Filters:
NameProjectTypeCompare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Compare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Compare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Compare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Uncompare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
Lecce, SmartEnCity SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Uncompare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
Firenze, Novoli-Cascine district on “le PIagge” buildings PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Uncompare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Uncompare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleHalmstad, Fyllinge
Furuset project, Oslo
City of Espoo, Espoonlahti district, Lippulaiva block
Malmö, Klimatkontrakt Hyllie
Izmir, District of Karşıyaka
Vienna, Laxenburgerstraße AH
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabHalmstad, FyllingeFuruset project, OsloCity of Espoo, Espoonlahti district, Lippulaiva blockMalmö, Klimatkontrakt HyllieIzmir, District of KarşıyakaVienna, Laxenburgerstraße AH
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesyesnoyesno
PED relevant case studyyesnonoyesnono
PED Lab.nononononoyes
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesnoyesyesyes
Annual energy surplusnonononoyesno
Energy communityyesnonononoyes
Circularitynononononono
Air quality and urban comfortnonononoyesno
Electrificationnononononono
Net-zero energy costnonononoyesno
Net-zero emissionnoyesnoyesnono
Self-sufficiency (energy autonomous)nononononono
Maximise self-sufficiencynonoyesnoyesno
Othernoyesnoyesnono
Other (A1P004)Energy efficient; Sustainable neighbourhood; Social aspects/affordabilityCarbon-free; Sustainable neighbourhood
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhaseIn operationIn operationIn operationPlanning PhasePlanning Phase
A1P006: Start Date
A1P006: Start date01/2106/1801/1110/2201/25
A1P007: End Date
A1P007: End date01/3003/2210/2512/28
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • General statistical datasets
  • General statistical datasets
  • Monitoring data available within the districts
A1P009: OtherOther
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
    • M. Hukkalainen, F. Zarrin, K. Klobut, O. Lindholm, M. Ranta, P. Hajduk, T. Vainio-Kaila, E. Wanne, J. Tartia, H. Horn, K. Kontu, J. Juhmen, S. Santala, R. Turtiainen, J. Töyräs, T. Koljonen. (2020). Deliverable D3.1 Detailed plan of the Espoo smart city lighthouse demonstrations. Available online: https://www.sparcs.info/sites/default/files/2020-09/SPARCS_D3.1_Detailed_plan_Espoo.pdf,
    • Hukkalainen, Zarrin Fatima, Krzysztof Klobut, Kalevi Piira, Mikaela Ranta, Petr Hajduk, Tiina Vainio-Kaila , Elina Wanne, Jani Tartia, Angela Bartel, Joni Mäkinen, Mia Kaurila, Kaisa Kontu, Jaano Juhmen, Merja Ryöppy, Reetta Turtiainen, Joona Töyräs, Timo Koljonen (2021) Deliverable 3.2 Midterm report on the implemented demonstrations of solutions for energy positive blocks in Espoo. Available online: https://www.sparcs.info/sites/default/files/2022-02/SPARCS_D3.2.pdf,
    • www.lippulaiva.fi
      A1P011: Geographic coordinates
      X Coordinate (longitude):12.9205410.89671124.654312.97518127.11004916.36561
      Y Coordinate (latitude):56.6519459.94182360.149155.56150438.49605448.15746
      A1P012: Country
      A1P012: CountrySwedenNorwayFinlandSwedenTurkeyAustria
      A1P013: City
      A1P013: CityHalmstadOsloEspooMalmöİzmirVienna, 10th district
      A1P014: Climate Zone (Köppen Geiger classification)
      A1P014: Climate Zone (Köppen Geiger classification).DwbCfbDfbCfbCsaDfb
      A1P015: District boundary
      A1P015: District boundaryGeographicGeographicGeographicGeographic
      Other
      A1P016: Ownership of the case study/PED Lab
      A1P016: Ownership of the case study/PED Lab:MixedMixedPrivateMixedPrivatePrivate
      A1P017: Ownership of the land / physical infrastructure
      A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersSingle OwnerMultiple OwnersMultiple OwnersSingle Owner
      A1P018: Number of buildings in PED
      A1P018: Number of buildings in PED250921
      A1P019: Conditioned space
      A1P019: Conditioned space [m²]112000102795
      A1P020: Total ground area
      A1P020: Total ground area [m²]8700001650003260040000
      A1P021: Floor area ratio: Conditioned space / total ground area
      A1P021: Floor area ratio: Conditioned space / total ground area001030
      A1P022: Financial schemes
      A1P022a: Financing - PRIVATE - Real estateyesnoyesnonoyes
      A1P022a: Add the value in EUR if available [EUR]
      A1P022b: Financing - PRIVATE - ESCO schemenononononono
      A1P022b: Add the value in EUR if available [EUR]
      A1P022c: Financing - PRIVATE - Othernononononono
      A1P022c: Add the value in EUR if available [EUR]
      A1P022d: Financing - PUBLIC - EU structural fundingnononononono
      A1P022d: Add the value in EUR if available [EUR]
      A1P022e: Financing - PUBLIC - National fundingnononononoyes
      A1P022e: Add the value in EUR if available [EUR]
      A1P022f: Financing - PUBLIC - Regional fundingnononononono
      A1P022f: Add the value in EUR if available [EUR]
      A1P022g: Financing - PUBLIC - Municipal fundingnononononoyes
      A1P022g: Add the value in EUR if available [EUR]
      A1P022h: Financing - PUBLIC - Othernononononono
      A1P022h: Add the value in EUR if available [EUR]
      A1P022i: Financing - RESEARCH FUNDING - EUyesnoyesnoyesyes
      A1P022i: Add the value in EUR if available [EUR]3088751193355
      A1P022j: Financing - RESEARCH FUNDING - Nationalnonononoyesyes
      A1P022j: Add the value in EUR if available [EUR]
      A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononono
      A1P022k: Add the value in EUR if available [EUR]
      A1P022l: Financing - RESEARCH FUNDING - Othernononononono
      A1P022l: Add the value in EUR if available [EUR]
      A1P022: Other
      A1P023: Economic Targets
      A1P023: Economic Targets
      • Boosting local and sustainable production
      • Job creation,
      • Positive externalities,
      • Boosting local businesses
      • Positive externalities,
      • Boosting local and sustainable production
      A1P023: Other
      A1P024: More comments:
      A1P024: More comments:The Espoonlahti district is located on the south-western coast of Espoo. With 56,000 inhabitants, it is the second largest of the Espoo city centres. The number of inhabitants is estimated to grow to 70,000 within the next 10 years. Espoonlahti will be a future transit hub of the south-western Espoo, along the metro line, and the increasing stream of passengers provides a huge potential for retail, business and residential developments. E-mobility solutions and last-mile services have strong potential in the area when subway extension is finished and running. The extensive (re)development of the Lippulaiva blocks make a benchmark catering to the everyday needs of residents. The completely new shopping centre is a state-of-the-art cross point with 20,000 daily customers and 10,000 daily commuters (3.5 million/year). The new underground metro line and station, and feeder line bus terminal, are fully integrated. Residential housing of approximately 550 new apartments will be built on top. Lippulaiva is a large traffic hub, directly connected to public transport and right next to the Länsiväylä highway and extensive cycle paths. Lippulaiva offers diverse, mixed-use services, such as a shopping mall, public services, a day care centre, residential apartment buildings, and underground parking facilities. Lippulaiva received the LEED Gold environmental certificate and Smart Building Gold certificate. • Flagship of sustainability • Cooling and heating demand from geothermal energy system (on-site) with energy storage system, 4 MW • PV panels: roof and façade, 630 kWp • Smart control strategies for electricity and thermal energy, smart microgrid-system and battery storage • Charging capacity for 134 EVs
      A1P025: Estimated PED case study / PED LAB costs
      A1P025: Estimated PED case study / PED LAB costs [mil. EUR]
      Contact person for general enquiries
      A1P026: NameMarkus OlofsgårdChristoph GollnerElina EkelundChristoph GollnerOzlem SenyolGernot Tscherteu, Gudrun Peller
      A1P027: OrganizationAFRYFFGCitycon OyjFFGKarsiyaka MunicipalityRealitylab, private company
      A1P028: AffiliationOtherOtherSME / IndustryOtherMunicipality / Public BodiesOther
      A1P028: Other
      A1P029: Emailmarkus.olofsgard@afry.comchristoph.gollner@ffg.atElina.ekelund@citycon.comchristoph.gollner@ffg.atozlemkocaer2@gmail.comGt@realitylab.at
      Contact person for other special topics
      A1P030: NameElina EkelundHasan Burak Cavka
      A1P031: EmailElina.ekelund@citycon.comhasancavka@iyte.edu.tr
      Pursuant to the General Data Protection RegulationYesYesYesYesYesYes
      A2P001: Fields of application
      A2P001: Fields of application
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies
      • Energy efficiency,
      • Energy flexibility,
      • Energy production
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies
      • Energy production,
      • Waste management
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • Urban comfort (pollution, heat island, noise level etc.)
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Indoor air quality,
      • Construction materials
      A2P001: Other
      A2P002: Tools/strategies/methods applied for each of the above-selected fields
      A2P002: Tools/strategies/methods applied for each of the above-selected fieldslink based regulation of electricity gridEnergy efficiency: - eliminating waste energy utilizing smart energy system - utilizing excess heat from grocery stores Energy flexibility: - A battery energy storage system (1,5 MW/1,5MWh); Active participation in Nordpool electricity market (FCR-N) Energy production: - heating and cooling from geothermal heat pump system; 171 energy wells (over 51 km); heat capacity 4 MW - installation of new photovoltaic (PV) systems for renewable on-site energy production; Estimation of annual production is about 540 MWh (630 kWp) E-mobility - Installation of charging stations for electric vehicles (for 134 EVs) - e-bike services (warm storage room, charging cabinets for e-bikes) Digital technologies: - Building Analytics system by Schneider ElectricMethods involve studying the feasibility of digital PED references for the case cities about their energy, environmental, and economic performance by EnergyPlus tool. In case of insufficient energy data and the need of high resolution data, ‘Gaussian mixture model and expectation-maximization algorithm’ and ‘time-series decomposition-recombination’ method will be used to supplement data to EnergyPlus. The feasibility results will be returned to stakeholders for iterative discussion, and the iterative results will be used to update digital references. Replication plans are developed based on such a cooperation process for strategies to implement PEDs. If a PED is demonstrated during the project period, the measured data will be used to verify the feasibility model to optimize previous results (WP7– R3 & R4). In the MAKING-CITY project, the overall PED design method is developed, which will be further optimised in this project. In addition, PED-ACT will use the methods and knowledge, including how to choose a suitable PED in a city, energy balance calculation, and technologies available for PED. The RUGGEDISED project outputs the governance model into the replication plan in PED-ACT. Its ‘smart city open-data decision platform’ will illustrate an excellent example for the database in PED-ACT. The IEA EBC Annex 83 and Cost Action 19126 create the basis for data collection, developing existing PED databases, characterization of PED, and review of regulations of PED, as well as development of simulation tools. The UBEM project further enables a detailed high-resolution energy balance calculation of PED.
      A2P003: Application of ISO52000
      A2P003: Application of ISO52000NoYesYes
      A2P004: Appliances included in the calculation of the energy balance
      A2P004: Appliances included in the calculation of the energy balanceNoYesYes
      A2P005: Mobility included in the calculation of the energy balance
      A2P005: Mobility included in the calculation of the energy balanceYesNoNo
      A2P006: Description of how mobility is included (or not included) in the calculation
      A2P006: Description of how mobility is included (or not included) in the calculationMobility is not included in the energy model.Mobility is not included in the calculations.
      A2P007: Annual energy demand in buildings / Thermal demand
      A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]5.53.862
      A2P008: Annual energy demand in buildings / Electric Demand
      A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]5.81.226
      A2P009: Annual energy demand for e-mobility
      A2P009: Annual energy demand for e-mobility [GWh/annum]
      A2P010: Annual energy demand for urban infrastructure
      A2P010: Annual energy demand for urban infrastructure [GWh/annum]
      A2P011: Annual renewable electricity production on-site during target year
      A2P011: PVyesnoyesnoyesno
      A2P011: PV - specify production in GWh/annum [GWh/annum]0.541.028
      A2P011: Windnononononono
      A2P011: Wind - specify production in GWh/annum [GWh/annum]
      A2P011: Hydronononononono
      A2P011: Hydro - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_elnononononono
      A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_peat_elnononononono
      A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
      A2P011: PVT_elnononononono
      A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
      A2P011: Othernononononono
      A2P011: Other - specify production in GWh/annum [GWh/annum]
      A2P012: Annual renewable thermal production on-site during target year
      A2P012: Geothermalyesnoyesnonono
      A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]5
      A2P012: Solar Thermalnononononono
      A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_heatnononononono
      A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: Waste heat+HPnononononono
      A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_peat_heatnononononono
      A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: PVT_thnononononono
      A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_firewood_thnononononono
      A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Othernononononono
      A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
      A2P013: Renewable resources on-site - Additional notes
      A2P013: Renewable resources on-site - Additional notes
      A2P014: Annual energy use
      A2P014: Annual energy use [GWh/annum]11.35.088
      A2P015: Annual energy delivered
      A2P015: Annual energy delivered [GWh/annum]5.76
      A2P016: Annual non-renewable electricity production on-site during target year
      A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]0
      A2P017: Annual non-renewable thermal production on-site during target year
      A2P017: Gasnonononoyesno
      A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]0
      A2P017: Coalnononononono
      A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]0
      A2P017: Oilnononononono
      A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]0
      A2P017: Othernononononono
      A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P018: Annual renewable electricity imports from outside the boundary during target year
      A2P018: PVnonononoyesno
      A2P018 - PV: specify production in GWh/annum if available [GWh/annum]0.707
      A2P018: Windnononononono
      A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
      A2P018: Hydronononononono
      A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_elnononononono
      A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_peat_elnononononono
      A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: PVT_elnononononono
      A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Othernonoyesnonono
      A2P018 - Other: specify production in GWh/annum if available [GWh/annum]5.26
      A2P019: Annual renewable thermal imports from outside the boundary during target year
      A2P019: Geothermalnononononono
      A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Solar Thermalnononononono
      A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_heatnononononono
      A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Waste heat+HPnononononono
      A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_peat_heatnononononono
      A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: PVT_thnononononono
      A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_firewood_thnononononono
      A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Othernononononono
      A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
      A2P020: Share of RES on-site / RES outside the boundary
      A2P020: Share of RES on-site / RES outside the boundary001.053231939163501.45403111739750
      A2P021: GHG-balance calculated for the PED
      A2P021: GHG-balance calculated for the PED [tCO2/annum]0
      A2P022: KPIs related to the PED case study / PED Lab
      A2P022: Safety & Security
      A2P022: HealthYes
      A2P022: Education
      A2P022: MobilityMode of transport; Access to public transportYes
      A2P022: EnergyEnergy efficiency in buildings; Net energy need; Gross energy need; Total energy needOn-site energy ratioYes
      A2P022: Water
      A2P022: Economic development
      A2P022: Housing and CommunityDelivery and proximity to amenitiesYes
      A2P022: Waste
      A2P022: OtherGHG emissions; Power/load; Life cycle cost (LCC); Demographic needs and consultation plan; Public Space
      A2P023: Technological Solutions / Innovations - Energy Generation
      A2P023: Photovoltaicsyesnoyesyesyesyes
      A2P023: Solar thermal collectorsnononoyesnono
      A2P023: Wind Turbinesnononononono
      A2P023: Geothermal energy systemnonoyesyesnoyes
      A2P023: Waste heat recoverynonoyesyesnono
      A2P023: Waste to energynononononono
      A2P023: Polygenerationnononononono
      A2P023: Co-generationnononononono
      A2P023: Heat Pumpnononoyesyesyes
      A2P023: Hydrogennononononono
      A2P023: Hydropower plantnononononono
      A2P023: Biomassnononononono
      A2P023: Biogasnononononono
      A2P023: Other
      A2P024: Technological Solutions / Innovations - Energy Flexibility
      A2P024: A2P024: Information and Communication Technologies (ICT)yesnoyesnonoyes
      A2P024: Energy management systemnonoyesnonono
      A2P024: Demand-side managementyesnonononoyes
      A2P024: Smart electricity gridyesnoyesnonono
      A2P024: Thermal Storagenonoyesnonoyes
      A2P024: Electric Storagenonoyesnonoyes
      A2P024: District Heating and Coolingnononoyesnoyes
      A2P024: Smart metering and demand-responsive control systemsyesnonononoyes
      A2P024: P2P – buildingsnononononono
      A2P024: Other
      A2P025: Technological Solutions / Innovations - Energy Efficiency
      A2P025: Deep Retrofittingnonononoyesyes
      A2P025: Energy efficiency measures in historic buildingsnononononoyes
      A2P025: High-performance new buildingsnonoyesnonono
      A2P025: Smart Public infrastructure (e.g. smart lighting)nonoyesnonono
      A2P025: Urban data platformsnononononono
      A2P025: Mobile applications for citizensnononononono
      A2P025: Building services (HVAC & Lighting)nonoyesnoyesno
      A2P025: Smart irrigationnononononono
      A2P025: Digital tracking for waste disposalnononononono
      A2P025: Smart surveillancenononononono
      A2P025: Other
      A2P026: Technological Solutions / Innovations - Mobility
      A2P026: Efficiency of vehicles (public and/or private)nononononono
      A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nonoyesnonono
      A2P026: e-Mobilitynonoyesnonono
      A2P026: Soft mobility infrastructures and last mile solutionsnononononono
      A2P026: Car-free areanononononoyes
      A2P026: OtherLocal transportation hub with direct connection to metro & bus terminal; parking spaces for 1,400 bicycles and for 1,300 cars Promoting e-Mobility: 134 charging stations, A technical reservation for expanding EV charging system 1400 bicycle racks and charging cabinets for 10 e-bicycle batteries
      A2P027: Mobility strategies - Additional notes
      A2P027: Mobility strategies - Additional notes
      A2P028: Energy efficiency certificates
      A2P028: Energy efficiency certificatesNoYesNo
      A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate => Energy efficiency class B (2018 version)
      A2P029: Any other building / district certificates
      A2P029: Any other building / district certificatesNoYesNo
      A2P029: If yes, please specify and/or enter notesLEED (Core & Shell, v4) GOLD certification, Smart Building certification (GOLD)
      A3P001: Relevant city /national strategy
      A3P001: Relevant city /national strategy
      • Promotion of energy communities (REC/CEC)
      • Urban Renewal Strategies
      • Energy master planning (SECAP, etc.),
      • New development strategies,
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Urban Renewal Strategies,
      • Energy master planning (SECAP, etc.)
      • Energy master planning (SECAP, etc.),
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      A3P002: Quantitative targets included in the city / national strategy
      A3P002: Quantitative targets included in the city / national strategyRelevant city strategies behind PED development in Espoo include the following: - The Espoo Story: Sustainability is heavily included within the values and goals of the current Espoo city strategy, also known as the Espoo Story, running from 2021 to 2025. For example, the strategy names being a responsible pioneer as one of the main values of the city and has chosen achieving carbon neutrality by 2030 as one of the main goals of the current council term. In addition to the Espoo story, four cross-administrative development programmes act as cooperation platforms that allow the city, together with its partners, to develop innovative solutions through experiments and pilot projects in line with the Espoo Story. The Sustainable Espoo development programme is one of the four programmes, thus putting sustainability on the forefront in city development work. - EU Mission: 100 climate-neutral and smart cities by 2030: Cities selected for the Mission commit to achieving carbon-neutrality in 2030. A key tool in the Mission is the Climate City Contract. Each selected city will prepare and implement its contracts in collaboration with local businesses as well as other stakeholders and residents. - Covenant of Mayors for Climate and Energy: Espoo is committed to the Covenant of Mayors for Climate and Energy, under which the signatories commit to supporting the European Union’s 40% greenhouse gas emission reduction goal by 2030. The Sustainable Energy and Climate Action Plan (SECAP) is a key instrument for implementing the agreement. The Action Plan outlines the key measures the city will take to achieve its carbon neutrality goal. The plan also includes a mapping of climate change risks and vulnerabilities, adaptation measures, emission calculations, emission reduction scenarios and impact estimations of measures. The SECAP of the City of Espoo is available here (only available in Finnish). - UN Sustainable development Goals: The city of Espoo has committed to becoming a forerunner and achieving the UN's Sustainable Development Goals (SDG) by 2025. The goal is to make Espoo financially, ecologically, socially, and culturally sustainable. - The Circular Cities Declaration: At the end of 2020, Espoo signed the Europe-wide circular economy commitment Circular Cities Declaration. The ten goals of the declaration promote the implementation of the city’s circular economy. - Espoo Clean Heat: Fortum and the City of Espoo are committed to producing carbon-neutral district heating in the network operating in the areas of Espoo, Kauniainen and Kirkkonummi during the 2020s. The district heating network provides heating to some 250,000 end-users in homes and offices. Coal will be completely abandoned in the production of district heating by 2025. The main targets related to PED development included in the noted city strategies are the following: - Espoo will achieve carbon neutrality by 2030. To be precise, this carbon neutrality goal is defined as an 80% emission reduction from the 1990 level by the year 2030. The remaining 20% share can be absorbed in carbon sinks or compensated by other means. - District heating in Espoo will be carbon-neutral by 2029, and coal-based production will be phased out from district heating by 2025. - Espoo aims to end the use of fossil fuels in the heating of city-owned buildings by 2025. - Quantitative goals within the Espoo SECAP report: - Espoo aims to reduce total energy consumption within the municipal sector by 7.5% by the end of 2025 in comparison to the 2015 level. The social housing company Espoon Asunnot OY aims to meet the same target. - Espoo aims to cover 10% of the energy consumption of new buildings via on-site production. - Espoo aims to raise the modal split of cycling to 15% by 2024. - Espoo aims to raise the modal split of public transport by 1.1% yearly. - Espoo aims to reduce the emissions of bus transport by 90% by the end of 2025, when compared to 2010 levels.Karşıyaka Municipality is the first local government in Turkey to sign the Covenant of Mayors in 2011. During this period, the greenhouse gas inventory of the district was carried out three times and reduction targets were set for 2020 and 2030. In the 2021 Sustainable Energy and Climate Action Plan prepared as of the end of 2021, Karşıyaka Municipality has targeted a 40% reduction in its emissions for 2030 compared to the base year 2018. In the 2021 Sustainable Energy and Climate Action Plan, Karşıyaka Municipality aims to reduce its greenhouse gas emissions from 3.96 tCO2e / person in 2018 to 2.37 tCO2e / person in 2030. System solutions such as the use of renewable energy sources, air, ground or water source heat pump, cogeneration and microcogeneration are analysed by designers in order to fully or partially meet the energy requirements for heating, cooling, ventilation, hot water, electricity and lighting for all buildings with a floor area of less than 20,000 square metres. If at least 50% of the building's total energy consumption costs are covered by one or more of these applications, the points are taken in the assessment table in the Building and housing estate business certification guide of 2023.
      A3P003: Strategies towards decarbonization of the gas grid
      A3P003: Strategies towards decarbonization of the gas grid
      • Electrification of Heating System based on Heat Pumps
      A3P003: Other
      A3P004: Identification of needs and priorities
      A3P004: Identification of needs and priorities- Citycon (developer and owner of Lippulaiva) aims to be carbon neutral in its energy use by 2030 - Lippulaiva is a unique urban centre with state-of-the-art energy concept. The centre has a smart managing system, which allows for example the temporary reduction of power used in air conditioning and charging stations when energy consumption is at its peak. In addition, a backup generator and a large electric battery will balance the operation of the electricity network. - Lippulaiva is also an important mobility hub for the people of Espoo. Espoonlahti metro station is located under the centre, and the West Metro started to operate to Espoonlahti in December 2022. Lippulaiva also has a bus terminal, which serves the metro’s feeder traffic in the Espoonlahti major district.According to the model developed for the district, the electrification of heating and cooling is necessary.Therefore, there needs to be the implementation of a heat pump. The building-integrated photovoltaic panelsshould follow. Through net-metering practices, the district is expected to reach energy positivity throughthis scenario.
      A3P005: Sustainable behaviour
      A3P005: Sustainable behaviourFor Citycon, it was important to engage local people within the Lippulaiva project. During the construction period as well as after opening of the shopping center, citizens have been engaged in multiple ways, such as informing local citizens of the progress of construction, engaging young people in the design processes of the shopping centre and long-term commitment of youngsters with Lippulaiva Buddy class initiative. Users’ engagement activities are conducted in close co-operation with SPARCS partners.
      A3P006: Economic strategies
      A3P006: Economic strategies
      • Local trading
      • Innovative business models
      • Innovative business models,
      • PPP models,
      • Local trading,
      • Existing incentives
      A3P006: Other
      A3P007: Social models
      A3P007: Social models
      • Behavioural Change / End-users engagement,
      • Citizen/owner involvement in planning and maintenance
      • Co-creation / Citizen engagement strategies
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Affordability
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Citizen Social Research,
      • Policy Forums,
      • Quality of Life,
      • Affordability,
      • Prevention of energy poverty,
      • Digital Inclusion,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      A3P007: Other
      A3P008: Integrated urban strategies
      A3P008: Integrated urban strategies
      • Strategic urban planning
      • Building / district Certification
      • Digital twinning and visual 3D models,
      • District Energy plans,
      • SECAP Updates
      • Strategic urban planning,
      • Building / district Certification
      A3P008: Other
      A3P009: Environmental strategies
      A3P009: Environmental strategies
      • Energy Neutral,
      • Carbon-free
      • Energy Neutral
      • Other
      • Energy Neutral,
      • Low Emission Zone,
      • Pollutants Reduction
      • Energy Neutral,
      • Low Emission Zone,
      • Greening strategies
      A3P009: OtherCarbon free in terms of energy
      A3P010: Legal / Regulatory aspects
      A3P010: Legal / Regulatory aspects- Energy efficiency regulations (Directive 2006/32/EC and 2009/72/EC) - EU directive 2010/31/EU on the energy performance of buildings => all new buildings should be “nearly zero-energy buildings” (nZEB) from 2021
      B1P001: PED/PED relevant concept definition
      B1P001: PED/PED relevant concept definitionLippulaiva is a project with high level goal in terms of energy efficiency, energy flexibility and energy production.The pilot area was selected on the basis of several criteria: its location within areas prioritised by Karşıyaka Municipality for combating climate change, compliance with the building regulations set out in the Green Building-Site-Operation (2023) guide, which are in line with Municipality's energy policy, the presence of open spaces that allow various applications for renewable energy, proximity to public facilities such as schools and municipal services, the availability of data on energy consumption (e.g. electricity and natural gas bills) and architectural features, the potential for community building, the suitability for solar energy systems, considering orientation and roof structure, and the potential for future building renovations. The aim of the initiative is to explore the feasibility of transforming the district into a Positive Energy District (PED).
      B1P002: Motivation behind PED/PED relevant project development
      B1P002: Motivation behind PED/PED relevant project development- Citycon’s (developer and owner of Lippulaiva) target is to be carbon neutral by 2030 - Increasing sustainability requirements from the financing, tenants, cities, other stakeholders
      B1P003: Environment of the case study area
      B2P003: Environment of the case study areaSuburban areaUrban areaSuburban areaUrban area
      B1P004: Type of district
      B2P004: Type of district
      • New construction
      • New construction,
      • Renovation
      • New construction
      • New construction
      • Renovation
      B1P005: Case Study Context
      B1P005: Case Study Context
      • New Development
      • New Development,
      • Retrofitting Area
      • Re-use / Transformation Area,
      • New Development
      • New Development
      • Retrofitting Area
      B1P006: Year of construction
      B1P006: Year of construction20222005
      B1P007: District population before intervention - Residential
      B1P007: District population before intervention - Residential
      B1P008: District population after intervention - Residential
      B1P008: District population after intervention - Residential
      B1P009: District population before intervention - Non-residential
      B1P009: District population before intervention - Non-residential
      B1P010: District population after intervention - Non-residential
      B1P010: District population after intervention - Non-residential
      B1P011: Population density before intervention
      B1P011: Population density before intervention000000
      B1P012: Population density after intervention
      B1P012: Population density after intervention000000
      B1P013: Building and Land Use before intervention
      B1P013: Residentialnonononoyesno
      B1P013 - Residential: Specify the sqm [m²]102795
      B1P013: Officenononononono
      B1P013 - Office: Specify the sqm [m²]
      B1P013: Industry and Utilitynononononono
      B1P013 - Industry and Utility: Specify the sqm [m²]
      B1P013: Commercialnonoyesnonono
      B1P013 - Commercial: Specify the sqm [m²]
      B1P013: Institutionalnononononono
      B1P013 - Institutional: Specify the sqm [m²]
      B1P013: Natural areasyesnoyesnonono
      B1P013 - Natural areas: Specify the sqm [m²]
      B1P013: Recreationalnononononono
      B1P013 - Recreational: Specify the sqm [m²]
      B1P013: Dismissed areasnononononono
      B1P013 - Dismissed areas: Specify the sqm [m²]
      B1P013: Othernononononono
      B1P013 - Other: Specify the sqm [m²]
      B1P014: Building and Land Use after intervention
      B1P014: Residentialnoyesyesnoyesno
      B1P014 - Residential: Specify the sqm [m²]102795
      B1P014: Officenoyesnononono
      B1P014 - Office: Specify the sqm [m²]
      B1P014: Industry and Utilitynoyesnononono
      B1P014 - Industry and Utility: Specify the sqm [m²]
      B1P014: Commercialnonoyesnonono
      B1P014 - Commercial: Specify the sqm [m²]
      B1P014: Institutionalnononononono
      B1P014 - Institutional: Specify the sqm [m²]
      B1P014: Natural areasnononononono
      B1P014 - Natural areas: Specify the sqm [m²]
      B1P014: Recreationalnononononono
      B1P014 - Recreational: Specify the sqm [m²]
      B1P014: Dismissed areasnononononono
      B1P014 - Dismissed areas: Specify the sqm [m²]
      B1P014: Othernononononono
      B1P014 - Other: Specify the sqm [m²]
      B2P001: PED Lab concept definition
      B2P001: PED Lab concept definition
      B2P002: Installation life time
      B2P002: Installation life time
      B2P003: Scale of action
      B2P003: ScaleDistrict
      B2P004: Operator of the installation
      B2P004: Operator of the installation
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P006: Circular Economy Approach
      B2P006: Do you apply any strategy to reuse and recycling the materials?
      B2P006: Other
      B2P007: Motivation for developing the PED Lab
      B2P007: Motivation for developing the PED Lab
      B2P007: Other
      B2P008: Lead partner that manages the PED Lab
      B2P008: Lead partner that manages the PED Lab
      B2P008: Other
      B2P009: Collaborative partners that participate in the PED Lab
      B2P009: Collaborative partners that participate in the PED Lab
      B2P009: Other
      B2P010: Synergies between the fields of activities
      B2P010: Synergies between the fields of activities
      B2P011: Available facilities to test urban configurations in PED Lab
      B2P011: Available facilities to test urban configurations in PED Lab
      B2P011: Other
      B2P012: Incubation capacities of PED Lab
      B2P012: Incubation capacities of PED Lab
      B2P013: Availability of the facilities for external people
      B2P013: Availability of the facilities for external people
      B2P014: Monitoring measures
      B2P014: Monitoring measures
      B2P015: Key Performance indicators
      B2P015: Key Performance indicators
      B2P016: Execution of operations
      B2P016: Execution of operations
      B2P017: Capacities
      B2P017: Capacities
      B2P018: Relations with stakeholders
      B2P018: Relations with stakeholders
      B2P019: Available tools
      B2P019: Available tools
      B2P019: Available tools
      B2P020: External accessibility
      B2P020: External accessibility
      C1P001: Unlocking Factors
      C1P001: Recent technological improvements for on-site RES production3 - Moderately important1 - Unimportant4 - Important1 - Unimportant5 - Very important4 - Important
      C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
      C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
      C1P001: Storage systems and E-mobility market penetration5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P001: Decreasing costs of innovative materials1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important
      C1P001: Financial mechanisms to reduce costs and maximize benefits3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant4 - Important5 - Very important
      C1P001: The ability to predict Multiple Benefits2 - Slightly important1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant
      C1P001: The ability to predict the distribution of benefits and impacts4 - Important1 - Unimportant4 - Important1 - Unimportant4 - Important3 - Moderately important
      C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)4 - Important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important
      C1P001: Social acceptance (top-down)4 - Important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important5 - Very important
      C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)4 - Important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important5 - Very important
      C1P001: Presence of integrated urban strategies and plans5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important
      C1P001: Multidisciplinary approaches available for systemic integration4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important
      C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important4 - Important
      C1P001: Availability of RES on site (Local RES)5 - Very important1 - Unimportant5 - Very important1 - Unimportant5 - Very important5 - Very important
      C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
      C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P001: Any other UNLOCKING FACTORS (if any)
      C1P002: Driving Factors
      C1P002: Climate Change adaptation need3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant5 - Very important5 - Very important
      C1P002: Climate Change mitigation need (local RES production and efficiency)3 - Moderately important1 - Unimportant4 - Important1 - Unimportant5 - Very important3 - Moderately important
      C1P002: Rapid urbanization trend and need of urban expansions2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
      C1P002: Urban re-development of existing built environment1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
      C1P002: Economic growth need1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant
      C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important4 - Important
      C1P002: Territorial and market attractiveness1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important4 - Important
      C1P002: Energy autonomy/independence2 - Slightly important1 - Unimportant4 - Important1 - Unimportant5 - Very important5 - Very important
      C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P002: Any other DRIVING FACTOR (if any)
      C1P003: Administrative barriers
      C1P003: Difficulty in the coordination of high number of partners and authorities1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important3 - Moderately important
      C1P003: Lack of good cooperation and acceptance among partners1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important2 - Slightly important
      C1P003: Lack of public participation1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important
      C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
      C1P003:Long and complex procedures for authorization of project activities1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
      C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
      C1P003: Complicated and non-comprehensive public procurement1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
      C1P003: Fragmented and or complex ownership structure1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
      C1P003: City administration & cross-sectoral attitude/approaches (silos)1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
      C1P003: Lack of internal capacities to support energy transition1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important3 - Moderately important
      C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P003: Any other Administrative BARRIER (if any)
      C1P004: Policy barriers
      C1P004: Lack of long-term and consistent energy plans and policies4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important
      C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important
      C1P004: Lack of Cooperation & support between national-regional-local entities1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important4 - Important
      C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P004: Any other Political BARRIER (if any)
      C1P005: Legal and Regulatory barriers
      C1P005: Inadequate regulations for new technologies1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important4 - Important
      C1P005: Regulatory instability1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important4 - Important
      C1P005: Non-effective regulations1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important4 - Important
      C1P005: Unfavorable local regulations for innovative technologies1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important3 - Moderately important
      C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important3 - Moderately important
      C1P005: Insufficient or insecure financial incentives3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important4 - Important
      C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important
      C1P005: Shortage of proven and tested solutions and examples1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important4 - Important
      C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P005: Any other Legal and Regulatory BARRIER (if any)
      C1P006: Environmental barriers
      C1P006: Environmental barriers- Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Air and Water Pollution: 2 - Natural Disasters: 1 - Water Scarcity: 1
      C1P007: Technical barriers
      C1P007: Lack of skilled and trained personnel1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important3 - Moderately important
      C1P007: Deficient planning3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important2 - Slightly important
      C1P007: Retrofitting work in dwellings in occupied state1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important4 - Important
      C1P007: Lack of well-defined process1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important
      C1P007: Inaccuracy in energy modelling and simulation5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant
      C1P007: Lack/cost of computational scalability1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
      C1P007: Grid congestion, grid instability1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important
      C1P007: Negative effects of project intervention on the natural environment1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important2 - Slightly important
      C1P007: Difficult definition of system boundaries1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
      C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P007: Any other Thecnical BARRIER (if any)
      C1P008: Social and Cultural barriers
      C1P008: Inertia1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important
      C1P008: Lack of values and interest in energy optimization measurements1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important
      C1P008: Low acceptance of new projects and technologies1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important5 - Very important
      C1P008: Difficulty of finding and engaging relevant actors4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important
      C1P008: Lack of trust beyond social network1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important4 - Important
      C1P008: Rebound effect1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important
      C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important
      C1P008: Exclusion of socially disadvantaged groups1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important
      C1P008: Non-energy issues are more important and urgent for actors1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important5 - Very important
      C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important
      C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P008: Any other Social BARRIER (if any)
      C1P009: Information and Awareness barriers
      C1P009: Insufficient information on the part of potential users and consumers5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important
      C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important2 - Slightly important
      C1P009: Lack of awareness among authorities3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
      C1P009: Information asymmetry causing power asymmetry of established actors2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important3 - Moderately important
      C1P009: High costs of design, material, construction, and installation1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important3 - Moderately important
      C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P009: Any other Information and Awareness BARRIER (if any)
      C1P010: Financial barriers
      C1P010: Hidden costs1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant4 - Important3 - Moderately important
      C1P010: Insufficient external financial support and funding for project activities1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important
      C1P010: Economic crisis1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important5 - Very important
      C1P010: Risk and uncertainty2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important4 - Important
      C1P010: Lack of consolidated and tested business models4 - Important1 - Unimportant4 - Important1 - Unimportant4 - Important3 - Moderately important
      C1P010: Limited access to capital and cost disincentives1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important
      C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P010: Any other Financial BARRIER (if any)
      C1P011: Market barriers
      C1P011: Split incentives1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important
      C1P011: Energy price distortion1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important
      C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important
      C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P011: Any other Market BARRIER (if any)
      C1P012: Stakeholders involved
      C1P012: Government/Public Authorities
      • Design/demand aggregation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      C1P012: Research & Innovation
      • Planning/leading,
      • Design/demand aggregation
      C1P012: Financial/Funding
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      C1P012: Analyst, ICT and Big Data
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      C1P012: Business process management
      • Design/demand aggregation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      C1P012: Urban Services providers
      • Design/demand aggregation
      • None
      C1P012: Real Estate developers
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Design/Construction companies
      • Design/demand aggregation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      C1P012: End‐users/Occupants/Energy Citizens
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Social/Civil Society/NGOs
      • Design/demand aggregation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      C1P012: Industry/SME/eCommerce
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Other
      C1P012: Other (if any)
      Summary

      Authors (framework concept)

      Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

      Contributors (to the content)

      Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

      Implemented by

      Boutik.pt: Filipe Martins, Jamal Khan
      Marek Suchánek (Czech Technical University in Prague)