Filters:
NameProjectTypeCompare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Compare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Compare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Compare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Uncompare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
Lecce, SmartEnCity SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
Firenze, Novoli-Cascine district on “le PIagge” buildings PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Uncompare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Uncompare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Uncompare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Uncompare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Uncompare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleHalmstad, Fyllinge
Vidin, Himik and Bononia
Stor-Elvdal, Campus Evenstad
Aveiro, Aradas district
Maia, Sobreiro Social Housing
Romania, Alba Iulia PED
Izmir, District of Karşıyaka
Romania, Alba Iulia PED
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabHalmstad, FyllingeVidin, Himik and BononiaStor-Elvdal, Campus EvenstadAveiro, Aradas districtMaia, Sobreiro Social HousingRomania, Alba Iulia PEDIzmir, District of KarşıyakaRomania, Alba Iulia PED
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesnononoyesyesyes
PED relevant case studyyesnoyesyesnononono
PED Lab.nonononoyesnonono
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesyesyesyesyesyesyes
Annual energy surplusnoyesyesnonoyesyesno
Energy communityyesnonoyesnoyesnoyes
Circularitynononononononono
Air quality and urban comfortnononononoyesyesyes
Electrificationnononoyesnoyesnoyes
Net-zero energy costnonononononoyesno
Net-zero emissionnononononononono
Self-sufficiency (energy autonomous)nononononoyesnoyes
Maximise self-sufficiencynonononoyesyesyesyes
Othernonoyesnonononono
Other (A1P004)Energy-flexibility
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhasePlanning PhaseIn operationPlanning PhasePlanning PhaseImplementation PhasePlanning PhaseImplementation Phase
A1P006: Start Date
A1P006: Start date01/2112/1801/1312/2310/2101/2410/2201/23
A1P007: End Date
A1P007: End date01/3012/3012/2411/2610/2412/2610/2512/27
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • General statistical datasets
  • Monitoring data available within the districts,
  • Meteorological open data
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts
  • Monitoring data available within the districts,
  • General statistical datasets,
  • GIS open datasets
A1P009: OtherOther
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
          • Historical sources,
          • GIS of the municipality,
          • Basic BEMs
          • Historical sources,
          • GIS of the municipality,
          • Basic BEMs
          A1P011: Geographic coordinates
          X Coordinate (longitude):12.9205422.882611.078770773531746-8.6595-8.37355723.58011209802323527.11004923.580112098023235
          Y Coordinate (latitude):56.6519443.993661.4260442039911240.635341.13580446.07701527868011538.49605446.077015278680115
          A1P012: Country
          A1P012: CountrySwedenBulgariaNorwayPortugalPortugalRomaniaTurkeyRomania
          A1P013: City
          A1P013: CityHalmstadVidinEvenstad, Stor-Elvdal municipalityAlveiro (Aradas)MaiaAlba IuliaİzmirAlba Iulia
          A1P014: Climate Zone (Köppen Geiger classification)
          A1P014: Climate Zone (Köppen Geiger classification).DwbCfaDwcCsbCsbDfbCsaDfb
          A1P015: District boundary
          A1P015: District boundaryGeographicGeographicGeographicGeographicVirtualFunctionalGeographicFunctional
          OtherGeographicGeographic
          A1P016: Ownership of the case study/PED Lab
          A1P016: Ownership of the case study/PED Lab:MixedMixedPublicPublicPublicPublicPrivatePublic
          A1P017: Ownership of the land / physical infrastructure
          A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersSingle OwnerMultiple OwnersMultiple OwnersSingle OwnerMultiple OwnersSingle Owner
          A1P018: Number of buildings in PED
          A1P018: Number of buildings in PED250742222621
          A1P019: Conditioned space
          A1P019: Conditioned space [m²]98759.5310000102795
          A1P020: Total ground area
          A1P020: Total ground area [m²]195234.8089300008423.4532600
          A1P021: Floor area ratio: Conditioned space / total ground area
          A1P021: Floor area ratio: Conditioned space / total ground area01000030
          A1P022: Financial schemes
          A1P022a: Financing - PRIVATE - Real estateyesnonononononono
          A1P022a: Add the value in EUR if available [EUR]
          A1P022b: Financing - PRIVATE - ESCO schemenononononononono
          A1P022b: Add the value in EUR if available [EUR]
          A1P022c: Financing - PRIVATE - Othernonononoyesnonono
          A1P022c: Add the value in EUR if available [EUR]
          A1P022d: Financing - PUBLIC - EU structural fundingnononononoyesnono
          A1P022d: Add the value in EUR if available [EUR]
          A1P022e: Financing - PUBLIC - National fundingnoyesyesyesyesyesnoyes
          A1P022e: Add the value in EUR if available [EUR]
          A1P022f: Financing - PUBLIC - Regional fundingnonononoyesyesnoyes
          A1P022f: Add the value in EUR if available [EUR]
          A1P022g: Financing - PUBLIC - Municipal fundingnononononoyesnoyes
          A1P022g: Add the value in EUR if available [EUR]
          A1P022h: Financing - PUBLIC - Othernononononononono
          A1P022h: Add the value in EUR if available [EUR]
          A1P022i: Financing - RESEARCH FUNDING - EUyesnononoyesnoyesyes
          A1P022i: Add the value in EUR if available [EUR]1193355
          A1P022j: Financing - RESEARCH FUNDING - Nationalnonoyesnononoyesno
          A1P022j: Add the value in EUR if available [EUR]
          A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononononono
          A1P022k: Add the value in EUR if available [EUR]
          A1P022l: Financing - RESEARCH FUNDING - Othernononononononono
          A1P022l: Add the value in EUR if available [EUR]
          A1P022: Other
          A1P023: Economic Targets
          A1P023: Economic Targets
          • Boosting local and sustainable production
          • Boosting local businesses,
          • Boosting local and sustainable production
          • Positive externalities,
          • Boosting local and sustainable production
          • Job creation,
          • Positive externalities,
          • Other
          • Positive externalities,
          • Boosting local and sustainable production
          • Job creation,
          • Positive externalities
          A1P023: OtherBoosting sustainability for public schoolsBoosting sustainability for public schools
          A1P024: More comments:
          A1P024: More comments:
          A1P025: Estimated PED case study / PED LAB costs
          A1P025: Estimated PED case study / PED LAB costs [mil. EUR]3.53.5
          Contact person for general enquiries
          A1P026: NameMarkus OlofsgårdDaniela KostovaÅse Lekang SørensenDr. Gonçalo Homem De Almeida Rodriguez CorreiaAdelina RodriguesTudor DrâmbăreanOzlem SenyolTudor Drâmbărean
          A1P027: OrganizationAFRYGreen Synergy ClusterSINTEF / The Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart CitiesDelft University of TechnologyMaia Municipality (CM Maia) – Energy and Mobility divisionMunicipality of Alba IuliaKarsiyaka MunicipalityMunicipality of Alba Iulia
          A1P028: AffiliationOtherOtherResearch Center / UniversityResearch Center / UniversityMunicipality / Public BodiesMunicipality / Public BodiesMunicipality / Public BodiesMunicipality / Public Bodies
          A1P028: OtherClusterMaria Elena SeemannMaria Elena Seemann
          A1P029: Emailmarkus.olofsgard@afry.comdaniela@greensynergycluster.euase.sorensen@sintef.nog.correia@tudelft.nldscm.adelina@cm-maia.pttudor.drambarean@apulum.roozlemkocaer2@gmail.comtudor.drambarean@apulum.ro
          Contact person for other special topics
          A1P030: NameQiaochu FanCarolina Gonçalves (AdEPorto)Maria-Elena SeemannHasan Burak CavkaMaria-Elena Seemann
          A1P031: Emailq.fan-1@tudelft.nlcarolinagoncalves@adeporto.eumaria.seemann@apulum.roapulhasancavka@iyte.edu.trmaria.seemann@apulum.ro
          Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYes
          A2P001: Fields of application
          A2P001: Fields of application
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies
          • Energy efficiency,
          • Energy production
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies,
          • Construction materials
          • Energy efficiency,
          • Energy flexibility,
          • E-mobility,
          • Urban comfort (pollution, heat island, noise level etc.),
          • Digital technologies
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Urban comfort (pollution, heat island, noise level etc.),
          • Digital technologies
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Urban comfort (pollution, heat island, noise level etc.),
          • Digital technologies,
          • Construction materials
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • Urban comfort (pollution, heat island, noise level etc.)
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Urban comfort (pollution, heat island, noise level etc.),
          • Digital technologies,
          • Water use,
          • Construction materials
          A2P001: Other
          A2P002: Tools/strategies/methods applied for each of the above-selected fields
          A2P002: Tools/strategies/methods applied for each of the above-selected fieldslink based regulation of electricity gridCampus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. The vision for Campus Evenstad is an energy-flexible Campus Evenstad in an emission-free Europe. The area consists of approx. 20 buildings managed and owned by Statsbygg; the Norwegian government’s building commissioner, property manager and developer. The oldest building is from the 1700-century and the newest is the administration centre (2017) which is a Zero Emission Building (ZEB) with the highest ambitions (ZEB-COM). Their concept has been to realize Campus Evenstad as an energy pilot, where innovative energy solutions are demonstrated, showing how local areas can become more self-sufficient in energy. The energy system at Evenstad consists of several innovative energy solutions that are new in a Norwegian and European context. They are combined in local infrastructure for electricity and heat, which has led to new knowledge and learning about how the solutions work together, and how the interaction is between the local and the national energy system. The solutions consist of solar cells (PV), solar collectors, combined heat and power plant (CHP) based on wood chips, biofuel boiler, electric boiler, grid connection, district heating, heat storage, stationary battery and bidirectional electric vehicle (EV) charging (V2G). Statsbygg has gained a lot of operational experience from Campus Evenstad - both from individual technologies and from the interaction between these, which benefits Statsbygg's 2,200 buildings and 3 million m2 around Norway. Sharing of experiences is central. Campus Evenstad is a pilot in the Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart Cities were several of the solutions has been developed and studied.Energy production: - installation of photovoltaic systems for renewable on-site energy production; - installation of a BIPV demonstrator for the City Hall building. Energy flexibility: - implementation of an energy community through an active citizens involvement process. Digital technologies: - smart-meters installation in some dwellings in order to monitor consumption and suggest more sustainable energy behaviours. [PCP] Through https://balcaodigital.e-redes.pt/consumptions/history “Espaço Municipal” (https://www.espacomunicipal.pt/pt/) might access history of consumption up to midnight of the previous day. E-mobility: - Installation of new charging stations for electric vehicles; Urban comfort and air quality: - Monitoring units for air pollutants concentration (PM2.5, PM10, NO2) [PCP] Currently we are monitoring CO, O3, NO2, SO2, noise, PM2.5 and PM10 at a point 267 m east from the four buildings southeast of Sobreiro area:Thermal rehabilitation of the main building, and investments in the energy efficiency and consumption fields.Methods involve studying the feasibility of digital PED references for the case cities about their energy, environmental, and economic performance by EnergyPlus tool. In case of insufficient energy data and the need of high resolution data, ‘Gaussian mixture model and expectation-maximization algorithm’ and ‘time-series decomposition-recombination’ method will be used to supplement data to EnergyPlus. The feasibility results will be returned to stakeholders for iterative discussion, and the iterative results will be used to update digital references. Replication plans are developed based on such a cooperation process for strategies to implement PEDs. If a PED is demonstrated during the project period, the measured data will be used to verify the feasibility model to optimize previous results (WP7– R3 & R4). In the MAKING-CITY project, the overall PED design method is developed, which will be further optimised in this project. In addition, PED-ACT will use the methods and knowledge, including how to choose a suitable PED in a city, energy balance calculation, and technologies available for PED. The RUGGEDISED project outputs the governance model into the replication plan in PED-ACT. Its ‘smart city open-data decision platform’ will illustrate an excellent example for the database in PED-ACT. The IEA EBC Annex 83 and Cost Action 19126 create the basis for data collection, developing existing PED databases, characterization of PED, and review of regulations of PED, as well as development of simulation tools. The UBEM project further enables a detailed high-resolution energy balance calculation of PED.Thermal rehabilitation of the main building, and investments in the energy efficiency and consumption fields.
          A2P003: Application of ISO52000
          A2P003: Application of ISO52000NoNoNoNoYesYesYes
          A2P004: Appliances included in the calculation of the energy balance
          A2P004: Appliances included in the calculation of the energy balanceNoNoYesYesYesYesYes
          A2P005: Mobility included in the calculation of the energy balance
          A2P005: Mobility included in the calculation of the energy balanceYesYesYesNoNoNoNo
          A2P006: Description of how mobility is included (or not included) in the calculation
          A2P006: Description of how mobility is included (or not included) in the calculationAt Campus Evenstad there is infrastructure for EV charging and bidirectional charging (V2G). EV charging is included in the energy balance.There will be 1 EV station placed nearby the main building. This would be the link to the mobility field.Mobility is not included in the calculations.There will be 1 EV station placed nearby the main building. This would be the link to the mobility field.
          A2P007: Annual energy demand in buildings / Thermal demand
          A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]0.770.9823.862
          A2P008: Annual energy demand in buildings / Electric Demand
          A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.760.0484411.226
          A2P009: Annual energy demand for e-mobility
          A2P009: Annual energy demand for e-mobility [GWh/annum]
          A2P010: Annual energy demand for urban infrastructure
          A2P010: Annual energy demand for urban infrastructure [GWh/annum]
          A2P011: Annual renewable electricity production on-site during target year
          A2P011: PVyesnoyesnoyesyesyesyes
          A2P011: PV - specify production in GWh/annum [GWh/annum]0.0651.028
          A2P011: Windnononononononono
          A2P011: Wind - specify production in GWh/annum [GWh/annum]
          A2P011: Hydronononononononono
          A2P011: Hydro - specify production in GWh/annum [GWh/annum]
          A2P011: Biomass_elnonoyesnonononono
          A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]0.050
          A2P011: Biomass_peat_elnononononononono
          A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
          A2P011: PVT_elnononononononono
          A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
          A2P011: Othernononononononono
          A2P011: Other - specify production in GWh/annum [GWh/annum]
          A2P012: Annual renewable thermal production on-site during target year
          A2P012: Geothermalyesnonononononono
          A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
          A2P012: Solar Thermalnonoyesnoyesnonono
          A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.045
          A2P012: Biomass_heatnonoyesnonononono
          A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.35
          A2P012: Waste heat+HPnononononononono
          A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_peat_heatnononononononono
          A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
          A2P012: PVT_thnononononononono
          A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_firewood_thnononononononono
          A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
          A2P012: Othernononononoyesnoyes
          A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
          A2P013: Renewable resources on-site - Additional notes
          A2P013: Renewable resources on-site - Additional notesListed values are measurements from 2018. Renewable energy share is increasing.Only PVs - 940 PVs on the main building
          A2P014: Annual energy use
          A2P014: Annual energy use [GWh/annum]1.5000.0000484415.088
          A2P015: Annual energy delivered
          A2P015: Annual energy delivered [GWh/annum]10.000113331
          A2P016: Annual non-renewable electricity production on-site during target year
          A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]0
          A2P017: Annual non-renewable thermal production on-site during target year
          A2P017: Gasnonononononoyesno
          A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Coalnononononononono
          A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Oilnononononononono
          A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Othernononononoyesnono
          A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P018: Annual renewable electricity imports from outside the boundary during target year
          A2P018: PVnonononononoyesno
          A2P018 - PV: specify production in GWh/annum if available [GWh/annum]0.707
          A2P018: Windnononononononono
          A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
          A2P018: Hydronononononononono
          A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_elnononononononono
          A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_peat_elnononononononono
          A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: PVT_elnononononononono
          A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Othernononononoyesnoyes
          A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
          A2P019: Annual renewable thermal imports from outside the boundary during target year
          A2P019: Geothermalnononononononono
          A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Solar Thermalnononononononono
          A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_heatnononononononono
          A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Waste heat+HPnononononononono
          A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_peat_heatnononononononono
          A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
          A2P019: PVT_thnononononononono
          A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_firewood_thnononononononono
          A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Othernononononoyesnoyes
          A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
          A2P020: Share of RES on-site / RES outside the boundary
          A2P020: Share of RES on-site / RES outside the boundary0000001.45403111739750
          A2P021: GHG-balance calculated for the PED
          A2P021: GHG-balance calculated for the PED [tCO2/annum]
          A2P022: KPIs related to the PED case study / PED Lab
          A2P022: Safety & Securityyesyes
          A2P022: Healthyesyes
          A2P022: Educationyesyes
          A2P022: MobilityImproved accessibility to V2G-related transport options, focusing on inclusivity and equitable adoption in urban districtsyesyes
          A2P022: EnergyTarget zero greenhouse gas emissions through the adoption of EVs with V2G capabilities, aiming to reduce reliance on fossil fuels and enhance local grid stabilityyesyes
          A2P022: Wateryesyes
          A2P022: Economic developmentDevelopment of viable business models for V2G that allow decentralized energy markets to integrate with the grid, enhancing local economic resilienceyesyes
          A2P022: Housing and Community
          A2P022: Waste
          A2P022: Other
          A2P023: Technological Solutions / Innovations - Energy Generation
          A2P023: Photovoltaicsyesyesyesyesyesyesyesyes
          A2P023: Solar thermal collectorsnonoyesnoyesyesnoyes
          A2P023: Wind Turbinesnononoyesnononono
          A2P023: Geothermal energy systemnoyesnononononono
          A2P023: Waste heat recoverynononononononono
          A2P023: Waste to energynononononononono
          A2P023: Polygenerationnononononoyesnoyes
          A2P023: Co-generationnonoyesnonoyesnoyes
          A2P023: Heat Pumpnoyesnonoyesyesyesyes
          A2P023: Hydrogennononononononono
          A2P023: Hydropower plantnononononononono
          A2P023: Biomassnonoyesnonononono
          A2P023: Biogasnononononononono
          A2P023: OtherThe Co-generation is biomass based.
          A2P024: Technological Solutions / Innovations - Energy Flexibility
          A2P024: A2P024: Information and Communication Technologies (ICT)yesnoyesnoyesyesnoyes
          A2P024: Energy management systemnonoyesyesyesyesnoyes
          A2P024: Demand-side managementyesnoyesyesnoyesnoyes
          A2P024: Smart electricity gridyesnonoyesnoyesnoyes
          A2P024: Thermal Storagenonoyesnonononono
          A2P024: Electric Storagenoyesyesyesyesyesnoyes
          A2P024: District Heating and Coolingnonoyesnonononono
          A2P024: Smart metering and demand-responsive control systemsyesnoyesnoyesyesnoyes
          A2P024: P2P – buildingsnononononoyesnoyes
          A2P024: OtherBidirectional electric vehicle (EV) charging (V2G)
          A2P025: Technological Solutions / Innovations - Energy Efficiency
          A2P025: Deep Retrofittingnoyesnoyesyesyesyesyes
          A2P025: Energy efficiency measures in historic buildingsnononononononono
          A2P025: High-performance new buildingsnonoyesnonononono
          A2P025: Smart Public infrastructure (e.g. smart lighting)nononoyesyesyesnoyes
          A2P025: Urban data platformsnononoyesnoyesnoyes
          A2P025: Mobile applications for citizensnononononononono
          A2P025: Building services (HVAC & Lighting)nonononoyesyesyesyes
          A2P025: Smart irrigationnononononononono
          A2P025: Digital tracking for waste disposalnonononoyesnonono
          A2P025: Smart surveillancenononononononono
          A2P025: Other
          A2P026: Technological Solutions / Innovations - Mobility
          A2P026: Efficiency of vehicles (public and/or private)nononoyesyesyesnoyes
          A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nononoyesnoyesnoyes
          A2P026: e-Mobilitynonoyesyesyesyesnoyes
          A2P026: Soft mobility infrastructures and last mile solutionsnononononononono
          A2P026: Car-free areanononononononono
          A2P026: Other
          A2P027: Mobility strategies - Additional notes
          A2P027: Mobility strategies - Additional notesThe new mobility plan integrates the PED areaThe new mobility plan integrates the PED area
          A2P028: Energy efficiency certificates
          A2P028: Energy efficiency certificatesNoYesYesYesNoYes
          A2P028: If yes, please specify and/or enter notesPassive house (2 buildings, 4 200 m2, from 2015)The Municipal Buildings have an energy certificate, according to the Portuguese legislation.
          A2P029: Any other building / district certificates
          A2P029: Any other building / district certificatesNoYesNoYesNoYes
          A2P029: If yes, please specify and/or enter notesZero Emission Building (ZEB) with the highest ambitions (ZEB-COM) (admin building, 1 141 m2, 2016)
          A3P001: Relevant city /national strategy
          A3P001: Relevant city /national strategy
          • Promotion of energy communities (REC/CEC)
          • Energy master planning (SECAP, etc.),
          • New development strategies
          • Promotion of energy communities (REC/CEC),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Urban Renewal Strategies,
          • Energy master planning (SECAP, etc.),
          • Promotion of energy communities (REC/CEC),
          • Climate change adaption plan/strategy (e.g. Climate City contract)
          • Smart cities strategies,
          • Urban Renewal Strategies,
          • Energy master planning (SECAP, etc.),
          • New development strategies,
          • Promotion of energy communities (REC/CEC),
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Energy master planning (SECAP, etc.),
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Smart cities strategies,
          • Urban Renewal Strategies,
          • Energy master planning (SECAP, etc.),
          • New development strategies,
          • Promotion of energy communities (REC/CEC),
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          A3P002: Quantitative targets included in the city / national strategy
          A3P002: Quantitative targets included in the city / national strategy40% reduction in emissions by 2030 according to the Covenant of MayorsKarşıyaka Municipality is the first local government in Turkey to sign the Covenant of Mayors in 2011. During this period, the greenhouse gas inventory of the district was carried out three times and reduction targets were set for 2020 and 2030. In the 2021 Sustainable Energy and Climate Action Plan prepared as of the end of 2021, Karşıyaka Municipality has targeted a 40% reduction in its emissions for 2030 compared to the base year 2018. In the 2021 Sustainable Energy and Climate Action Plan, Karşıyaka Municipality aims to reduce its greenhouse gas emissions from 3.96 tCO2e / person in 2018 to 2.37 tCO2e / person in 2030. System solutions such as the use of renewable energy sources, air, ground or water source heat pump, cogeneration and microcogeneration are analysed by designers in order to fully or partially meet the energy requirements for heating, cooling, ventilation, hot water, electricity and lighting for all buildings with a floor area of less than 20,000 square metres. If at least 50% of the building's total energy consumption costs are covered by one or more of these applications, the points are taken in the assessment table in the Building and housing estate business certification guide of 2023.40% reduction in emissions by 2030 according to the Convenant of Mayors
          A3P003: Strategies towards decarbonization of the gas grid
          A3P003: Strategies towards decarbonization of the gas grid
          • Other
          • Electrification of Heating System based on Heat Pumps
          • Electrification of Heating System based on Heat Pumps
          • Electrification of Heating System based on Heat Pumps
          A3P003: OtherAt a national level there are some studies regarding the decarbonization of the gas grid, but no concrete strategies so far.
          A3P004: Identification of needs and priorities
          A3P004: Identification of needs and priorities- Thermal rehabilitation - Heat pumps - Smart system capable o various connections and data export - Usage of the energy produced by PVs placed on 3 buildings within the PEDAccording to the model developed for the district, the electrification of heating and cooling is necessary.Therefore, there needs to be the implementation of a heat pump. The building-integrated photovoltaic panelsshould follow. Through net-metering practices, the district is expected to reach energy positivity throughthis scenario.Thermal rehabilitation Heat pumps Smart system capable o various connections and data export Usage of the energy produced by PVs placed on 3 buildings within the PED
          A3P005: Sustainable behaviour
          A3P005: Sustainable behaviour- Education - Replacement of the non-performant PVs - Professional maintenance of the PV system - Reduce of consumptions - Intelligent systems to recover heat - Intelligent system to permit the usage of domestic water from the heating systemEducation Replacement of the non-performant PVs Professional maintenance of the PV system Reduce of consumptions Intelligent systems to recover heat Intelligent system to permit the usage of domestic water from the heating system
          A3P006: Economic strategies
          A3P006: Economic strategies
          • Local trading
          • Innovative business models,
          • Local trading,
          • Existing incentives
          • Innovative business models,
          • PPP models,
          • Existing incentives
          • Open data business models,
          • Innovative business models,
          • Life Cycle Cost,
          • Circular economy models,
          • Demand management Living Lab
          • Open data business models,
          • Innovative business models,
          • Life Cycle Cost,
          • Circular economy models,
          • Demand management Living Lab
          A3P006: Other
          A3P007: Social models
          A3P007: Social models
          • Behavioural Change / End-users engagement,
          • Citizen/owner involvement in planning and maintenance
          • Co-creation / Citizen engagement strategies,
          • Behavioural Change / End-users engagement,
          • Quality of Life,
          • Prevention of energy poverty
          • Behavioural Change / End-users engagement,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour),
          • Other
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Behavioural Change / End-users engagement,
          • Social incentives,
          • Prevention of energy poverty,
          • Digital Inclusion
          • Co-creation / Citizen engagement strategies,
          • Prevention of energy poverty,
          • Digital Inclusion,
          • Citizen/owner involvement in planning and maintenance,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Behavioural Change / End-users engagement,
          • Citizen Social Research,
          • Policy Forums,
          • Social incentives,
          • Quality of Life,
          • Strategies towards social mix,
          • Affordability,
          • Prevention of energy poverty,
          • Digital Inclusion,
          • Citizen/owner involvement in planning and maintenance,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Affordability
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Behavioural Change / End-users engagement,
          • Citizen Social Research,
          • Policy Forums,
          • Social incentives,
          • Quality of Life,
          • Strategies towards social mix,
          • Affordability,
          • Prevention of energy poverty,
          • Digital Inclusion,
          • Citizen/owner involvement in planning and maintenance,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          A3P007: OtherCampus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. Sharing knowledge is essential: Evenstad has regular visits from Politicians, decision-makers, researchers, environmental organizations, and energy- and building companies.
          A3P008: Integrated urban strategies
          A3P008: Integrated urban strategies
          • Strategic urban planning
          • Strategic urban planning,
          • City Vision 2050,
          • SECAP Updates
          • Strategic urban planning,
          • District Energy plans
          • City Vision 2050,
          • SECAP Updates,
          • Building / district Certification
          • Strategic urban planning,
          • District Energy plans,
          • City Vision 2050,
          • SECAP Updates,
          • Building / district Certification
          • Digital twinning and visual 3D models,
          • District Energy plans,
          • SECAP Updates
          • Strategic urban planning,
          • District Energy plans,
          • City Vision 2050,
          • SECAP Updates,
          • Building / district Certification
          A3P008: Other
          A3P009: Environmental strategies
          A3P009: Environmental strategies
          • Energy Neutral,
          • Carbon-free
          • Pollutants Reduction,
          • Greening strategies
          • Low Emission Zone
          • Energy Neutral,
          • Low Emission Zone,
          • Nature Based Solutions (NBS)
          • Energy Neutral,
          • Net zero carbon footprint,
          • Pollutants Reduction
          • Energy Neutral,
          • Low Emission Zone,
          • Net zero carbon footprint,
          • Carbon-free,
          • Life Cycle approach,
          • Pollutants Reduction,
          • Greening strategies,
          • Sustainable Urban drainage systems (SUDS),
          • Cool Materials,
          • Nature Based Solutions (NBS)
          • Energy Neutral,
          • Low Emission Zone,
          • Pollutants Reduction
          • Energy Neutral,
          • Low Emission Zone,
          • Net zero carbon footprint,
          • Carbon-free,
          • Life Cycle approach,
          • Pollutants Reduction,
          • Greening strategies,
          • Sustainable Urban drainage systems (SUDS),
          • Cool Materials,
          • Nature Based Solutions (NBS)
          A3P009: Other
          A3P010: Legal / Regulatory aspects
          A3P010: Legal / Regulatory aspectsCampus Evenstad became a prosumer in 2016, as the first with DSO Eidsiva. Evenstad is also one of the first three PV systems in Norway to receive green certificates.
          B1P001: PED/PED relevant concept definition
          B1P001: PED/PED relevant concept definitionThe biggest impact is the demonstration of several new energy solutions for local communities. Statsbygg/Campus Evenstad contributes to the development of innovations, pushing technological development through purchasing and demonstration of the solutions. This is a benefit for both end users, energy service providers and society at large. Evenstad also contribute to developing the local business community. For example, local biomass chip production for CHP, development of V2G-software etc. Several key solutions have been important when aiming to achieve the goals of reduced emissions, increased self-sufficiency in energy, and an energy-flexible campus. Example Vehicle-to-grid (V2G): We realized bidirectional EV charging at Campus Evenstad in 2019, demonstrating V2G for the first time in Norway. The experiences from Evenstad provide increased knowledge and practical experience from purchasing, installing and operating the V2G solution, and can contribute to creating new solutions within the energy system. With the equipment installed, the batteries in EVs can supply power back to buildings or the power grid. Example solar cells (PV): We installed PV in 2013 when there were only a few grid-connected PV systems in Norway. The PV system was an important piece in changing the view on solar energy in Norway, where businesses, the public sector and private individuals started seeing the potential for solar energy also this far north. In 2022, the PV system was expanded with PV cells on the facade of the energy center. Example Solar collector system: Covers 100m2 of the roof surface of dormitories and supplies supplies 117 dormitories with all the hot water they need (4000m2 floor area. The solar collector system is connected to the district heating system, where the main heat source is bioenergy. Solar energy and bioenergy complement each other at different times of the year. Example battery bank: Among the 5 largest electrical batteries in Norway connected to the grid. Example CHP: First of its kind in Norway, generating heat and electricity from biomass. Already in 2010, fossil fuels were phased out by converting from oil to wood-chip heating.Positive energy districtThe pilot area was selected on the basis of several criteria: its location within areas prioritised by Karşıyaka Municipality for combating climate change, compliance with the building regulations set out in the Green Building-Site-Operation (2023) guide, which are in line with Municipality's energy policy, the presence of open spaces that allow various applications for renewable energy, proximity to public facilities such as schools and municipal services, the availability of data on energy consumption (e.g. electricity and natural gas bills) and architectural features, the potential for community building, the suitability for solar energy systems, considering orientation and roof structure, and the potential for future building renovations. The aim of the initiative is to explore the feasibility of transforming the district into a Positive Energy District (PED).Positive energy district
          B1P002: Motivation behind PED/PED relevant project development
          B1P002: Motivation behind PED/PED relevant project developmentIn line with the EU's vision of "local energy communities", Campus Evenstad demonstrates energy actions that contribute to the clean energy transition. The campus has been developed over several years, demonstrating several innovative and sustainable technologies and energy solutions in a microgrid, e.g. vehicle to grid (V2G), biomass-based combined heat and power (CHP), solar energy, energy storage and zero emission buildings. It shows how to use new technology to enable zero emissions areas. Dedicated professionals, both Statsbygg's operating staff and researchers from FME ZEN have been central to the realization, together with dedicated management at the University campus, who have shown a great willingness to implement new solutions.Creation of an area which aims to be sustainable in terms of energy sufficiency and efficiency.Creation of an area which aims to be sustainable in terms of energy sufficiency and efficiency.
          B1P003: Environment of the case study area
          B2P003: Environment of the case study areaSuburban areaUrban areaRuralUrban areaUrban areaUrban area
          B1P004: Type of district
          B2P004: Type of district
          • New construction
          • Renovation
          • New construction,
          • Renovation
          • Renovation
          • Renovation
          • Renovation
          B1P005: Case Study Context
          B1P005: Case Study Context
          • New Development
          • Retrofitting Area
          • Retrofitting Area
          • Retrofitting Area
          • Retrofitting Area
          • Retrofitting Area
          B1P006: Year of construction
          B1P006: Year of construction19762005
          B1P007: District population before intervention - Residential
          B1P007: District population before intervention - Residential
          B1P008: District population after intervention - Residential
          B1P008: District population after intervention - Residential
          B1P009: District population before intervention - Non-residential
          B1P009: District population before intervention - Non-residential
          B1P010: District population after intervention - Non-residential
          B1P010: District population after intervention - Non-residential
          B1P011: Population density before intervention
          B1P011: Population density before intervention00000000
          B1P012: Population density after intervention
          B1P012: Population density after intervention00000000
          B1P013: Building and Land Use before intervention
          B1P013: Residentialnoyesnonononoyesno
          B1P013 - Residential: Specify the sqm [m²]64 787,57102795
          B1P013: Officenononononononono
          B1P013 - Office: Specify the sqm [m²]
          B1P013: Industry and Utilitynononononononono
          B1P013 - Industry and Utility: Specify the sqm [m²]
          B1P013: Commercialnoyesnononononono
          B1P013 - Commercial: Specify the sqm [m²]262,33
          B1P013: Institutionalnononononoyesnoyes
          B1P013 - Institutional: Specify the sqm [m²]
          B1P013: Natural areasyesnonononononono
          B1P013 - Natural areas: Specify the sqm [m²]
          B1P013: Recreationalnononononononono
          B1P013 - Recreational: Specify the sqm [m²]
          B1P013: Dismissed areasnononononononono
          B1P013 - Dismissed areas: Specify the sqm [m²]
          B1P013: Othernononononononono
          B1P013 - Other: Specify the sqm [m²]
          B1P014: Building and Land Use after intervention
          B1P014: Residentialnonononononoyesno
          B1P014 - Residential: Specify the sqm [m²]102795
          B1P014: Officenononononononono
          B1P014 - Office: Specify the sqm [m²]
          B1P014: Industry and Utilitynononononononono
          B1P014 - Industry and Utility: Specify the sqm [m²]
          B1P014: Commercialnononononononono
          B1P014 - Commercial: Specify the sqm [m²]
          B1P014: Institutionalnoyesnononoyesnoyes
          B1P014 - Institutional: Specify the sqm [m²]35322.21
          B1P014: Natural areasnononononononono
          B1P014 - Natural areas: Specify the sqm [m²]
          B1P014: Recreationalnononononononono
          B1P014 - Recreational: Specify the sqm [m²]
          B1P014: Dismissed areasnononononononono
          B1P014 - Dismissed areas: Specify the sqm [m²]
          B1P014: Othernononononononono
          B1P014 - Other: Specify the sqm [m²]
          B2P001: PED Lab concept definition
          B2P001: PED Lab concept definition
          B2P002: Installation life time
          B2P002: Installation life timePermanent installation
          B2P003: Scale of action
          B2P003: ScaleVirtual
          B2P004: Operator of the installation
          B2P004: Operator of the installationCM Maia, IPMAIA, NEW, AdEP.
          B2P005: Replication framework: Applied strategy to reuse and recycling the materials
          B2P005: Replication framework: Applied strategy to reuse and recycling the materials
          B2P006: Circular Economy Approach
          B2P006: Do you apply any strategy to reuse and recycling the materials?No
          B2P006: Other
          B2P007: Motivation for developing the PED Lab
          B2P007: Motivation for developing the PED Lab
          • Strategic
          B2P007: Other
          B2P008: Lead partner that manages the PED Lab
          B2P008: Lead partner that manages the PED LabMunicipality
          B2P008: Other
          B2P009: Collaborative partners that participate in the PED Lab
          B2P009: Collaborative partners that participate in the PED Lab
          • Academia,
          • Private,
          • Industrial,
          • Citizens, public, NGO,
          • Other
          B2P009: OtherEnergy Agency
          B2P010: Synergies between the fields of activities
          B2P010: Synergies between the fields of activities
          B2P011: Available facilities to test urban configurations in PED Lab
          B2P011: Available facilities to test urban configurations in PED Lab
          • Buildings,
          • Demand-side management,
          • Prosumers,
          • Renewable generation,
          • Energy storage,
          • Efficiency measures,
          • Lighting,
          • E-mobility,
          • Information and Communication Technologies (ICT),
          • Ambient measures,
          • Social interactions
          B2P011: Other
          B2P012: Incubation capacities of PED Lab
          B2P012: Incubation capacities of PED Lab
          • Monitoring and evaluation infrastructure,
          • Tools, spaces, events for testing and validation
          B2P013: Availability of the facilities for external people
          B2P013: Availability of the facilities for external peopleDepends on the building: _Tecmaia is open to the public but the buildings are for the exclusive use of companies allocated at the industrial site; _The municipal buildings have public access; _The residential buildings have an exclusive use for the residents.
          B2P014: Monitoring measures
          B2P014: Monitoring measures
          • Execution plan,
          • Available data,
          • Type of measured data
          B2P015: Key Performance indicators
          B2P015: Key Performance indicators
          • Energy,
          • Environmental,
          • Social,
          • Economical / Financial
          B2P016: Execution of operations
          B2P016: Execution of operationsCurrent PED status (WP5 SPARCS): Conceptualization and methodology definition of the (virtual) PED for Maia Municipality with real monitoring and assessment in order to replicate and scale up to a city-level PED. The financial investments were already targeted.
          B2P017: Capacities
          B2P017: Capacities_Energy production and storage, _Monitoring; _Digitization.
          B2P018: Relations with stakeholders
          B2P018: Relations with stakeholdersThe relationship with stakeholders (municipal companies, industry, citizens, etc) has been fundamental for the definition of the PED. In this sense, some sessions were organized to gather different points of view in order to trace the best path for the PED. Also, the participation of Maia Municipality in EU projects, as EHHUR and OMEGA-X, makes possible the share of knowledge between different partners.
          B2P019: Available tools
          B2P019: Available tools
          • Energy modelling,
          • Social models,
          • Business and financial models,
          • Fundraising and accessing resources,
          • Matching actors
          B2P019: Available tools
          B2P020: External accessibility
          B2P020: External accessibility
          C1P001: Unlocking Factors
          C1P001: Recent technological improvements for on-site RES production3 - Moderately important4 - Important5 - Very important5 - Very important4 - Important4 - Important5 - Very important1 - Unimportant
          C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock1 - Unimportant5 - Very important5 - Very important4 - Important4 - Important4 - Important4 - Important1 - Unimportant
          C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important3 - Moderately important5 - Very important5 - Very important4 - Important5 - Very important1 - Unimportant5 - Very important
          C1P001: Storage systems and E-mobility market penetration5 - Very important4 - Important5 - Very important5 - Very important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important
          C1P001: Decreasing costs of innovative materials1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant
          C1P001: Financial mechanisms to reduce costs and maximize benefits3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important4 - Important3 - Moderately important4 - Important3 - Moderately important
          C1P001: The ability to predict Multiple Benefits2 - Slightly important3 - Moderately important1 - Unimportant4 - Important4 - Important3 - Moderately important4 - Important3 - Moderately important
          C1P001: The ability to predict the distribution of benefits and impacts4 - Important2 - Slightly important1 - Unimportant4 - Important4 - Important3 - Moderately important4 - Important3 - Moderately important
          C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)4 - Important5 - Very important4 - Important5 - Very important4 - Important3 - Moderately important2 - Slightly important3 - Moderately important
          C1P001: Social acceptance (top-down)4 - Important4 - Important4 - Important4 - Important4 - Important3 - Moderately important5 - Very important3 - Moderately important
          C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)4 - Important5 - Very important4 - Important5 - Very important4 - Important2 - Slightly important5 - Very important2 - Slightly important
          C1P001: Presence of integrated urban strategies and plans5 - Very important5 - Very important1 - Unimportant4 - Important5 - Very important5 - Very important5 - Very important5 - Very important
          C1P001: Multidisciplinary approaches available for systemic integration4 - Important5 - Very important1 - Unimportant4 - Important4 - Important2 - Slightly important4 - Important2 - Slightly important
          C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects1 - Unimportant5 - Very important1 - Unimportant5 - Very important4 - Important5 - Very important5 - Very important5 - Very important
          C1P001: Availability of RES on site (Local RES)5 - Very important5 - Very important5 - Very important5 - Very important4 - Important4 - Important5 - Very important5 - Very important
          C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders3 - Moderately important4 - Important3 - Moderately important5 - Very important4 - Important5 - Very important5 - Very important5 - Very important
          C1P001: Any other UNLOCKING FACTORS1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P001: Any other UNLOCKING FACTORS (if any)
          C1P002: Driving Factors
          C1P002: Climate Change adaptation need3 - Moderately important4 - Important3 - Moderately important4 - Important5 - Very important5 - Very important5 - Very important5 - Very important
          C1P002: Climate Change mitigation need (local RES production and efficiency)3 - Moderately important5 - Very important5 - Very important5 - Very important4 - Important5 - Very important5 - Very important5 - Very important
          C1P002: Rapid urbanization trend and need of urban expansions2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important5 - Very important3 - Moderately important5 - Very important
          C1P002: Urban re-development of existing built environment1 - Unimportant3 - Moderately important1 - Unimportant4 - Important4 - Important2 - Slightly important3 - Moderately important2 - Slightly important
          C1P002: Economic growth need1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important4 - Important2 - Slightly important4 - Important2 - Slightly important
          C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)1 - Unimportant4 - Important1 - Unimportant5 - Very important4 - Important2 - Slightly important5 - Very important5 - Very important
          C1P002: Territorial and market attractiveness1 - Unimportant5 - Very important1 - Unimportant4 - Important4 - Important5 - Very important5 - Very important1 - Unimportant
          C1P002: Energy autonomy/independence2 - Slightly important2 - Slightly important4 - Important5 - Very important4 - Important5 - Very important5 - Very important5 - Very important
          C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P002: Any other DRIVING FACTOR (if any)
          C1P003: Administrative barriers
          C1P003: Difficulty in the coordination of high number of partners and authorities1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important3 - Moderately important4 - Important3 - Moderately important
          C1P003: Lack of good cooperation and acceptance among partners1 - Unimportant5 - Very important1 - Unimportant4 - Important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
          C1P003: Lack of public participation1 - Unimportant5 - Very important1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important5 - Very important3 - Moderately important
          C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important4 - Important4 - Important4 - Important
          C1P003:Long and complex procedures for authorization of project activities1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important5 - Very important5 - Very important3 - Moderately important5 - Very important
          C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy1 - Unimportant5 - Very important2 - Slightly important3 - Moderately important4 - Important5 - Very important5 - Very important5 - Very important
          C1P003: Complicated and non-comprehensive public procurement1 - Unimportant5 - Very important2 - Slightly important3 - Moderately important4 - Important4 - Important5 - Very important4 - Important
          C1P003: Fragmented and or complex ownership structure1 - Unimportant5 - Very important3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant5 - Very important1 - Unimportant
          C1P003: City administration & cross-sectoral attitude/approaches (silos)1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important2 - Slightly important5 - Very important2 - Slightly important
          C1P003: Lack of internal capacities to support energy transition1 - Unimportant5 - Very important1 - Unimportant4 - Important4 - Important3 - Moderately important5 - Very important3 - Moderately important
          C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P003: Any other Administrative BARRIER (if any)
          C1P004: Policy barriers
          C1P004: Lack of long-term and consistent energy plans and policies4 - Important3 - Moderately important3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant
          C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important5 - Very important3 - Moderately important4 - Important3 - Moderately important4 - Important4 - Important4 - Important
          C1P004: Lack of Cooperation & support between national-regional-local entities1 - Unimportant5 - Very important3 - Moderately important4 - Important3 - Moderately important3 - Moderately important5 - Very important3 - Moderately important
          C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P004: Any other Political BARRIER (if any)
          C1P005: Legal and Regulatory barriers
          C1P005: Inadequate regulations for new technologies1 - Unimportant5 - Very important5 - Very important5 - Very important4 - Important1 - Unimportant5 - Very important1 - Unimportant
          C1P005: Regulatory instability1 - Unimportant5 - Very important3 - Moderately important4 - Important4 - Important4 - Important5 - Very important4 - Important
          C1P005: Non-effective regulations1 - Unimportant4 - Important3 - Moderately important3 - Moderately important4 - Important2 - Slightly important5 - Very important2 - Slightly important
          C1P005: Unfavorable local regulations for innovative technologies1 - Unimportant5 - Very important3 - Moderately important4 - Important4 - Important1 - Unimportant5 - Very important1 - Unimportant
          C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant2 - Slightly important1 - Unimportant4 - Important4 - Important1 - Unimportant5 - Very important1 - Unimportant
          C1P005: Insufficient or insecure financial incentives3 - Moderately important5 - Very important4 - Important5 - Very important4 - Important4 - Important4 - Important4 - Important
          C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important4 - Important3 - Moderately important3 - Moderately important4 - Important
          C1P005: Shortage of proven and tested solutions and examples1 - Unimportant1 - Unimportant3 - Moderately important4 - Important3 - Moderately important3 - Moderately important3 - Moderately important3 - Moderately important
          C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P005: Any other Legal and Regulatory BARRIER (if any)
          C1P006: Environmental barriers
          C1P006: Environmental barriers- Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Air and Water Pollution: 2 - Natural Disasters: 1 - Water Scarcity: 1
          C1P007: Technical barriers
          C1P007: Lack of skilled and trained personnel1 - Unimportant5 - Very important3 - Moderately important4 - Important4 - Important4 - Important5 - Very important4 - Important
          C1P007: Deficient planning3 - Moderately important5 - Very important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important4 - Important3 - Moderately important
          C1P007: Retrofitting work in dwellings in occupied state1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important4 - Important3 - Moderately important5 - Very important3 - Moderately important
          C1P007: Lack of well-defined process1 - Unimportant5 - Very important3 - Moderately important4 - Important4 - Important3 - Moderately important4 - Important3 - Moderately important
          C1P007: Inaccuracy in energy modelling and simulation5 - Very important5 - Very important3 - Moderately important4 - Important4 - Important2 - Slightly important5 - Very important2 - Slightly important
          C1P007: Lack/cost of computational scalability1 - Unimportant1 - Unimportant5 - Very important4 - Important4 - Important3 - Moderately important4 - Important3 - Moderately important
          C1P007: Grid congestion, grid instability1 - Unimportant2 - Slightly important5 - Very important5 - Very important4 - Important2 - Slightly important3 - Moderately important2 - Slightly important
          C1P007: Negative effects of project intervention on the natural environment1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important3 - Moderately important3 - Moderately important
          C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important4 - Important2 - Slightly important4 - Important2 - Slightly important
          C1P007: Difficult definition of system boundaries1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant4 - Important1 - Unimportant
          C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P007: Any other Thecnical BARRIER (if any)Energy management systems of different new technologies does not "talk together" (e.g. solar inverter, V2G inverter). This creates challenges.
          C1P008: Social and Cultural barriers
          C1P008: Inertia1 - Unimportant3 - Moderately important1 - Unimportant4 - Important3 - Moderately important4 - Important5 - Very important4 - Important
          C1P008: Lack of values and interest in energy optimization measurements1 - Unimportant5 - Very important3 - Moderately important5 - Very important3 - Moderately important4 - Important4 - Important4 - Important
          C1P008: Low acceptance of new projects and technologies1 - Unimportant4 - Important3 - Moderately important5 - Very important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant
          C1P008: Difficulty of finding and engaging relevant actors4 - Important4 - Important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important4 - Important3 - Moderately important
          C1P008: Lack of trust beyond social network1 - Unimportant4 - Important1 - Unimportant5 - Very important4 - Important3 - Moderately important5 - Very important3 - Moderately important
          C1P008: Rebound effect1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important2 - Slightly important5 - Very important2 - Slightly important
          C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
          C1P008: Exclusion of socially disadvantaged groups1 - Unimportant4 - Important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
          C1P008: Non-energy issues are more important and urgent for actors1 - Unimportant5 - Very important4 - Important4 - Important4 - Important1 - Unimportant4 - Important1 - Unimportant
          C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant4 - Important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
          C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P008: Any other Social BARRIER (if any)
          C1P009: Information and Awareness barriers
          C1P009: Insufficient information on the part of potential users and consumers5 - Very important5 - Very important1 - Unimportant5 - Very important4 - Important3 - Moderately important3 - Moderately important3 - Moderately important
          C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts1 - Unimportant4 - Important3 - Moderately important4 - Important4 - Important1 - Unimportant4 - Important3 - Moderately important
          C1P009: Lack of awareness among authorities3 - Moderately important5 - Very important4 - Important3 - Moderately important4 - Important3 - Moderately important4 - Important1 - Unimportant
          C1P009: Information asymmetry causing power asymmetry of established actors2 - Slightly important2 - Slightly important1 - Unimportant3 - Moderately important4 - Important3 - Moderately important4 - Important3 - Moderately important
          C1P009: High costs of design, material, construction, and installation1 - Unimportant5 - Very important5 - Very important5 - Very important4 - Important5 - Very important5 - Very important5 - Very important
          C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P009: Any other Information and Awareness BARRIER (if any)Different interests - Grid/energy stakeholders and building stakeholders
          C1P010: Financial barriers
          C1P010: Hidden costs1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important4 - Important4 - Important4 - Important4 - Important
          C1P010: Insufficient external financial support and funding for project activities1 - Unimportant5 - Very important5 - Very important4 - Important4 - Important5 - Very important3 - Moderately important5 - Very important
          C1P010: Economic crisis1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important4 - Important4 - Important5 - Very important4 - Important
          C1P010: Risk and uncertainty2 - Slightly important5 - Very important5 - Very important4 - Important4 - Important2 - Slightly important4 - Important2 - Slightly important
          C1P010: Lack of consolidated and tested business models4 - Important5 - Very important5 - Very important5 - Very important4 - Important4 - Important4 - Important4 - Important
          C1P010: Limited access to capital and cost disincentives1 - Unimportant5 - Very important4 - Important5 - Very important4 - Important4 - Important5 - Very important4 - Important
          C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P010: Any other Financial BARRIER (if any)
          C1P011: Market barriers
          C1P011: Split incentives1 - Unimportant5 - Very important1 - Unimportant4 - Important5 - Very important1 - Unimportant5 - Very important1 - Unimportant
          C1P011: Energy price distortion1 - Unimportant5 - Very important1 - Unimportant5 - Very important4 - Important3 - Moderately important5 - Very important3 - Moderately important
          C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important4 - Important3 - Moderately important3 - Moderately important3 - Moderately important
          C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P011: Any other Market BARRIER (if any)
          C1P012: Stakeholders involved
          C1P012: Government/Public Authorities
          • Design/demand aggregation
          • Planning/leading,
          • Monitoring/operation/management
          • Planning/leading
          • Planning/leading
          • Planning/leading
          C1P012: Research & Innovation
          • None
          • Monitoring/operation/management
          C1P012: Financial/Funding
          • Construction/implementation,
          • Monitoring/operation/management
          • Construction/implementation
          C1P012: Analyst, ICT and Big Data
          • Monitoring/operation/management
          • None
          • Monitoring/operation/management
          C1P012: Business process management
          • Design/demand aggregation
          • None
          • Planning/leading
          C1P012: Urban Services providers
          • Design/demand aggregation
          C1P012: Real Estate developers
          • Construction/implementation
          • Planning/leading,
          • Monitoring/operation/management
          C1P012: Design/Construction companies
          • Design/demand aggregation
          • Design/demand aggregation,
          • Construction/implementation
          • Construction/implementation
          C1P012: End‐users/Occupants/Energy Citizens
          • Monitoring/operation/management
          • Construction/implementation
          • Monitoring/operation/management
          C1P012: Social/Civil Society/NGOs
          • Design/demand aggregation
          • Design/demand aggregation
          • None
          C1P012: Industry/SME/eCommerce
          • Construction/implementation
          • Design/demand aggregation,
          • Construction/implementation
          • Construction/implementation
          C1P012: Other
          C1P012: Other (if any)
          Summary

          Authors (framework concept)

          Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

          Contributors (to the content)

          Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

          Implemented by

          Boutik.pt: Filipe Martins, Jamal Khan
          Marek Suchánek (Czech Technical University in Prague)