO2e / person in 2030. System solutions such as the use of renewable energy sources, air, ground or water source heat pump, cogeneration and microcogeneration are analysed by designers in order to fully or partially meet the energy requirements for heating, cooling, ventilation, hot water, electricity and lighting for all buildings with a floor area of less than 20,000 square metres. If at least 50% of the building's total energy consumption costs are covered by one or more of these applications, the points are taken in the assessment table in the Building and housing estate business certification guide of 2023.
          A3P003: Strategies towards decarbonization of the gas grid
          A3P003: Strategies towards decarbonization of the gas grid
          • Electrification of Heating System based on Heat Pumps
          • Electrification of Heating System based on Heat Pumps,
          • Electrification of Cooking Methods
          A3P003: OtherBoiler Automation, Energy Management System, Electric Battery Storage, Demand Management and Flexible Pricing
          A3P004: Identification of needs and priorities
          A3P004: Identification of needs and prioritiesAccording to the model developed for the district, the electrification of heating and cooling is necessary.Therefore, there needs to be the implementation of a heat pump. The building-integrated photovoltaic panelsshould follow. Through net-metering practices, the district is expected to reach energy positivity throughthis scenario.Carbon and Energy Neutrality-Allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation -Pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.
          A3P005: Sustainable behaviour
          A3P005: Sustainable behaviourUnder LEGOFIT project, promoting sustainable behavior for better occupant experience is a targeted aim under a work package.-Improving the development of Net Zero Energy Buildings and Flexible Energy buildings.
          A3P006: Economic strategies
          A3P006: Economic strategies
          • Local trading
          • Demand management Living Lab
          A3P006: Other
          A3P007: Social models
          A3P007: Social models
          • Behavioural Change / End-users engagement,
          • Citizen/owner involvement in planning and maintenance
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Affordability
          • Co-creation / Citizen engagement strategies
          • Digital Inclusion,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          A3P007: Other
          A3P008: Integrated urban strategies
          A3P008: Integrated urban strategies
          • Strategic urban planning
          • Digital twinning and visual 3D models,
          • District Energy plans,
          • SECAP Updates
          • City Vision 2050,
          • SECAP Updates,
          • Building / district Certification
          A3P008: Other
          A3P009: Environmental strategies
          A3P009: Environmental strategies
          • Energy Neutral,
          • Carbon-free
          • Energy Neutral,
          • Low Emission Zone,
          • Pollutants Reduction
          • Energy Neutral,
          • Low Emission Zone,
          • Net zero carbon footprint,
          • Greening strategies,
          • Cool Materials
          • Greening strategies
          • Energy Neutral,
          • Low Emission Zone,
          • Pollutants Reduction,
          • Greening strategies
          A3P009: Other
          A3P010: Legal / Regulatory aspects
          A3P010: Legal / Regulatory aspectsISO 45001, ISO 14001, ISO 50001, Zero Waste Policy- European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.
          B1P001: PED/PED relevant concept definition
          B1P001: PED/PED relevant concept definitionThe pilot area was selected on the basis of several criteria: its location within areas prioritised by Karşıyaka Municipality for combating climate change, compliance with the building regulations set out in the Green Building-Site-Operation (2023) guide, which are in line with Municipality's energy policy, the presence of open spaces that allow various applications for renewable energy, proximity to public facilities such as schools and municipal services, the availability of data on energy consumption (e.g. electricity and natural gas bills) and architectural features, the potential for community building, the suitability for solar energy systems, considering orientation and roof structure, and the potential for future building renovations. The aim of the initiative is to explore the feasibility of transforming the district into a Positive Energy District (PED).The campus should be considered a PED case study due to its exemplary commitment to sustainability and energy efficiency, as evidenced by several of its buildings achieving LEED certification. This certification underscores the campus's adherence to rigorous environmental standards and its proactive steps towards reducing carbon footprints. Also, the integration of sustainable practices across the campus aligns with the PED framework, which aims to create urban areas that produce more energy than they consume. Therefore, this campus serves as a model of how educational institutions can lead the way in fostering sustainable communities and advancing the goals of PED.
          B1P002: Motivation behind PED/PED relevant project development
          B1P002: Motivation behind PED/PED relevant project developmentThe purpose of implementing the PED project on this sustainable campus, where several buildings have LEED certification, is to further enhance its energy efficiency and environmental stewardship by creating a district that generates more energy than it consumes. The initiator was motivated by the need to address climate change, reduce greenhouse gas emissions, and promote renewable energy sources. Additionally, the campus's existing commitment to sustainability and the success of its LEED-certified buildings provided a strong foundation for demonstrating the feasibility and benefits of PED development, serving as a model for sustainable urban living and energy self-sufficiency.
          B1P003: Environment of the case study area
          B2P003: Environment of the case study areaSuburban areaSuburban areaUrban areaSuburban area
          B1P004: Type of district
          B2P004: Type of district
          • New construction
          • New construction
          • Renovation
          • Renovation
          B1P005: Case Study Context
          B1P005: Case Study Context
          • New Development
          • New Development
          • Retrofitting Area
          • Retrofitting Area
          B1P006: Year of construction
          B1P006: Year of construction20052024
          B1P007: District population before intervention - Residential
          B1P007: District population before intervention - Residential
          B1P008: District population after intervention - Residential
          B1P008: District population after intervention - Residential
          B1P009: District population before intervention - Non-residential
          B1P009: District population before intervention - Non-residential9800
          B1P010: District population after intervention - Non-residential
          B1P010: District population after intervention - Non-residential9800
          B1P011: Population density before intervention
          B1P011: Population density before intervention00034000
          B1P012: Population density after intervention
          B1P012: Population density after intervention00034.337771548704000
          B1P013: Building and Land Use before intervention
          B1P013: Residentialnonoyesnononono
          B1P013 - Residential: Specify the sqm [m²]102795
          B1P013: Officenonononononono
          B1P013 - Office: Specify the sqm [m²]
          B1P013: Industry and Utilitynonononononono
          B1P013 - Industry and Utility: Specify the sqm [m²]
          B1P013: Commercialnonononononono
          B1P013 - Commercial: Specify the sqm [m²]
          B1P013: Institutionalnononoyesnonono
          B1P013 - Institutional: Specify the sqm [m²]285.400
          B1P013: Natural areasyesnononononono
          B1P013 - Natural areas: Specify the sqm [m²]
          B1P013: Recreationalnonononononono
          B1P013 - Recreational: Specify the sqm [m²]
          B1P013: Dismissed areasnonononononono
          B1P013 - Dismissed areas: Specify the sqm [m²]
          B1P013: Othernonononononono
          B1P013 - Other: Specify the sqm [m²]
          B1P014: Building and Land Use after intervention
          B1P014: Residentialnonoyesnononono
          B1P014 - Residential: Specify the sqm [m²]102795
          B1P014: Officenonononononono
          B1P014 - Office: Specify the sqm [m²]
          B1P014: Industry and Utilitynonononononono
          B1P014 - Industry and Utility: Specify the sqm [m²]
          B1P014: Commercialnonononononono
          B1P014 - Commercial: Specify the sqm [m²]
          B1P014: Institutionalnononoyesnonono
          B1P014 - Institutional: Specify the sqm [m²]280000
          B1P014: Natural areasnonononononono
          B1P014 - Natural areas: Specify the sqm [m²]
          B1P014: Recreationalnonononononono
          B1P014 - Recreational: Specify the sqm [m²]
          B1P014: Dismissed areasnonononononono
          B1P014 - Dismissed areas: Specify the sqm [m²]
          B1P014: Othernonononononono
          B1P014 - Other: Specify the sqm [m²]
          B2P001: PED Lab concept definition
          B2P001: PED Lab concept definitionaddressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation
          B2P002: Installation life time
          B2P002: Installation life time
          B2P003: Scale of action
          B2P003: ScaleDistrictVirtual
          B2P004: Operator of the installation
          B2P004: Operator of the installationIREC
          B2P005: Replication framework: Applied strategy to reuse and recycling the materials
          B2P005: Replication framework: Applied strategy to reuse and recycling the materials
          B2P006: Circular Economy Approach
          B2P006: Do you apply any strategy to reuse and recycling the materials?No
          B2P006: Other
          B2P007: Motivation for developing the PED Lab
          B2P007: Motivation for developing the PED Lab
          • Strategic,
          • Private
          B2P007: Other
          B2P008: Lead partner that manages the PED Lab
          B2P008: Lead partner that manages the PED LabResearch center/University
          B2P008: Other
          B2P009: Collaborative partners that participate in the PED Lab
          B2P009: Collaborative partners that participate in the PED Lab
          B2P009: Other
          B2P010: Synergies between the fields of activities
          B2P010: Synergies between the fields of activities
          B2P011: Available facilities to test urban configurations in PED Lab
          B2P011: Available facilities to test urban configurations in PED Lab
          • Demand-side management,
          • Energy storage,
          • Energy networks,
          • Efficiency measures,
          • Information and Communication Technologies (ICT)
          B2P011: Other
          B2P012: Incubation capacities of PED Lab
          B2P012: Incubation capacities of PED Lab
          • Monitoring and evaluation infrastructure,
          • Tools for prototyping and modelling,
          • Tools, spaces, events for testing and validation
          B2P013: Availability of the facilities for external people
          B2P013: Availability of the facilities for external people
          B2P014: Monitoring measures
          B2P014: Monitoring measures
          • Equipment
          B2P015: Key Performance indicators
          B2P015: Key Performance indicators
          • Energy,
          • Environmental
          B2P016: Execution of operations
          B2P016: Execution of operations
          B2P017: Capacities
          B2P017: Capacities- Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network.
          B2P018: Relations with stakeholders
          B2P018: Relations with stakeholders
          B2P019: Available tools
          B2P019: Available tools
          • Energy modelling
          B2P019: Available tools
          B2P020: External accessibility
          B2P020: External accessibility
          C1P001: Unlocking Factors
          C1P001: Recent technological improvements for on-site RES production3 - Moderately important1 - Unimportant5 - Very important5 - Very important1 - Unimportant5 - Very important1 - Unimportant
          C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant5 - Very important1 - Unimportant
          C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important1 - Unimportant1 - Unimportant4 - Important5 - Very important5 - Very important3 - Moderately important
          C1P001: Storage systems and E-mobility market penetration5 - Very important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important5 - Very important
          C1P001: Decreasing costs of innovative materials1 - Unimportant1 - Unimportant5 - Very important4 - Important2 - Slightly important4 - Important3 - Moderately important
          C1P001: Financial mechanisms to reduce costs and maximize benefits3 - Moderately important1 - Unimportant4 - Important5 - Very important3 - Moderately important4 - Important5 - Very important
          C1P001: The ability to predict Multiple Benefits2 - Slightly important1 - Unimportant4 - Important4 - Important1 - Unimportant4 - Important
          C1P001: The ability to predict the distribution of benefits and impacts4 - Important1 - Unimportant4 - Important4 - Important2 - Slightly important4 - Important
          C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)4 - Important1 - Unimportant2 - Slightly important5 - Very important5 - Very important5 - Very important1 - Unimportant
          C1P001: Social acceptance (top-down)4 - Important1 - Unimportant5 - Very important4 - Important2 - Slightly important5 - Very important1 - Unimportant
          C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)4 - Important1 - Unimportant5 - Very important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant
          C1P001: Presence of integrated urban strategies and plans5 - Very important1 - Unimportant5 - Very important4 - Important2 - Slightly important3 - Moderately important1 - Unimportant
          C1P001: Multidisciplinary approaches available for systemic integration4 - Important1 - Unimportant4 - Important4 - Important4 - Important3 - Moderately important4 - Important
          C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects1 - Unimportant1 - Unimportant5 - Very important4 - Important2 - Slightly important4 - Important5 - Very important
          C1P001: Availability of RES on site (Local RES)5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant4 - Important
          C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders3 - Moderately important1 - Unimportant5 - Very important4 - Important1 - Unimportant4 - Important5 - Very important
          C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
          C1P001: Any other UNLOCKING FACTORS (if any)
          C1P002: Driving Factors
          C1P002: Climate Change adaptation need3 - Moderately important1 - Unimportant5 - Very important5 - Very important3 - Moderately important4 - Important4 - Important
          C1P002: Climate Change mitigation need (local RES production and efficiency)3 - Moderately important1 - Unimportant5 - Very important5 - Very important5 - Very important5 - Very important4 - Important
          C1P002: Rapid urbanization trend and need of urban expansions2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P002: Urban re-development of existing built environment1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant3 - Moderately important4 - Important
          C1P002: Economic growth need1 - Unimportant1 - Unimportant4 - Important4 - Important2 - Slightly important2 - Slightly important4 - Important
          C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)1 - Unimportant1 - Unimportant5 - Very important5 - Very important3 - Moderately important3 - Moderately important4 - Important
          C1P002: Territorial and market attractiveness1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant
          C1P002: Energy autonomy/independence2 - Slightly important1 - Unimportant5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important
          C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
          C1P002: Any other DRIVING FACTOR (if any)
          C1P003: Administrative barriers
          C1P003: Difficulty in the coordination of high number of partners and authorities1 - Unimportant1 - Unimportant4 - Important5 - Very important3 - Moderately important4 - Important4 - Important
          C1P003: Lack of good cooperation and acceptance among partners1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important2 - Slightly important3 - Moderately important1 - Unimportant
          C1P003: Lack of public participation1 - Unimportant1 - Unimportant5 - Very important4 - Important4 - Important3 - Moderately important2 - Slightly important
          C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important1 - Unimportant4 - Important4 - Important3 - Moderately important3 - Moderately important3 - Moderately important
          C1P003:Long and complex procedures for authorization of project activities1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important5 - Very important5 - Very important5 - Very important
          C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant4 - Important5 - Very important
          C1P003: Complicated and non-comprehensive public procurement1 - Unimportant1 - Unimportant5 - Very important4 - Important3 - Moderately important4 - Important3 - Moderately important
          C1P003: Fragmented and or complex ownership structure1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant3 - Moderately important5 - Very important
          C1P003: City administration & cross-sectoral attitude/approaches (silos)1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant3 - Moderately important4 - Important
          C1P003: Lack of internal capacities to support energy transition1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant3 - Moderately important4 - Important
          C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important
          C1P003: Any other Administrative BARRIER (if any)
          C1P004: Policy barriers
          C1P004: Lack of long-term and consistent energy plans and policies4 - Important1 - Unimportant5 - Very important5 - Very important2 - Slightly important4 - Important1 - Unimportant
          C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important1 - Unimportant4 - Important5 - Very important2 - Slightly important4 - Important1 - Unimportant
          C1P004: Lack of Cooperation & support between national-regional-local entities1 - Unimportant1 - Unimportant5 - Very important5 - Very important2 - Slightly important3 - Moderately important2 - Slightly important
          C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
          C1P004: Any other Political BARRIER (if any)
          C1P005: Legal and Regulatory barriers
          C1P005: Inadequate regulations for new technologies1 - Unimportant1 - Unimportant5 - Very important5 - Very important4 - Important4 - Important5 - Very important
          C1P005: Regulatory instability1 - Unimportant1 - Unimportant5 - Very important5 - Very important4 - Important3 - Moderately important2 - Slightly important
          C1P005: Non-effective regulations1 - Unimportant1 - Unimportant5 - Very important4 - Important3 - Moderately important4 - Important2 - Slightly important
          C1P005: Unfavorable local regulations for innovative technologies1 - Unimportant1 - Unimportant5 - Very important4 - Important2 - Slightly important3 - Moderately important4 - Important
          C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant4 - Important3 - Moderately important
          C1P005: Insufficient or insecure financial incentives3 - Moderately important1 - Unimportant4 - Important5 - Very important2 - Slightly important4 - Important5 - Very important
          C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important4 - Important1 - Unimportant
          C1P005: Shortage of proven and tested solutions and examples1 - Unimportant1 - Unimportant3 - Moderately important4 - Important2 - Slightly important4 - Important
          C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important
          C1P005: Any other Legal and Regulatory BARRIER (if any)
          C1P006: Environmental barriers
          C1P006: Environmental barriers- Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Air and Water Pollution: 2 - Natural Disasters: 1 - Water Scarcity: 1Air Quality Management Importance Level: 5 (Very Important) Energy Efficiency Importance Level: 5 (Very Important) Water Conservation Importance Level: 5 (Very Important) Waste Management Importance Level: 4 (Important) Material Selection Importance Level: 4 (Important) Renewable Energy Integration Importance Level: 5 (Very Important) Heat Island Effect Mitigation Importance Level: 4 (Important) Noise Pollution Control Importance Level: 3 (Moderately Important)
          C1P007: Technical barriers
          C1P007: Lack of skilled and trained personnel1 - Unimportant1 - Unimportant5 - Very important5 - Very important4 - Important4 - Important5 - Very important
          C1P007: Deficient planning3 - Moderately important1 - Unimportant4 - Important5 - Very important5 - Very important3 - Moderately important5 - Very important
          C1P007: Retrofitting work in dwellings in occupied state1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant
          C1P007: Lack of well-defined process1 - Unimportant1 - Unimportant4 - Important4 - Important4 - Important4 - Important4 - Important
          C1P007: Inaccuracy in energy modelling and simulation5 - Very important1 - Unimportant5 - Very important5 - Very important2 - Slightly important4 - Important5 - Very important
          C1P007: Lack/cost of computational scalability1 - Unimportant1 - Unimportant4 - Important3 - Moderately important2 - Slightly important4 - Important4 - Important
          C1P007: Grid congestion, grid instability1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant4 - Important5 - Very important
          C1P007: Negative effects of project intervention on the natural environment1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important2 - Slightly important3 - Moderately important1 - Unimportant
          C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant1 - Unimportant4 - Important4 - Important2 - Slightly important5 - Very important1 - Unimportant
          C1P007: Difficult definition of system boundaries1 - Unimportant1 - Unimportant4 - Important4 - Important2 - Slightly important3 - Moderately important1 - Unimportant
          C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
          C1P007: Any other Thecnical BARRIER (if any)
          C1P008: Social and Cultural barriers
          C1P008: Inertia1 - Unimportant1 - Unimportant5 - Very important4 - Important4 - Important4 - Important4 - Important
          C1P008: Lack of values and interest in energy optimization measurements1 - Unimportant1 - Unimportant4 - Important5 - Very important4 - Important5 - Very important5 - Very important
          C1P008: Low acceptance of new projects and technologies1 - Unimportant1 - Unimportant5 - Very important5 - Very important3 - Moderately important5 - Very important5 - Very important
          C1P008: Difficulty of finding and engaging relevant actors4 - Important1 - Unimportant4 - Important4 - Important5 - Very important5 - Very important5 - Very important
          C1P008: Lack of trust beyond social network1 - Unimportant1 - Unimportant5 - Very important4 - Important3 - Moderately important4 - Important3 - Moderately important
          C1P008: Rebound effect1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant4 - Important4 - Important
          C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important4 - Important5 - Very important5 - Very important
          C1P008: Exclusion of socially disadvantaged groups1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant
          C1P008: Non-energy issues are more important and urgent for actors1 - Unimportant1 - Unimportant4 - Important4 - Important5 - Very important3 - Moderately important1 - Unimportant
          C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant
          C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
          C1P008: Any other Social BARRIER (if any)
          C1P009: Information and Awareness barriers
          C1P009: Insufficient information on the part of potential users and consumers5 - Very important1 - Unimportant3 - Moderately important5 - Very important5 - Very important1 - Unimportant
          C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts1 - Unimportant1 - Unimportant4 - Important5 - Very important3 - Moderately important5 - Very important
          C1P009: Lack of awareness among authorities3 - Moderately important1 - Unimportant4 - Important5 - Very important4 - Important2 - Slightly important
          C1P009: Information asymmetry causing power asymmetry of established actors2 - Slightly important1 - Unimportant4 - Important4 - Important2 - Slightly important1 - Unimportant
          C1P009: High costs of design, material, construction, and installation1 - Unimportant1 - Unimportant5 - Very important4 - Important4 - Important5 - Very important
          C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
          C1P009: Any other Information and Awareness BARRIER (if any)
          C1P010: Financial barriers
          C1P010: Hidden costs1 - Unimportant1 - Unimportant4 - Important4 - Important2 - Slightly important5 - Very important
          C1P010: Insufficient external financial support and funding for project activities1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important5 - Very important5 - Very important
          C1P010: Economic crisis1 - Unimportant1 - Unimportant5 - Very important4 - Important3 - Moderately important4 - Important
          C1P010: Risk and uncertainty2 - Slightly important1 - Unimportant4 - Important5 - Very important3 - Moderately important5 - Very important
          C1P010: Lack of consolidated and tested business models4 - Important1 - Unimportant4 - Important4 - Important4 - Important5 - Very important
          C1P010: Limited access to capital and cost disincentives1 - Unimportant1 - Unimportant5 - Very important5 - Very important3 - Moderately important
          C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
          C1P010: Any other Financial BARRIER (if any)
          C1P011: Market barriers
          C1P011: Split incentives1 - Unimportant1 - Unimportant5 - Very important5 - Very important3 - Moderately important4 - Important
          C1P011: Energy price distortion1 - Unimportant1 - Unimportant5 - Very important5 - Very important3 - Moderately important5 - Very important
          C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant1 - Unimportant3 - Moderately important4 - Important5 - Very important5 - Very important
          C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
          C1P011: Any other Market BARRIER (if any)
          C1P012: Stakeholders involved
          C1P012: Government/Public Authorities
          • Design/demand aggregation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Research & Innovation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Financial/Funding
          • Planning/leading,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Analyst, ICT and Big Data
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Business process management
          • Design/demand aggregation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Urban Services providers
          • Design/demand aggregation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Real Estate developers
          • Construction/implementation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Design/Construction companies
          • Design/demand aggregation
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: End‐users/Occupants/Energy Citizens
          • Monitoring/operation/management
          • Monitoring/operation/management
          C1P012: Social/Civil Society/NGOs
          • Design/demand aggregation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Industry/SME/eCommerce
          • Construction/implementation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Other
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Other (if any)
          Summary

          Authors (framework concept)

          Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

          Contributors (to the content)

          Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

          Implemented by

          Boutik.pt: Filipe Martins, Jamal Khan
          Marek Suchánek (Czech Technical University in Prague)