Filters:
NameProjectTypeCompare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Compare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Compare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Uncompare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Uncompare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Uncompare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleHalmstad, Fyllinge
Vidin, Himik and Bononia
Freiburg, Waldsee
Roubaix, MustBe0 - Résidence Philippe le Hardi – 125 Rue d’Oran
City of Espoo, Espoonlahti district, Lippulaiva block
Stor-Elvdal, Campus Evenstad
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabHalmstad, FyllingeVidin, Himik and BononiaFreiburg, WaldseeRoubaix, MustBe0 - Résidence Philippe le Hardi – 125 Rue d’OranCity of Espoo, Espoonlahti district, Lippulaiva blockStor-Elvdal, Campus Evenstad
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesyesnoyesno
PED relevant case studyyesnonoyesnoyes
PED Lab.nononononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesyesyesnoyes
Annual energy surplusnoyesnoyesnoyes
Energy communityyesnoyesnonono
Circularitynononononono
Air quality and urban comfortnononoyesnono
Electrificationnonoyesnonono
Net-zero energy costnononononono
Net-zero emissionnonoyesnonono
Self-sufficiency (energy autonomous)nononononono
Maximise self-sufficiencynonononoyesno
Othernononononoyes
Other (A1P004)Energy-flexibility
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhasePlanning PhasePlanning PhaseCompletedIn operationIn operation
A1P006: Start Date
A1P006: Start date01/2112/1811/2101/2206/1801/13
A1P007: End Date
A1P007: End date01/3012/3011/2401/2403/2212/24
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • General statistical datasets
  • Monitoring data available within the districts,
  • General statistical datasets,
  • GIS open datasets
  • General statistical datasets
  • Monitoring data available within the districts,
  • Meteorological open data
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
      • Data from the local energy provider available (restricted usage for some data points because of data security reasons,
      • renewable energy potential,
      • own calculations based on publicly available data,
      • Some data can be found in https://geoportal.freiburg.de/freigis/
        • M. Hukkalainen, F. Zarrin, K. Klobut, O. Lindholm, M. Ranta, P. Hajduk, T. Vainio-Kaila, E. Wanne, J. Tartia, H. Horn, K. Kontu, J. Juhmen, S. Santala, R. Turtiainen, J. Töyräs, T. Koljonen. (2020). Deliverable D3.1 Detailed plan of the Espoo smart city lighthouse demonstrations. Available online: https://www.sparcs.info/sites/default/files/2020-09/SPARCS_D3.1_Detailed_plan_Espoo.pdf,
        • Hukkalainen, Zarrin Fatima, Krzysztof Klobut, Kalevi Piira, Mikaela Ranta, Petr Hajduk, Tiina Vainio-Kaila , Elina Wanne, Jani Tartia, Angela Bartel, Joni Mäkinen, Mia Kaurila, Kaisa Kontu, Jaano Juhmen, Merja Ryöppy, Reetta Turtiainen, Joona Töyräs, Timo Koljonen (2021) Deliverable 3.2 Midterm report on the implemented demonstrations of solutions for energy positive blocks in Espoo. Available online: https://www.sparcs.info/sites/default/files/2022-02/SPARCS_D3.2.pdf,
        • www.lippulaiva.fi
        A1P011: Geographic coordinates
        X Coordinate (longitude):12.9205422.88267.8858571358429173.165124.654311.078770773531746
        Y Coordinate (latitude):56.6519443.993647.98653520708004550.693760.149161.42604420399112
        A1P012: Country
        A1P012: CountrySwedenBulgariaGermanyFranceFinlandNorway
        A1P013: City
        A1P013: CityHalmstadVidinFreiburg im BreisgauRoubaixEspooEvenstad, Stor-Elvdal municipality
        A1P014: Climate Zone (Köppen Geiger classification)
        A1P014: Climate Zone (Köppen Geiger classification).DwbCfaCfbCfbDfbDwc
        A1P015: District boundary
        A1P015: District boundaryGeographicGeographicVirtualOtherGeographicGeographic
        OtherPEB
        A1P016: Ownership of the case study/PED Lab
        A1P016: Ownership of the case study/PED Lab:MixedMixedMixedPrivatePrivatePublic
        A1P017: Ownership of the land / physical infrastructure
        A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersMultiple OwnersSingle OwnerSingle OwnerSingle Owner
        A1P018: Number of buildings in PED
        A1P018: Number of buildings in PED2507429411922
        A1P019: Conditioned space
        A1P019: Conditioned space [m²]98759.53284070144211200010000
        A1P020: Total ground area
        A1P020: Total ground area [m²]195234.8049200002500165000
        A1P021: Floor area ratio: Conditioned space / total ground area
        A1P021: Floor area ratio: Conditioned space / total ground area010110
        A1P022: Financial schemes
        A1P022a: Financing - PRIVATE - Real estateyesnonoyesyesno
        A1P022a: Add the value in EUR if available [EUR]0
        A1P022b: Financing - PRIVATE - ESCO schemenononononono
        A1P022b: Add the value in EUR if available [EUR]
        A1P022c: Financing - PRIVATE - Othernononononono
        A1P022c: Add the value in EUR if available [EUR]
        A1P022d: Financing - PUBLIC - EU structural fundingnononononono
        A1P022d: Add the value in EUR if available [EUR]
        A1P022e: Financing - PUBLIC - National fundingnoyesnononoyes
        A1P022e: Add the value in EUR if available [EUR]
        A1P022f: Financing - PUBLIC - Regional fundingnononoyesnono
        A1P022f: Add the value in EUR if available [EUR]
        A1P022g: Financing - PUBLIC - Municipal fundingnonoyesyesnono
        A1P022g: Add the value in EUR if available [EUR]
        A1P022h: Financing - PUBLIC - Othernononononono
        A1P022h: Add the value in EUR if available [EUR]
        A1P022i: Financing - RESEARCH FUNDING - EUyesnoyesyesyesno
        A1P022i: Add the value in EUR if available [EUR]308875
        A1P022j: Financing - RESEARCH FUNDING - Nationalnonoyesnonoyes
        A1P022j: Add the value in EUR if available [EUR]
        A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononono
        A1P022k: Add the value in EUR if available [EUR]
        A1P022l: Financing - RESEARCH FUNDING - Othernononononono
        A1P022l: Add the value in EUR if available [EUR]
        A1P022: OtherRetrofitted through various subsidies
        A1P023: Economic Targets
        A1P023: Economic Targets
        • Boosting local and sustainable production
        • Job creation,
        • Positive externalities,
        • Boosting local businesses
        • Boosting local businesses,
        • Boosting local and sustainable production
        A1P023: Other
        A1P024: More comments:
        A1P024: More comments:The building comprises 32 homes. The refurbishment complies with EnergieSprong specifications. This implies a performance of E=0 over 25 years.The Espoonlahti district is located on the south-western coast of Espoo. With 56,000 inhabitants, it is the second largest of the Espoo city centres. The number of inhabitants is estimated to grow to 70,000 within the next 10 years. Espoonlahti will be a future transit hub of the south-western Espoo, along the metro line, and the increasing stream of passengers provides a huge potential for retail, business and residential developments. E-mobility solutions and last-mile services have strong potential in the area when subway extension is finished and running. The extensive (re)development of the Lippulaiva blocks make a benchmark catering to the everyday needs of residents. The completely new shopping centre is a state-of-the-art cross point with 20,000 daily customers and 10,000 daily commuters (3.5 million/year). The new underground metro line and station, and feeder line bus terminal, are fully integrated. Residential housing of approximately 550 new apartments will be built on top. Lippulaiva is a large traffic hub, directly connected to public transport and right next to the Länsiväylä highway and extensive cycle paths. Lippulaiva offers diverse, mixed-use services, such as a shopping mall, public services, a day care centre, residential apartment buildings, and underground parking facilities. Lippulaiva received the LEED Gold environmental certificate and Smart Building Gold certificate. • Flagship of sustainability • Cooling and heating demand from geothermal energy system (on-site) with energy storage system, 4 MW • PV panels: roof and façade, 630 kWp • Smart control strategies for electricity and thermal energy, smart microgrid-system and battery storage • Charging capacity for 134 EVs
        A1P025: Estimated PED case study / PED LAB costs
        A1P025: Estimated PED case study / PED LAB costs [mil. EUR]3.6
        Contact person for general enquiries
        A1P026: NameMarkus OlofsgårdDaniela KostovaDr. Annette SteingrubeJulien HolgardElina EkelundÅse Lekang Sørensen
        A1P027: OrganizationAFRYGreen Synergy ClusterFraunhofer Institute for solar energy systemsVilogiaCitycon OyjSINTEF / The Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart Cities
        A1P028: AffiliationOtherOtherResearch Center / UniversityOtherSME / IndustryResearch Center / University
        A1P028: OtherClusterSocial Housing Company
        A1P029: Emailmarkus.olofsgard@afry.comdaniela@greensynergycluster.euAnnette.Steingrube@ise.fraunhofer.dejulien.holgard@vilogia.frElina.ekelund@citycon.comase.sorensen@sintef.no
        Contact person for other special topics
        A1P030: NameJulien HolgardElina Ekelund
        A1P031: Emailjulien.holgard@vilogia.frElina.ekelund@citycon.com
        Pursuant to the General Data Protection RegulationYesYesYesYesYesYes
        A2P001: Fields of application
        A2P001: Fields of application
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies
        • Energy efficiency,
        • Energy production
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Waste management
        • Energy efficiency,
        • Energy production,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Indoor air quality,
        • Construction materials
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies,
        • Construction materials
        A2P001: Other
        A2P002: Tools/strategies/methods applied for each of the above-selected fields
        A2P002: Tools/strategies/methods applied for each of the above-selected fieldslink based regulation of electricity gridEnergy system modelingEnergy efficiency: - eliminating waste energy utilizing smart energy system - utilizing excess heat from grocery stores Energy flexibility: - A battery energy storage system (1,5 MW/1,5MWh); Active participation in Nordpool electricity market (FCR-N) Energy production: - heating and cooling from geothermal heat pump system; 171 energy wells (over 51 km); heat capacity 4 MW - installation of new photovoltaic (PV) systems for renewable on-site energy production; Estimation of annual production is about 540 MWh (630 kWp) E-mobility - Installation of charging stations for electric vehicles (for 134 EVs) - e-bike services (warm storage room, charging cabinets for e-bikes) Digital technologies: - Building Analytics system by Schneider ElectricCampus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. The vision for Campus Evenstad is an energy-flexible Campus Evenstad in an emission-free Europe. The area consists of approx. 20 buildings managed and owned by Statsbygg; the Norwegian government’s building commissioner, property manager and developer. The oldest building is from the 1700-century and the newest is the administration centre (2017) which is a Zero Emission Building (ZEB) with the highest ambitions (ZEB-COM). Their concept has been to realize Campus Evenstad as an energy pilot, where innovative energy solutions are demonstrated, showing how local areas can become more self-sufficient in energy. The energy system at Evenstad consists of several innovative energy solutions that are new in a Norwegian and European context. They are combined in local infrastructure for electricity and heat, which has led to new knowledge and learning about how the solutions work together, and how the interaction is between the local and the national energy system. The solutions consist of solar cells (PV), solar collectors, combined heat and power plant (CHP) based on wood chips, biofuel boiler, electric boiler, grid connection, district heating, heat storage, stationary battery and bidirectional electric vehicle (EV) charging (V2G). Statsbygg has gained a lot of operational experience from Campus Evenstad - both from individual technologies and from the interaction between these, which benefits Statsbygg's 2,200 buildings and 3 million m2 around Norway. Sharing of experiences is central. Campus Evenstad is a pilot in the Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart Cities were several of the solutions has been developed and studied.
        A2P003: Application of ISO52000
        A2P003: Application of ISO52000NoNoYesNoYesNo
        A2P004: Appliances included in the calculation of the energy balance
        A2P004: Appliances included in the calculation of the energy balanceNoNoYesYesYesYes
        A2P005: Mobility included in the calculation of the energy balance
        A2P005: Mobility included in the calculation of the energy balanceYesYesYesNoNoYes
        A2P006: Description of how mobility is included (or not included) in the calculation
        A2P006: Description of how mobility is included (or not included) in the calculationAll energy demands are included in energy balance, either fuel demands or electrical demand of transport sector; Projection is made of future share of electric mobilty, rest is covered with synthetic fuels to achieve climate neutralityMobility is not included in the energy model.At Campus Evenstad there is infrastructure for EV charging and bidirectional charging (V2G). EV charging is included in the energy balance.
        A2P007: Annual energy demand in buildings / Thermal demand
        A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]135.7155.50.77
        A2P008: Annual energy demand in buildings / Electric Demand
        A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]31.765.80.76
        A2P009: Annual energy demand for e-mobility
        A2P009: Annual energy demand for e-mobility [GWh/annum]
        A2P010: Annual energy demand for urban infrastructure
        A2P010: Annual energy demand for urban infrastructure [GWh/annum]
        A2P011: Annual renewable electricity production on-site during target year
        A2P011: PVyesnonoyesyesyes
        A2P011: PV - specify production in GWh/annum [GWh/annum]0.540.065
        A2P011: Windnononononono
        A2P011: Wind - specify production in GWh/annum [GWh/annum]
        A2P011: Hydronononononono
        A2P011: Hydro - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_elnononononoyes
        A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]0.050
        A2P011: Biomass_peat_elnononononono
        A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
        A2P011: PVT_elnononononono
        A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
        A2P011: Othernononononono
        A2P011: Other - specify production in GWh/annum [GWh/annum]
        A2P012: Annual renewable thermal production on-site during target year
        A2P012: Geothermalyesnononoyesno
        A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]5
        A2P012: Solar Thermalnononononoyes
        A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.045
        A2P012: Biomass_heatnononononoyes
        A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.35
        A2P012: Waste heat+HPnononononono
        A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_peat_heatnononononono
        A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: PVT_thnononononono
        A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_firewood_thnononononono
        A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Othernononononono
        A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
        A2P013: Renewable resources on-site - Additional notes
        A2P013: Renewable resources on-site - Additional notes53 MW PV potential in all three quarters; no other internal renewable energy potentials knownListed values are measurements from 2018. Renewable energy share is increasing.
        A2P014: Annual energy use
        A2P014: Annual energy use [GWh/annum]132.50.08411.31.500
        A2P015: Annual energy delivered
        A2P015: Annual energy delivered [GWh/annum]0.115.761
        A2P016: Annual non-renewable electricity production on-site during target year
        A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]00
        A2P017: Annual non-renewable thermal production on-site during target year
        A2P017: Gasnononononono
        A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]0
        A2P017: Coalnononononono
        A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]0
        A2P017: Oilnononononono
        A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]0
        A2P017: Othernononononono
        A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P018: Annual renewable electricity imports from outside the boundary during target year
        A2P018: PVnononononono
        A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
        A2P018: Windnononononono
        A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
        A2P018: Hydronononononono
        A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_elnononononono
        A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_peat_elnononononono
        A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: PVT_elnononononono
        A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Othernonononoyesno
        A2P018 - Other: specify production in GWh/annum if available [GWh/annum]5.26
        A2P019: Annual renewable thermal imports from outside the boundary during target year
        A2P019: Geothermalnononononono
        A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Solar Thermalnononononono
        A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_heatnononononono
        A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Waste heat+HPnononononono
        A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_peat_heatnononononono
        A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: PVT_thnononononono
        A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_firewood_thnononononono
        A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Othernononononono
        A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
        A2P020: Share of RES on-site / RES outside the boundary
        A2P020: Share of RES on-site / RES outside the boundary00001.05323193916350
        A2P021: GHG-balance calculated for the PED
        A2P021: GHG-balance calculated for the PED [tCO2/annum]0
        A2P022: KPIs related to the PED case study / PED Lab
        A2P022: Safety & Security
        A2P022: Health
        A2P022: Education
        A2P022: Mobilityyes
        A2P022: EnergyyesOn-site energy ratio
        A2P022: Water
        A2P022: Economic development
        A2P022: Housing and Communityyes
        A2P022: Waste
        A2P022: Other
        A2P023: Technological Solutions / Innovations - Energy Generation
        A2P023: Photovoltaicsyesyesyesyesyesyes
        A2P023: Solar thermal collectorsnonoyesnonoyes
        A2P023: Wind Turbinesnononononono
        A2P023: Geothermal energy systemnoyesyesnoyesno
        A2P023: Waste heat recoverynonoyesnoyesno
        A2P023: Waste to energynonoyesnonono
        A2P023: Polygenerationnononononono
        A2P023: Co-generationnonoyesnonoyes
        A2P023: Heat Pumpnoyesyesnonono
        A2P023: Hydrogennonoyesnonono
        A2P023: Hydropower plantnonoyesnonono
        A2P023: Biomassnonoyesnonoyes
        A2P023: Biogasnonoyesnonono
        A2P023: OtherThe Co-generation is biomass based.
        A2P024: Technological Solutions / Innovations - Energy Flexibility
        A2P024: A2P024: Information and Communication Technologies (ICT)yesnoyesnoyesyes
        A2P024: Energy management systemnonoyesnoyesyes
        A2P024: Demand-side managementyesnoyesnonoyes
        A2P024: Smart electricity gridyesnoyesnoyesno
        A2P024: Thermal Storagenonoyesnoyesyes
        A2P024: Electric Storagenoyesyesnoyesyes
        A2P024: District Heating and Coolingnonoyesnonoyes
        A2P024: Smart metering and demand-responsive control systemsyesnoyesyesnoyes
        A2P024: P2P – buildingsnonoyesnonono
        A2P024: OtherBidirectional electric vehicle (EV) charging (V2G)
        A2P025: Technological Solutions / Innovations - Energy Efficiency
        A2P025: Deep Retrofittingnoyesyesyesnono
        A2P025: Energy efficiency measures in historic buildingsnonoyesnonono
        A2P025: High-performance new buildingsnonononoyesyes
        A2P025: Smart Public infrastructure (e.g. smart lighting)nonononoyesno
        A2P025: Urban data platformsnonoyesnonono
        A2P025: Mobile applications for citizensnononononono
        A2P025: Building services (HVAC & Lighting)nonononoyesno
        A2P025: Smart irrigationnononononono
        A2P025: Digital tracking for waste disposalnononononono
        A2P025: Smart surveillancenononononono
        A2P025: Other
        A2P026: Technological Solutions / Innovations - Mobility
        A2P026: Efficiency of vehicles (public and/or private)nonoyesnonono
        A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nonoyesnoyesno
        A2P026: e-Mobilitynonoyesnoyesyes
        A2P026: Soft mobility infrastructures and last mile solutionsnonoyesnonono
        A2P026: Car-free areanononononono
        A2P026: OtherLocal transportation hub with direct connection to metro & bus terminal; parking spaces for 1,400 bicycles and for 1,300 cars Promoting e-Mobility: 134 charging stations, A technical reservation for expanding EV charging system 1400 bicycle racks and charging cabinets for 10 e-bicycle batteries
        A2P027: Mobility strategies - Additional notes
        A2P027: Mobility strategies - Additional notes
        A2P028: Energy efficiency certificates
        A2P028: Energy efficiency certificatesNoNoNoYesYes
        A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate => Energy efficiency class B (2018 version)Passive house (2 buildings, 4 200 m2, from 2015)
        A2P029: Any other building / district certificates
        A2P029: Any other building / district certificatesNoNoNoYesYes
        A2P029: If yes, please specify and/or enter notesLEED (Core & Shell, v4) GOLD certification, Smart Building certification (GOLD)Zero Emission Building (ZEB) with the highest ambitions (ZEB-COM) (admin building, 1 141 m2, 2016)
        A3P001: Relevant city /national strategy
        A3P001: Relevant city /national strategy
        • Promotion of energy communities (REC/CEC)
        • Energy master planning (SECAP, etc.),
        • New development strategies
        • Smart cities strategies
        • Climate change adaption plan/strategy (e.g. Climate City contract)
        • Energy master planning (SECAP, etc.),
        • New development strategies,
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Promotion of energy communities (REC/CEC),
        • National / international city networks addressing sustainable urban development and climate neutrality
        A3P002: Quantitative targets included in the city / national strategy
        A3P002: Quantitative targets included in the city / national strategyClimate neutrality by 2035Relevant city strategies behind PED development in Espoo include the following: - The Espoo Story: Sustainability is heavily included within the values and goals of the current Espoo city strategy, also known as the Espoo Story, running from 2021 to 2025. For example, the strategy names being a responsible pioneer as one of the main values of the city and has chosen achieving carbon neutrality by 2030 as one of the main goals of the current council term. In addition to the Espoo story, four cross-administrative development programmes act as cooperation platforms that allow the city, together with its partners, to develop innovative solutions through experiments and pilot projects in line with the Espoo Story. The Sustainable Espoo development programme is one of the four programmes, thus putting sustainability on the forefront in city development work. - EU Mission: 100 climate-neutral and smart cities by 2030: Cities selected for the Mission commit to achieving carbon-neutrality in 2030. A key tool in the Mission is the Climate City Contract. Each selected city will prepare and implement its contracts in collaboration with local businesses as well as other stakeholders and residents. - Covenant of Mayors for Climate and Energy: Espoo is committed to the Covenant of Mayors for Climate and Energy, under which the signatories commit to supporting the European Union’s 40% greenhouse gas emission reduction goal by 2030. The Sustainable Energy and Climate Action Plan (SECAP) is a key instrument for implementing the agreement. The Action Plan outlines the key measures the city will take to achieve its carbon neutrality goal. The plan also includes a mapping of climate change risks and vulnerabilities, adaptation measures, emission calculations, emission reduction scenarios and impact estimations of measures. The SECAP of the City of Espoo is available here (only available in Finnish). - UN Sustainable development Goals: The city of Espoo has committed to becoming a forerunner and achieving the UN's Sustainable Development Goals (SDG) by 2025. The goal is to make Espoo financially, ecologically, socially, and culturally sustainable. - The Circular Cities Declaration: At the end of 2020, Espoo signed the Europe-wide circular economy commitment Circular Cities Declaration. The ten goals of the declaration promote the implementation of the city’s circular economy. - Espoo Clean Heat: Fortum and the City of Espoo are committed to producing carbon-neutral district heating in the network operating in the areas of Espoo, Kauniainen and Kirkkonummi during the 2020s. The district heating network provides heating to some 250,000 end-users in homes and offices. Coal will be completely abandoned in the production of district heating by 2025. The main targets related to PED development included in the noted city strategies are the following: - Espoo will achieve carbon neutrality by 2030. To be precise, this carbon neutrality goal is defined as an 80% emission reduction from the 1990 level by the year 2030. The remaining 20% share can be absorbed in carbon sinks or compensated by other means. - District heating in Espoo will be carbon-neutral by 2029, and coal-based production will be phased out from district heating by 2025. - Espoo aims to end the use of fossil fuels in the heating of city-owned buildings by 2025. - Quantitative goals within the Espoo SECAP report: - Espoo aims to reduce total energy consumption within the municipal sector by 7.5% by the end of 2025 in comparison to the 2015 level. The social housing company Espoon Asunnot OY aims to meet the same target. - Espoo aims to cover 10% of the energy consumption of new buildings via on-site production. - Espoo aims to raise the modal split of cycling to 15% by 2024. - Espoo aims to raise the modal split of public transport by 1.1% yearly. - Espoo aims to reduce the emissions of bus transport by 90% by the end of 2025, when compared to 2010 levels.
        A3P003: Strategies towards decarbonization of the gas grid
        A3P003: Strategies towards decarbonization of the gas grid
        • Electrification of Heating System based on Heat Pumps,
        • Biogas,
        • Hydrogen
        • Electrification of Heating System based on Heat Pumps
        A3P003: Other
        A3P004: Identification of needs and priorities
        A3P004: Identification of needs and prioritiesFreiburg has ambitious goals and wants to achieve climate neutrality until 2035, the PED concept could help to develop suitable strategies on district level- Citycon (developer and owner of Lippulaiva) aims to be carbon neutral in its energy use by 2030 - Lippulaiva is a unique urban centre with state-of-the-art energy concept. The centre has a smart managing system, which allows for example the temporary reduction of power used in air conditioning and charging stations when energy consumption is at its peak. In addition, a backup generator and a large electric battery will balance the operation of the electricity network. - Lippulaiva is also an important mobility hub for the people of Espoo. Espoonlahti metro station is located under the centre, and the West Metro started to operate to Espoonlahti in December 2022. Lippulaiva also has a bus terminal, which serves the metro’s feeder traffic in the Espoonlahti major district.
        A3P005: Sustainable behaviour
        A3P005: Sustainable behaviourEnergy efficiency by renovation measures for buildings and measures for saving electricity; electrification by installation of heat pumps and photovoltaics and switching to electric cars, additional measures not directly related to PED like sustainable diet and sharing economyFor Citycon, it was important to engage local people within the Lippulaiva project. During the construction period as well as after opening of the shopping center, citizens have been engaged in multiple ways, such as informing local citizens of the progress of construction, engaging young people in the design processes of the shopping centre and long-term commitment of youngsters with Lippulaiva Buddy class initiative. Users’ engagement activities are conducted in close co-operation with SPARCS partners.
        A3P006: Economic strategies
        A3P006: Economic strategies
        • Local trading
        • Demand management Living Lab,
        • Local trading,
        • Existing incentives
        • Innovative business models
        A3P006: Other
        A3P007: Social models
        A3P007: Social models
        • Behavioural Change / End-users engagement,
        • Citizen/owner involvement in planning and maintenance
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Quality of Life,
        • Prevention of energy poverty
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Citizen/owner involvement in planning and maintenance,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Behavioural Change / End-users engagement,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Co-creation / Citizen engagement strategies
        • Behavioural Change / End-users engagement,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour),
        • Other
        A3P007: OtherCampus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. Sharing knowledge is essential: Evenstad has regular visits from Politicians, decision-makers, researchers, environmental organizations, and energy- and building companies.
        A3P008: Integrated urban strategies
        A3P008: Integrated urban strategies
        • Strategic urban planning
        • Strategic urban planning,
        • City Vision 2050,
        • SECAP Updates
        • Strategic urban planning,
        • Digital twinning and visual 3D models,
        • District Energy plans
        • Building / district Certification
        A3P008: Other
        A3P009: Environmental strategies
        A3P009: Environmental strategies
        • Energy Neutral,
        • Carbon-free
        • Pollutants Reduction,
        • Greening strategies
        • Energy Neutral
        • Other
        • Low Emission Zone
        A3P009: OtherCarbon free in terms of energy
        A3P010: Legal / Regulatory aspects
        A3P010: Legal / Regulatory aspects- Energy efficiency regulations (Directive 2006/32/EC and 2009/72/EC) - EU directive 2010/31/EU on the energy performance of buildings => all new buildings should be “nearly zero-energy buildings” (nZEB) from 2021Campus Evenstad became a prosumer in 2016, as the first with DSO Eidsiva. Evenstad is also one of the first three PV systems in Norway to receive green certificates.
        B1P001: PED/PED relevant concept definition
        B1P001: PED/PED relevant concept definitionAssessment methods for this ped (and for germany) is defined in this project at the moment and will be tested at that case studyRefurbishment of social housing. The refurbishment complies with EnergieSprong specifications. This implies a performance of E=0 over 25 years.Lippulaiva is a project with high level goal in terms of energy efficiency, energy flexibility and energy production.The biggest impact is the demonstration of several new energy solutions for local communities. Statsbygg/Campus Evenstad contributes to the development of innovations, pushing technological development through purchasing and demonstration of the solutions. This is a benefit for both end users, energy service providers and society at large. Evenstad also contribute to developing the local business community. For example, local biomass chip production for CHP, development of V2G-software etc. Several key solutions have been important when aiming to achieve the goals of reduced emissions, increased self-sufficiency in energy, and an energy-flexible campus. Example Vehicle-to-grid (V2G): We realized bidirectional EV charging at Campus Evenstad in 2019, demonstrating V2G for the first time in Norway. The experiences from Evenstad provide increased knowledge and practical experience from purchasing, installing and operating the V2G solution, and can contribute to creating new solutions within the energy system. With the equipment installed, the batteries in EVs can supply power back to buildings or the power grid. Example solar cells (PV): We installed PV in 2013 when there were only a few grid-connected PV systems in Norway. The PV system was an important piece in changing the view on solar energy in Norway, where businesses, the public sector and private individuals started seeing the potential for solar energy also this far north. In 2022, the PV system was expanded with PV cells on the facade of the energy center. Example Solar collector system: Covers 100m2 of the roof surface of dormitories and supplies supplies 117 dormitories with all the hot water they need (4000m2 floor area. The solar collector system is connected to the district heating system, where the main heat source is bioenergy. Solar energy and bioenergy complement each other at different times of the year. Example battery bank: Among the 5 largest electrical batteries in Norway connected to the grid. Example CHP: First of its kind in Norway, generating heat and electricity from biomass. Already in 2010, fossil fuels were phased out by converting from oil to wood-chip heating.
        B1P002: Motivation behind PED/PED relevant project development
        B1P002: Motivation behind PED/PED relevant project developmentCity is interested in transforming the quarter, as many buildings are old, have private owner structures and have decentralised heating systems. As the city wants to become climate neutral by 2035 action is needed now. In the research project PED urban the idea is to focus on the future energy system of the quarter and use it as a case study to develop a common assessment method for PEDs in alignment with european efforts in that regardRefurbishment of social housing- Citycon’s (developer and owner of Lippulaiva) target is to be carbon neutral by 2030 - Increasing sustainability requirements from the financing, tenants, cities, other stakeholdersIn line with the EU's vision of "local energy communities", Campus Evenstad demonstrates energy actions that contribute to the clean energy transition. The campus has been developed over several years, demonstrating several innovative and sustainable technologies and energy solutions in a microgrid, e.g. vehicle to grid (V2G), biomass-based combined heat and power (CHP), solar energy, energy storage and zero emission buildings. It shows how to use new technology to enable zero emissions areas. Dedicated professionals, both Statsbygg's operating staff and researchers from FME ZEN have been central to the realization, together with dedicated management at the University campus, who have shown a great willingness to implement new solutions.
        B1P003: Environment of the case study area
        B2P003: Environment of the case study areaSuburban areaUrban areaSuburban areaSuburban areaUrban areaRural
        B1P004: Type of district
        B2P004: Type of district
        • New construction
        • Renovation
        • Renovation
        • Renovation
        • New construction
        • New construction,
        • Renovation
        B1P005: Case Study Context
        B1P005: Case Study Context
        • New Development
        • Retrofitting Area
        • Retrofitting Area
        • Retrofitting Area
        • Re-use / Transformation Area,
        • New Development
        • Retrofitting Area
        B1P006: Year of construction
        B1P006: Year of construction19582022
        B1P007: District population before intervention - Residential
        B1P007: District population before intervention - Residential5898
        B1P008: District population after intervention - Residential
        B1P008: District population after intervention - Residential5898
        B1P009: District population before intervention - Non-residential
        B1P009: District population before intervention - Non-residential
        B1P010: District population after intervention - Non-residential
        B1P010: District population after intervention - Non-residential
        B1P011: Population density before intervention
        B1P011: Population density before intervention000000
        B1P012: Population density after intervention
        B1P012: Population density after intervention000.0011987804878049000
        B1P013: Building and Land Use before intervention
        B1P013: Residentialnoyesyesyesnono
        B1P013 - Residential: Specify the sqm [m²]64 787,57
        B1P013: Officenonoyesnonono
        B1P013 - Office: Specify the sqm [m²]
        B1P013: Industry and Utilitynonoyesnonono
        B1P013 - Industry and Utility: Specify the sqm [m²]
        B1P013: Commercialnoyesyesnoyesno
        B1P013 - Commercial: Specify the sqm [m²]262,33
        B1P013: Institutionalnonoyesnonono
        B1P013 - Institutional: Specify the sqm [m²]
        B1P013: Natural areasyesnoyesnoyesno
        B1P013 - Natural areas: Specify the sqm [m²]
        B1P013: Recreationalnonoyesnonono
        B1P013 - Recreational: Specify the sqm [m²]
        B1P013: Dismissed areasnononononono
        B1P013 - Dismissed areas: Specify the sqm [m²]
        B1P013: Othernononononono
        B1P013 - Other: Specify the sqm [m²]
        B1P014: Building and Land Use after intervention
        B1P014: Residentialnonoyesyesyesno
        B1P014 - Residential: Specify the sqm [m²]
        B1P014: Officenonoyesnonono
        B1P014 - Office: Specify the sqm [m²]
        B1P014: Industry and Utilitynonoyesnonono
        B1P014 - Industry and Utility: Specify the sqm [m²]
        B1P014: Commercialnonoyesnoyesno
        B1P014 - Commercial: Specify the sqm [m²]
        B1P014: Institutionalnoyesyesnonono
        B1P014 - Institutional: Specify the sqm [m²]35322.21
        B1P014: Natural areasnonoyesnonono
        B1P014 - Natural areas: Specify the sqm [m²]
        B1P014: Recreationalnonoyesnonono
        B1P014 - Recreational: Specify the sqm [m²]
        B1P014: Dismissed areasnononononono
        B1P014 - Dismissed areas: Specify the sqm [m²]
        B1P014: Othernononononono
        B1P014 - Other: Specify the sqm [m²]
        B2P001: PED Lab concept definition
        B2P001: PED Lab concept definition
        B2P002: Installation life time
        B2P002: Installation life time
        B2P003: Scale of action
        B2P003: Scale
        B2P004: Operator of the installation
        B2P004: Operator of the installation
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P006: Circular Economy Approach
        B2P006: Do you apply any strategy to reuse and recycling the materials?
        B2P006: Other
        B2P007: Motivation for developing the PED Lab
        B2P007: Motivation for developing the PED Lab
        B2P007: Other
        B2P008: Lead partner that manages the PED Lab
        B2P008: Lead partner that manages the PED Lab
        B2P008: Other
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Other
        B2P010: Synergies between the fields of activities
        B2P010: Synergies between the fields of activities
        B2P011: Available facilities to test urban configurations in PED Lab
        B2P011: Available facilities to test urban configurations in PED Lab
        B2P011: Other
        B2P012: Incubation capacities of PED Lab
        B2P012: Incubation capacities of PED Lab
        B2P013: Availability of the facilities for external people
        B2P013: Availability of the facilities for external people
        B2P014: Monitoring measures
        B2P014: Monitoring measures
        B2P015: Key Performance indicators
        B2P015: Key Performance indicators
        B2P016: Execution of operations
        B2P016: Execution of operations
        B2P017: Capacities
        B2P017: Capacities
        B2P018: Relations with stakeholders
        B2P018: Relations with stakeholders
        B2P019: Available tools
        B2P019: Available tools
        B2P019: Available tools
        B2P020: External accessibility
        B2P020: External accessibility
        C1P001: Unlocking Factors
        C1P001: Recent technological improvements for on-site RES production3 - Moderately important4 - Important3 - Moderately important1 - Unimportant4 - Important5 - Very important
        C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
        C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important5 - Very important
        C1P001: Storage systems and E-mobility market penetration5 - Very important4 - Important4 - Important1 - Unimportant4 - Important5 - Very important
        C1P001: Decreasing costs of innovative materials1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P001: Financial mechanisms to reduce costs and maximize benefits3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant
        C1P001: The ability to predict Multiple Benefits2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant
        C1P001: The ability to predict the distribution of benefits and impacts4 - Important2 - Slightly important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant
        C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)4 - Important5 - Very important4 - Important1 - Unimportant3 - Moderately important4 - Important
        C1P001: Social acceptance (top-down)4 - Important4 - Important4 - Important1 - Unimportant2 - Slightly important4 - Important
        C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)4 - Important5 - Very important4 - Important1 - Unimportant2 - Slightly important4 - Important
        C1P001: Presence of integrated urban strategies and plans5 - Very important5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P001: Multidisciplinary approaches available for systemic integration4 - Important5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P001: Availability of RES on site (Local RES)5 - Very important5 - Very important4 - Important1 - Unimportant5 - Very important5 - Very important
        C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders3 - Moderately important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P001: Any other UNLOCKING FACTORS1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P001: Any other UNLOCKING FACTORS (if any)
        C1P002: Driving Factors
        C1P002: Climate Change adaptation need3 - Moderately important4 - Important4 - Important1 - Unimportant5 - Very important3 - Moderately important
        C1P002: Climate Change mitigation need (local RES production and efficiency)3 - Moderately important5 - Very important4 - Important1 - Unimportant4 - Important5 - Very important
        C1P002: Rapid urbanization trend and need of urban expansions2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P002: Urban re-development of existing built environment1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P002: Economic growth need1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
        C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)1 - Unimportant4 - Important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
        C1P002: Territorial and market attractiveness1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
        C1P002: Energy autonomy/independence2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant4 - Important4 - Important
        C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P002: Any other DRIVING FACTOR (if any)
        C1P003: Administrative barriers
        C1P003: Difficulty in the coordination of high number of partners and authorities1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant
        C1P003: Lack of good cooperation and acceptance among partners1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant
        C1P003: Lack of public participation1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P003:Long and complex procedures for authorization of project activities1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important
        C1P003: Complicated and non-comprehensive public procurement1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important
        C1P003: Fragmented and or complex ownership structure1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P003: City administration & cross-sectoral attitude/approaches (silos)1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P003: Lack of internal capacities to support energy transition1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant
        C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P003: Any other Administrative BARRIER (if any)
        C1P004: Policy barriers
        C1P004: Lack of long-term and consistent energy plans and policies4 - Important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P004: Lack of Cooperation & support between national-regional-local entities1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P004: Any other Political BARRIER (if any)
        C1P005: Legal and Regulatory barriers
        C1P005: Inadequate regulations for new technologies1 - Unimportant5 - Very important4 - Important1 - Unimportant2 - Slightly important5 - Very important
        C1P005: Regulatory instability1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important
        C1P005: Non-effective regulations1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
        C1P005: Unfavorable local regulations for innovative technologies1 - Unimportant5 - Very important5 - Very important1 - Unimportant2 - Slightly important3 - Moderately important
        C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant
        C1P005: Insufficient or insecure financial incentives3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important4 - Important
        C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P005: Shortage of proven and tested solutions and examples1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important
        C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER (if any)
        C1P006: Environmental barriers
        C1P006: Environmental barriers
        C1P007: Technical barriers
        C1P007: Lack of skilled and trained personnel1 - Unimportant5 - Very important4 - Important1 - Unimportant4 - Important3 - Moderately important
        C1P007: Deficient planning3 - Moderately important5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Retrofitting work in dwellings in occupied state1 - Unimportant5 - Very important4 - Important1 - Unimportant4 - Important3 - Moderately important
        C1P007: Lack of well-defined process1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P007: Inaccuracy in energy modelling and simulation5 - Very important5 - Very important2 - Slightly important1 - Unimportant2 - Slightly important3 - Moderately important
        C1P007: Lack/cost of computational scalability1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P007: Grid congestion, grid instability1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
        C1P007: Negative effects of project intervention on the natural environment1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant2 - Slightly important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Difficult definition of system boundaries1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P007: Any other Thecnical BARRIER (if any)Energy management systems of different new technologies does not "talk together" (e.g. solar inverter, V2G inverter). This creates challenges.
        C1P008: Social and Cultural barriers
        C1P008: Inertia1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Lack of values and interest in energy optimization measurements1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P008: Low acceptance of new projects and technologies1 - Unimportant4 - Important2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important
        C1P008: Difficulty of finding and engaging relevant actors4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Lack of trust beyond social network1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Rebound effect1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
        C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
        C1P008: Exclusion of socially disadvantaged groups1 - Unimportant4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
        C1P008: Non-energy issues are more important and urgent for actors1 - Unimportant5 - Very important4 - Important1 - Unimportant4 - Important4 - Important
        C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
        C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Any other Social BARRIER (if any)
        C1P009: Information and Awareness barriers
        C1P009: Insufficient information on the part of potential users and consumers5 - Very important5 - Very important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
        C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts1 - Unimportant4 - Important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P009: Lack of awareness among authorities3 - Moderately important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important
        C1P009: Information asymmetry causing power asymmetry of established actors2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
        C1P009: High costs of design, material, construction, and installation1 - Unimportant5 - Very important4 - Important1 - Unimportant4 - Important5 - Very important
        C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P009: Any other Information and Awareness BARRIER (if any)Different interests - Grid/energy stakeholders and building stakeholders
        C1P010: Financial barriers
        C1P010: Hidden costs1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important5 - Very important
        C1P010: Insufficient external financial support and funding for project activities1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important
        C1P010: Economic crisis1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant
        C1P010: Risk and uncertainty2 - Slightly important5 - Very important4 - Important1 - Unimportant3 - Moderately important5 - Very important
        C1P010: Lack of consolidated and tested business models4 - Important5 - Very important3 - Moderately important1 - Unimportant4 - Important5 - Very important
        C1P010: Limited access to capital and cost disincentives1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant3 - Moderately important4 - Important
        C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P010: Any other Financial BARRIER (if any)
        C1P011: Market barriers
        C1P011: Split incentives1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
        C1P011: Energy price distortion1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
        C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
        C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P011: Any other Market BARRIER (if any)
        C1P012: Stakeholders involved
        C1P012: Government/Public Authorities
        • Design/demand aggregation
        • Planning/leading,
        • Monitoring/operation/management
        • Planning/leading
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        • Planning/leading
        C1P012: Research & Innovation
        • None
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation
        • Monitoring/operation/management
        C1P012: Financial/Funding
        • Construction/implementation,
        • Monitoring/operation/management
        • None
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        • Construction/implementation
        C1P012: Analyst, ICT and Big Data
        • Monitoring/operation/management
        • None
        • None
        • Planning/leading,
        • Design/demand aggregation,
        • Monitoring/operation/management
        • Monitoring/operation/management
        C1P012: Business process management
        • Design/demand aggregation
        • None
        • None
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        • Planning/leading
        C1P012: Urban Services providers
        • Design/demand aggregation
        • None
        • None
        C1P012: Real Estate developers
        • Construction/implementation
        • None
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Monitoring/operation/management
        C1P012: Design/Construction companies
        • Design/demand aggregation
        • Design/demand aggregation,
        • Construction/implementation
        • Construction/implementation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        • Construction/implementation
        C1P012: End‐users/Occupants/Energy Citizens
        • Monitoring/operation/management
        • Construction/implementation
        • Planning/leading,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Monitoring/operation/management
        C1P012: Social/Civil Society/NGOs
        • Design/demand aggregation
        • Design/demand aggregation
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        • None
        C1P012: Industry/SME/eCommerce
        • Construction/implementation
        • Design/demand aggregation,
        • Construction/implementation
        • None
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Construction/implementation
        C1P012: Other
        C1P012: Other (if any)
        Summary

        Authors (framework concept)

        Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

        Contributors (to the content)

        Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

        Implemented by

        Boutik.pt: Filipe Martins, Jamal Khan
        Marek Suchánek (Czech Technical University in Prague)