Name | Project | Type | Compare |
---|---|---|---|
Örebro-Vivalla | JUST PEPP | PED Relevant Case Study | Compare |
Tiurberget, Kongsvinger | JUST PEPP | PED Relevant Case Study | Compare |
Texel | JUST PEPP | PED Relevant Case Study | Compare |
Hällefors, Sweden | JUST PEPP | PED Relevant Case Study | Compare |
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona | OPEN4CEC | PED Lab | Compare |
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab | OPEN4CEC | PED Lab | Compare |
Pamplona | OPEN4CEC | PED Lab | Compare |
Trondheim, Svartlamon | OPEN4CEC | PED Lab | Compare |
Savona, The University of Genova, Savona Campus | OPEN4CEC | PED Lab | Compare |
Torres Vedras, Encosta de São Vicente | COPPER | PED Lab | Compare |
Title | Halmstad, Fyllinge | Istanbul, Ozyegin University Campus | Innsbruck, Campagne-Areal | City of Espoo, Espoonlahti district, Lippulaiva block | Milano, Sharing Cities | Graz, Reininghausgründe |
---|---|---|---|---|---|---|
A1P001: Name of the PED case study / PED Lab | ||||||
A1P001: Name of the PED case study / PED Lab | Halmstad, Fyllinge | Istanbul, Ozyegin University Campus | Innsbruck, Campagne-Areal | City of Espoo, Espoonlahti district, Lippulaiva block | Milano, Sharing Cities | Graz, Reininghausgründe |
A1P002: Map / aerial view / photos / graphic details / leaflet | ||||||
A1P002: Map / aerial view / photos / graphic details / leaflet |
| |||||
A1P003: Categorisation of the PED site | ||||||
PED case study ?District-level project with a high level of aspiration in terms of energy efficiency, energy flexibility, and energy production. The project has to address most of the aspects listed in the JPI UE PED Framework Definition, including the ambition to achieve annual energy positive balance "Positive Energy Districts are energy-efficient and energy-flexible urban areas or groups of connected buildings that produce net zero greenhouse gas emissions and actively manage an annual local or regional surplus production of renewable energy. They require integration of different systems and infrastructures and interaction between buildings, the users and the regional energy, mobility and ICT systems while securing the energy supply and a good life for all in line with social, economic and environmental sustainability." | no | no | no | yes | no | yes |
PED relevant case study ?District-level project with a high level of aspiration in terms of energy efficiency, energy flexibility, and energy production. The project does not necessarily have to meet annual energy positive balance, but it has to address some aspects listed in the JPI UE PED Framework Definition (“Positive Energy Districts are energy-efficient and energy-flexible urban areas or groups of connected buildings that produce net zero greenhouse gas emissions and actively manage an annual local or regional surplus production of renewable energy. They require integration of different systems and infrastructures and interaction between buildings, the users, and the regional energy, mobility, and ICT systems while securing the energy supply and a good life for all in line with social, economic, and environmental sustainability." | yes | yes | yes | no | yes | no |
PED Lab. ?PED-Lab definition regarding the Strategic Energy Technology Plan (SET-Plan Action 3.2): PED Labs will be pilot actions that provide opportunities to experiment with the planning and deployment of PEDs, as well as provide seeding ground for new ideas, solutions, and services to develop. PED Labs will follow an integrative approach, including technology, spatial, regulatory, financial, legal, social, and economic perspectives. | no | no | no | no | no | no |
A1P004: Targets of the PED case study / PED Lab | ||||||
Climate neutrality ?Climate neutrality means that, on a periodic basis, the carbon dioxide emissions within the limits of the district are compensated with the exported energy or by carbon capture. | no | yes | yes | no | yes | yes |
Annual energy surplus ?The total annual energy balance is positive; therefore, the area will deliver, on average, an energy surplus to be shared with other urban or peri-urban zones. | no | no | no | no | no | no |
Energy community ?The energy community refers to a wide range of collective energy actions that involve citizens’ participation in the energy system. Energy communities can be understood as a way to ‘organize’ collective energy actions around open, democratic participation and governance and the provision of benefits for the members or the local community | yes | no | no | no | no | no |
Circularity ?circular systems employ reuse, sharing, repair, refurbishment, remanufacturing and recycling to create a closed‐loop system, minimizing the use of resource inputs and the creation of waste, pollution and carbon emissions. In the case of PED, the revalorization of waste (such as residues from the different sectors) for the energy production is prioritized, but many other pathways could be taken, considering the cycle of water, food, etc | no | no | no | no | no | no |
Air quality and urban comfort ?The objective of improving air quality is to reduce the concentration of the five main pollutants: O3, NO2, SO2, PM2.5 and PM10 | no | yes | no | no | no | no |
Electrification ?electrification is the process in which the supply of any energy needs of a district and/or city, such as the heating needs or the mobility sector,
are supplied by electricity-driven technologies | no | yes | no | no | no | no |
Net-zero energy cost ?the amount of money the utility pays the building owner for the energy the building exports to the grid is at least equal to the amount the owner pays the utility for the energy services and energy used over the year | no | no | no | no | no | no |
Net-zero emission ?a net-zero-emissions building produces at least as much emissions-free renewable energy as it uses from emissions-producing energy sources | no | no | yes | no | no | no |
Self-sufficiency (energy autonomous) ?self‐sufficiency means that within a year, the district will never import energy from outside the boundaries (e.g. consume electricity or gas from the grids) | no | no | no | no | no | no |
Maximise self-sufficiency ?Maximizing self‐sufficiency means that within a year, the district is allowed to import energy from outside the boundaries; however, the energy content of the imported energy products to the district should be less than (or equal to) the energy content of the energy products exported from the district. Thus, the net imports is zero or negative | no | no | no | yes | no | no |
Other | no | yes | no | no | yes | no |
Other (A1P004) | (not specified) | almost nZEB district | (not specified) | (not specified) | Energy efficient; Sustainable neighbourhood; Social aspects/affordability | (not specified) |
A1P005: Phase of the PED case study / PED Lab | ||||||
A1P005: Project Phase of your case study/PED Lab ?Planning stage: Case Study or Lab is being designed
Implementation stage: Case Study or LAB is being deployed
Completed: Case Study or LAB is already finalized
In operation. Case Study or LAB is being used | Planning Phase | Implementation Phase | Completed | In operation | Completed | Implementation Phase |
A1P006: Start Date | ||||||
A1P006: Start date | 01/21 | 10/24 | 04/16 | 06/18 | 01/16 | 2019 |
A1P007: End Date | ||||||
A1P007: End date | 01/30 | 10/28 | 04/22 | 03/22 | 12/20 | 2025 |
A1P008: Reference Project | ||||||
A1P008: Reference Project | (not specified) | (not specified) | (not specified) | (not specified) | ||
A1P009: Data availability | ||||||
A1P009: Data availability |
|
|
|
| (not specified) |
|
A1P009: Other | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
A1P010: Sources ?Any publication, link to website, deliverable referring to the PED/PED Lab | ||||||
Any publication, link to website, deliverable referring to the PED/PED Lab |
|
|
| |||
A1P011: Geographic coordinates ?Geographic coordinate system: latitude and longitude | ||||||
X Coordinate (longitude): | 12.92054 | 29.258300 | 11.424346738140256 | 24.6543 | 9.202527 | 15.407440 |
Y Coordinate (latitude): | 56.65194 | 41.030600 | 47.271470786729104 | 60.1491 | 45.452203 | 47.0607 |
A1P012: Country | ||||||
A1P012: Country | Sweden | Turkey | Austria | Finland | Italy | Austria |
A1P013: City | ||||||
A1P013: City | Halmstad | Istanbul | Innsbruck | Espoo | Milano | Graz |
A1P014: Climate Zone (Köppen Geiger classification) | ||||||
A1P014: Climate Zone (Köppen Geiger classification). ?The most widely used climate classification system. It divides climates into five main climate groups based on seasonal precipitation and temperature patterns.
Af: Tropical‐Rainforest
Am: Tropical‐Monsoon
Aw: Tropical‐Savanna
BSh: Arid‐Steppe‐Hot
BSk: Arid‐Steppe‐Cold
BWh: Arid‐Desert‐Hot
BWk: Arid‐Desert‐Cold
Cfa: Temperate‐Without_dry_season‐Hot _ Summer
Cfb: Temperate‐Without_dry_season‐
Warm_Summer
Cfc: Temperate‐Without_dry_season‐Cold_Summer
Csa: Temperate‐Dry_Summer‐Hot_Summer
Csb: Temperate‐Dry_Summer‐Warm_Summer
Cwa: Temperate‐Dry_Winter‐Hot_Summer
Cwb: Temperate‐Dry_Winter‐Warm_Summer
Dfa: Cold‐Without_dry_season‐Very_Cold_Winter
Dfb: Cold‐Without_dry_season‐Warm_Summer
Dfc: Cold‐Without_dry_season‐Cold_Summer
Dsa: Cold‐Dry_Summer‐Hot_Summer
Dsb: Cold‐Dry_Summer‐Warm_Summer
Dsc: Cold‐Dry_Summer‐Cold_Summer
Dsd: Cold‐Dry_Summer‐Very_Cold_Winter
Dwa: Cold‐Dry_Winter‐Hot_Summer
Dwb: Cold‐Dry_Winter‐Warm_Summer
Dwc: Cold‐Dry_Winter‐Cold_Summer
Dwd: Cold‐Dry_Winter‐Very_Cold_Winter
EF: Polar‐Frost
ET: Polar‐Tundra | Dwb | Cfa | Dfb | Dfb | Cfa | Dfb |
A1P015: District boundary | ||||||
A1P015: District boundary ?See individual answer options’ definitions below:
Functional: buildings are not close to each other, but they are interconnected, thanks to a gas, electric, or heating network.
Geographic: the boundaries are delimited by spatial-physical limits, including delineated buildings, sites, and infrastructure.
Off-Grid: The district is self-sufficient or autonomous, which means it is not connected to any utility grids (e.g., electricity, water, gas, and sewer networks). This is advantageous in isolated locations where normal utilities cannot reach them and is attractive to those who want to reduce environmental impact and the cost of living.
Virtual: If energy demand is covered by a generation unit (e.g., a wind turbine), which is typically shared with other consumption points and located outside the geographical boundaries of the district, then it could be considered a virtual boundary
Other ‐ specify: N/A | Geographic | Geographic | Geographic | Geographic | (not specified) | Geographic |
Other | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
A1P016: Ownership of the case study/PED Lab | ||||||
A1P016: Ownership of the case study/PED Lab: ?Public: Ownership of an industry, asset, or enterprise by the state or a public body representing a community as opposed to an individual or private party. Private: The fact of being owned by a private individual or organization. Mixed: Ownership of the assets within the PED by both public and private entities. | Mixed | Private | Mixed | Private | Private | Mixed |
A1P017: Ownership of the land / physical infrastructure | ||||||
A1P017: Ownership of the land / physical infrastructure: | Multiple Owners | Single Owner | Multiple Owners | Single Owner | Multiple Owners | Multiple Owners |
A1P018: Number of buildings in PED | ||||||
A1P018: Number of buildings in PED | 250 | 15 | 4 | 9 | (not specified) | 100 |
A1P019: Conditioned space ?Closed building area, where there is intentional
control of the space thermal conditions within defined limits by using natural, electrical, or mechanical means | ||||||
A1P019: Conditioned space | (not specified) | (not specified) | 22277 m² | 112000 m² | (not specified) | (not specified) |
A1P020: Total ground area ?The ground space (in m2) including green areas and streets within the defined physical boundaries. | ||||||
A1P020: Total ground area | (not specified) | 285.400 m² | 11351 m² | 165000 m² | 28.000 m² | 1000000 m² |
A1P021: Floor area ratio: Conditioned space / total ground area | ||||||
A1P021: Floor area ratio: Conditioned space / total ground area | 0 | 0 | 2 | 1 | 0 | 0 |
A1P022: Financial schemes | ||||||
A1P022a: Financing - PRIVATE - Real estate | yes | yes | no | yes | no | yes |
A1P022a: Add the value in EUR if available | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
A1P022b: Financing - PRIVATE - ESCO scheme | no | no | no | no | no | no |
A1P022b: Add the value in EUR if available | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
A1P022c: Financing - PRIVATE - Other | no | no | no | no | no | no |
A1P022c: Add the value in EUR if available | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
A1P022d: Financing - PUBLIC - EU structural funding | no | no | no | no | yes | no |
A1P022d: Add the value in EUR if available | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
A1P022e: Financing - PUBLIC - National funding | no | no | no | no | no | yes |
A1P022e: Add the value in EUR if available | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
A1P022f: Financing - PUBLIC - Regional funding | no | no | no | no | no | no |
A1P022f: Add the value in EUR if available | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
A1P022g: Financing - PUBLIC - Municipal funding | no | no | no | no | yes | yes |
A1P022g: Add the value in EUR if available | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
A1P022h: Financing - PUBLIC - Other | no | no | no | no | no | no |
A1P022h: Add the value in EUR if available | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
A1P022i: Financing - RESEARCH FUNDING - EU | yes | yes | no | yes | no | no |
A1P022i: Add the value in EUR if available | (not specified) | (not specified) | (not specified) | 308875 EUR | (not specified) | (not specified) |
A1P022j: Financing - RESEARCH FUNDING - National | no | no | yes | no | no | no |
A1P022j: Add the value in EUR if available | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
A1P022k: Financing - RESEARCH FUNDING - Local/regional | no | no | no | no | no | no |
A1P022k: Add the value in EUR if available | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
A1P022l: Financing - RESEARCH FUNDING - Other | no | no | no | no | no | no |
A1P022l: Add the value in EUR if available | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
A1P022: Other | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
A1P023: Economic Targets | ||||||
A1P023: Economic Targets |
|
|
|
| (not specified) |
|
A1P023: Other | (not specified) | (not specified) | Create affordable appartments for the citizens | (not specified) | (not specified) | (not specified) |
A1P024: More comments: | ||||||
A1P024: More comments: | (not specified) | In addition to having the most energy efficient academic building in Turkey, the university campus also has 3 buildings with LEED NC Campus certificate and LEED BD+C Gold certificate. In addition, it aims to continuously improve the energy efficiency objectives on campus in an innovative way. For this purpose, energy management and storage systems are being installed in the Dormitory 6 building, which is used as the demo area of the LEGOFIT project, for the purpose of turning it into a PED project. | Owners are two local social housing companies. The complete district will consist 4 building blocks, from which only the first one with 4 building is ready built and occupied. At the end, it would be a district of ca. 1100 flats in 16 buildings with 78000 m2 | The Espoonlahti district is located on the south-western coast of Espoo. With 56,000 inhabitants, it is the second largest of the Espoo city centres. The number of inhabitants is estimated to grow to 70,000 within the next 10 years. Espoonlahti will be a future transit hub of the south-western Espoo, along the metro line, and the increasing stream of passengers provides a huge potential for retail, business and residential developments. E-mobility solutions and last-mile services have strong potential in the area when subway extension is finished and running. The extensive (re)development of the Lippulaiva blocks make a benchmark catering to the everyday needs of residents. The completely new shopping centre is a state-of-the-art cross point with 20,000 daily customers and 10,000 daily commuters (3.5 million/year). The new underground metro line and station, and feeder line bus terminal, are fully integrated. Residential housing of approximately 550 new apartments will be built on top. Lippulaiva is a large traffic hub, directly connected to public transport and right next to the Länsiväylä highway and extensive cycle paths. Lippulaiva offers diverse, mixed-use services, such as a shopping mall, public services, a day care centre, residential apartment buildings, and underground parking facilities. Lippulaiva received the LEED Gold environmental certificate and Smart Building Gold certificate. • Flagship of sustainability • Cooling and heating demand from geothermal energy system (on-site) with energy storage system, 4 MW • PV panels: roof and façade, 630 kWp • Smart control strategies for electricity and thermal energy, smart microgrid-system and battery storage • Charging capacity for 134 EVs | (not specified) | The “Reininghausgründe” are a new quarter near the centre of the City of Graz. In the area of a former brewery, close to more, still working industries, a new town centre is being established. It will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the city centre by bike paths, busses and a tram. Car sharing is provided as well. Some key-energy aspects: • characteristic 1: For the heat supply in the innovative Reininghaus energy model, low-temperature waste heat from a nearby steel plant is harnessed through the use of heat pumps. • characteristic 2: The district heating system operates at low temperatures. • characteristic 3: Generated heat that is not used immediately is stored in the power tower and supplied on demand. Other important aspects of the project are the following: • characteristic 1: Most houses are low-energy houses, some of the certified with the “Klima Aktiv” label • characteristic 2: There are extremely few parking possibilities for residents and visitors; this will foster the use of public transport and bikes • characteristic 3: All the necessary infrastructure for the “daily need” can be reached within walking distance The area of the project is going to be very “green” when finished. Featuring a big district parc, lots of other green spaces are in planning. |
A1P025: Estimated PED case study / PED LAB costs | ||||||
A1P025: Estimated PED case study / PED LAB costs | (not specified) | 1 mil. EUR | (not specified) | (not specified) | (not specified) | (not specified) |
Contact person for general enquiries | ||||||
A1P026: Name ?Name of the person who filled out the form | Markus Olofsgård | Cem Keskin | Georgios Dermentzis | Elina Ekelund | Christoph Gollner | Katharina Schwarz |
A1P027: Organization ?Organization of the person who filled out the form (e.g., Municipality of, University of…) | AFRY | Center for Energy, Environment and Economy, Ozyegin University | University of Innsbruck | Citycon Oyj | FFG | StadtLABOR, Innovationen für urbane Lebensqualität GmbH |
A1P028: Affiliation ?Affiliation of the person who filled out the form | Other | Research Center / University | Research Center / University | SME / Industry | Other | SME / Industry |
A1P028: Other | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
A1P029: Email ?Contact e-mail of the person who filled out the form | markus.olofsgard@afry.com | cem.keskin@ozyegin.edu.tr | Georgios.Dermentzis@uibk.ac.at | Elina.ekelund@citycon.com | christoph.gollner@ffg.at | katharina.schwarz@stadtlaborgraz.at |
Contact person for other special topics | ||||||
A1P030: Name ?Name of the project manager of the site | (not specified) | M. Pınar Mengüç | (not specified) | Elina Ekelund | (not specified) | Hans Schnitzer |
A1P031: Email ?Contact e-mail of the project manager of the site | (not specified) | pinar.menguc@ozyegin.edu.tr | (not specified) | Elina.ekelund@citycon.com | (not specified) | hans.schnitzer@stadtlaborgraz.at |
Pursuant to the General Data Protection Regulation | Yes | Yes | Yes | Yes | Yes | Yes |
A2P001: Fields of application | ||||||
A2P001: Fields of application ?Energy efficiency simply means using less energy to perform the same task – that is, eliminating energy waste Energy flexibility In the electricity system, flexibility helps to maintain or restore the stability of a system, because only by reacting flexibly to constantly changing conditions - fluctuating electricity consumption, fluctuating electricity generation – the system is balanced. Energy production In terms of Renewable Energy production. E-mobility refers to clean and efficient transport, using electric vehicles, powered either by batteries or by hydrogen fuel cells. Digital technologies are set to make energy systems around the world more connected, intelligent, efficient, reliable and sustainable. Stunning advances in data, analytics and connectivity are enabling a range of new digital applications such as smart appliances, shared mobility, and 3D printing. Digitalized energy systems in the future may be able to identify who needs energy and deliver it at the right time, in the right place and at the lowest cost Water use refers to water actually used by end users (e.g. households, services, agriculture, industry) within a territory for a specific purpose such as domestic use, irrigation or industrial processing. Waste Management The new agenda for waste management thus focuses upon the development of more appropriate, sustainable definitions so that what is now commonly perceived as being waste will in fact be increasingly seen as resource-rich, |
|
|
|
|
|
|
A2P001: Other | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | Urban Management; Air Quality |
A2P002: Tools/strategies/methods applied for each of the above-selected fields | ||||||
A2P002: Tools/strategies/methods applied for each of the above-selected fields | link based regulation of electricity grid | LEED NC Campus + LEGOFIT Project Energy Efficiency: Tri- generation, Compliance with ISO 50001, ASHRAE 90.1, energy efficient appliances, HVAC and lighting Energy flexibility: Energy demand management Energy production: Solar PVs Onsite + (to be installed more) E-mobility: EV Charging stations Indoor Air Quality: Energy Management System, Compliance with ASHRAE 62.1, ASHRAE 55 Construction materials: Passive systems, LEED certified buildings, innovative materials such as PCM Waste Management: Zero waste document | The buildings are designed based on Passive House standards and dynamic building and system simulations are performed to optimise the HVAC systems, that are a ground-water heat pump for space heating and district heating for domestic hot water preparation. Photovoltaic systems are installed in the available roof spaces, however, more renewable sources are required due to very large number of apartments (very high density) to reach PED, and thus, simulation studies are performed. | Energy efficiency: - eliminating waste energy utilizing smart energy system - utilizing excess heat from grocery stores Energy flexibility: - A battery energy storage system (1,5 MW/1,5MWh); Active participation in Nordpool electricity market (FCR-N) Energy production: - heating and cooling from geothermal heat pump system; 171 energy wells (over 51 km); heat capacity 4 MW - installation of new photovoltaic (PV) systems for renewable on-site energy production; Estimation of annual production is about 540 MWh (630 kWp) E-mobility - Installation of charging stations for electric vehicles (for 134 EVs) - e-bike services (warm storage room, charging cabinets for e-bikes) Digital technologies: - Building Analytics system by Schneider Electric | (not specified) | Energy efficiency: o Several activities: Workshops, Webinars to deepen the knowledge and raise awareness renewable energies o for example rooftop Photovoltaics green & blue infrastructures o Parks, Rooftop Gardens, Quarter Parks, Water elements included in the parks rooftop farming o To produce vegetables in the quarter stormwater management mobility o less parking and less cars in the district. Solutions for boosting public transport with sponsored public transport tickets; building of better bike and pedestrian infrastructure social aspects o district management was established in the district local supply of goods of daily need o Schools within 15 minutes walking distance Supermarkets and other shops within the district |
A2P003: Application of ISO52000 | ||||||
A2P003: Application of ISO52000 | No | Yes | No | Yes | (not specified) | No |
A2P004: Appliances included in the calculation of the energy balance | ||||||
A2P004: Appliances included in the calculation of the energy balance | No | Yes | Yes | Yes | (not specified) | Yes |
A2P005: Mobility included in the calculation of the energy balance | ||||||
A2P005: Mobility included in the calculation of the energy balance | Yes | No | No | No | (not specified) | Yes |
A2P006: Description of how mobility is included (or not included) in the calculation | ||||||
A2P006: Description of how mobility is included (or not included) in the calculation | (not specified) | Not included, the campus is a non car area except emergencies | (not specified) | Mobility is not included in the energy model. | (not specified) | - Number of cars per household - Fraction of electric cars - Number of public transport tickets (week/ annual tickets) |
A2P007: Annual energy demand in buildings / Thermal demand | ||||||
A2P007: Annual energy demand in buildings / Thermal demand | (not specified) | (not specified) | 0.39 GWh/annum | 5.5 GWh/annum | (not specified) | (not specified) |
A2P008: Annual energy demand in buildings / Electric Demand | ||||||
A2P008: Annual energy demand in buildings / Electric Demand | (not specified) | (not specified) | 0.655 GWh/annum | 5.8 GWh/annum | (not specified) | (not specified) |
A2P009: Annual energy demand for e-mobility | ||||||
A2P009: Annual energy demand for e-mobility | (not specified) | (not specified) | 0 GWh/annum | (not specified) | (not specified) | (not specified) |
A2P010: Annual energy demand for urban infrastructure | ||||||
A2P010: Annual energy demand for urban infrastructure | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
A2P011: Annual renewable electricity production on-site during target year | ||||||
A2P011: PV | yes | yes | yes | yes | no | yes |
A2P011: PV - specify production in GWh/annum | (not specified) | (not specified) | 0.42 GWh/annum | 0.54 GWh/annum | (not specified) | (not specified) |
A2P011: Wind | no | no | no | no | no | no |
A2P011: Wind - specify production in GWh/annum | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
A2P011: Hydro | no | no | no | no | no | no |
A2P011: Hydro - specify production in GWh/annum | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
A2P011: Biomass_el | no | no | no | no | no | no |
A2P011: Biomass_el - specify production in GWh/annum | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
A2P011: Biomass_peat_el | no | no | no | no | no | no |
A2P011: Biomass_peat_el - specify production in GWh/annum | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
A2P011: PVT_el | no | no | no | no | no | no |
A2P011: PVT_el - specify production in GWh/annum | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
A2P011: Other | no | no | no | no | no | no |
A2P011: Other - specify production in GWh/annum | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
A2P012: Annual renewable thermal production on-site during target year | ||||||
A2P012: Geothermal | yes | no | no | yes | no | yes |
A2P012 - Geothermal: Please specify production in GWh/annum | (not specified) | (not specified) | (not specified) | 5 GWh/annum | (not specified) | (not specified) |
A2P012: Solar Thermal | no | no | no | no | no | yes |
A2P012 - Solar Thermal: Please specify production in GWh/annum | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
A2P012: Biomass_heat | no | no | no | no | no | no |
A2P012 - Biomass_heat: Please specify production in GWh/annum | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
A2P012: Waste heat+HP | no | no | no | no | no | yes |
A2P012 - Waste heat+HP: Please specify production in GWh/annum | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
A2P012: Biomass_peat_heat | no | no | no | no | no | no |
A2P012 - Biomass_peat_heat: Please specify production in GWh/annum | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
A2P012: PVT_th | no | no | no | no | no | no |
A2P012 - PVT_th: Please specify production in GWh/annum | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
A2P012: Biomass_firewood_th | no | no | no | no | no | no |
A2P012 - Biomass_firewood_th: Please specify production in GWh/annum | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
A2P012: Other | no | no | no | no | no | no |
A2P012 - Other: Please specify production in GWh/annum | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
A2P013: Renewable resources on-site - Additional notes | ||||||
A2P013: Renewable resources on-site - Additional notes | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | Groundwater (used for heat pumps) |
A2P014: Annual energy use | ||||||
A2P014: Annual energy use | (not specified) | 3.5 GWh/annum | 0.96 GWh/annum | 11.3 GWh/annum | (not specified) | (not specified) |
A2P015: Annual energy delivered | ||||||
A2P015: Annual energy delivered | (not specified) | (not specified) | -2 GWh/annum | 5.76 GWh/annum | (not specified) | (not specified) |
A2P016: Annual non-renewable electricity production on-site during target year | ||||||
A2P016: Annual non-renewable electricity production on-site during target year | (not specified) | (not specified) | (not specified) | 0 GWh/annum | (not specified) | (not specified) |
A2P017: Annual non-renewable thermal production on-site during target year | ||||||
A2P017: Gas | no | no | no | no | no | no |
A2P017 - Gas: Annual non-renewable thermal production on-site during target year | (not specified) | (not specified) | (not specified) | 0 GWh/annum | (not specified) | (not specified) |
A2P017: Coal | no | no | no | no | no | no |
A2P017 - Coal: Annual non-renewable thermal production on-site during target year | (not specified) | (not specified) | (not specified) | 0 GWh/annum | (not specified) | (not specified) |
A2P017: Oil | no | no | no | no | no | no |
A2P017 - Oil: Annual non-renewable thermal production on-site during target year | (not specified) | (not specified) | (not specified) | 0 GWh/annum | (not specified) | (not specified) |
A2P017: Other | no | no | no | no | no | no |
A2P017 - Other: Annual non-renewable thermal production on-site during target year | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
A2P018: Annual renewable electricity imports from outside the boundary during target year | ||||||
A2P018: PV | no | yes | no | no | no | yes |
A2P018 - PV: specify production in GWh/annum if available | (not specified) | 0.00045547 GWh/annum | (not specified) | (not specified) | (not specified) | (not specified) |
A2P018: Wind | no | no | no | no | no | yes |
A2P018 - Wind: specify production in GWh/annum if available | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
A2P018: Hydro | no | no | no | no | no | yes |
A2P018 - Hydro: specify production in GWh/annum if available | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
A2P018: Biomass_el | no | no | no | no | no | no |
A2P018 - Biomass_el: specify production in GWh/annum if available | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
A2P018: Biomass_peat_el | no | no | no | no | no | no |
A2P018 - Biomass_peat_el: specify production in GWh/annum if available | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
A2P018: PVT_el | no | no | no | no | no | no |
A2P018 - PVT_el: specify production in GWh/annum if available | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
A2P018: Other | no | no | no | yes | no | no |
A2P018 - Other: specify production in GWh/annum if available | (not specified) | (not specified) | (not specified) | 5.26 GWh/annum | (not specified) | (not specified) |
A2P019: Annual renewable thermal imports from outside the boundary during target year | ||||||
A2P019: Geothermal | no | no | no | no | no | no |
A2P019 Geothermal: Please specify imports in GWh/annum | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
A2P019: Solar Thermal | no | no | no | no | no | yes |
A2P019 Solar Thermal: Please specify imports in GWh/annum | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
A2P019: Biomass_heat | no | no | no | no | no | yes |
A2P019 Biomass_heat: Please specify imports in GWh/annum | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
A2P019: Waste heat+HP | no | no | no | no | no | yes |
A2P019 Waste heat+HP: Please specify imports in GWh/annum | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
A2P019: Biomass_peat_heat | no | no | no | no | no | no |
A2P019 Biomass_peat_heat: Please specify imports in GWh/annum | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
A2P019: PVT_th | no | no | no | no | no | no |
A2P019 PVT_th: Please specify imports in GWh/annum | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
A2P019: Biomass_firewood_th | no | no | no | no | no | no |
A2P019 Biomass_firewood_th: Please specify imports in GWh/annum | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
A2P019: Other | no | no | no | no | no | no |
A2P019 Other: Please specify imports in GWh/annum | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
A2P020: Share of RES on-site / RES outside the boundary | ||||||
A2P020: Share of RES on-site / RES outside the boundary | 0 | 0 | 0 | 1.0532319391635 | 0 | 0 |
A2P021: GHG-balance calculated for the PED | ||||||
A2P021: GHG-balance calculated for the PED | (not specified) | (not specified) | (not specified) | 0 tCO2/annum | (not specified) | 0.036 tCO2/annum |
A2P022: KPIs related to the PED case study / PED Lab | ||||||
A2P022: Safety & Security | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
A2P022: Health | (not specified) | (not specified) | indoor air quility (indoor CO2 concentration) - measured on the extract air of the mechanical ventilation system. Relative humidity to avoid mold. | (not specified) | (not specified) | (not specified) |
A2P022: Education | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
A2P022: Mobility | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | x |
A2P022: Energy | (not specified) | (not specified) | Space heating demand, thermal energy delivered by district heating, electricity of the heat pump, thermal losses of the pipes, and PV production. | On-site energy ratio | (not specified) | x |
A2P022: Water | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | x |
A2P022: Economic development | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | x |
A2P022: Housing and Community | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | x |
A2P022: Waste | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
A2P022: Other | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
A2P023: Technological Solutions / Innovations - Energy Generation | ||||||
A2P023: Photovoltaics | yes | yes | yes | yes | yes | yes |
A2P023: Solar thermal collectors | no | no | no | no | yes | no |
A2P023: Wind Turbines | no | yes | no | no | no | no |
A2P023: Geothermal energy system | no | no | no | yes | yes | no |
A2P023: Waste heat recovery | no | no | no | yes | no | yes |
A2P023: Waste to energy | no | no | no | no | no | no |
A2P023: Polygeneration | no | no | no | no | no | no |
A2P023: Co-generation | no | yes | no | no | no | no |
A2P023: Heat Pump | no | yes | yes | no | yes | yes |
A2P023: Hydrogen | no | no | no | no | no | no |
A2P023: Hydropower plant | no | no | no | no | no | no |
A2P023: Biomass | no | no | no | no | no | no |
A2P023: Biogas | no | no | no | no | no | no |
A2P023: Other | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
A2P024: Technological Solutions / Innovations - Energy Flexibility | ||||||
A2P024: A2P024: Information and Communication Technologies (ICT) | yes | yes | no | yes | no | yes |
A2P024: Energy management system | no | yes | no | yes | yes | no |
A2P024: Demand-side management | yes | yes | no | no | no | no |
A2P024: Smart electricity grid | yes | no | no | yes | no | no |
A2P024: Thermal Storage | no | no | yes | yes | no | yes |
A2P024: Electric Storage | no | yes | no | yes | no | no |
A2P024: District Heating and Cooling | no | yes | yes | no | yes | yes |
A2P024: Smart metering and demand-responsive control systems | yes | yes | no | no | no | no |
A2P024: P2P – buildings | no | no | yes | no | no | no |
A2P024: Other | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
A2P025: Technological Solutions / Innovations - Energy Efficiency | ||||||
A2P025: Deep Retrofitting | no | no | no | no | yes | no |
A2P025: Energy efficiency measures in historic buildings | no | no | no | no | no | no |
A2P025: High-performance new buildings | no | yes | yes | yes | no | yes |
A2P025: Smart Public infrastructure (e.g. smart lighting) | no | no | no | yes | yes | yes |
A2P025: Urban data platforms | no | no | no | no | no | no |
A2P025: Mobile applications for citizens | no | no | no | no | yes | yes |
A2P025: Building services (HVAC & Lighting) | no | yes | yes | yes | no | no |
A2P025: Smart irrigation | no | yes | no | no | no | yes |
A2P025: Digital tracking for waste disposal | no | no | no | no | no | no |
A2P025: Smart surveillance | no | yes | no | no | no | no |
A2P025: Other | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
A2P026: Technological Solutions / Innovations - Mobility | ||||||
A2P026: Efficiency of vehicles (public and/or private) | no | no | no | no | yes | yes |
A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances) | no | no | no | yes | no | yes |
A2P026: e-Mobility | no | yes | no | yes | yes | yes |
A2P026: Soft mobility infrastructures and last mile solutions | no | yes | no | no | yes | yes |
A2P026: Car-free area | no | yes | no | no | no | yes |
A2P026: Other | (not specified) | (not specified) | (not specified) | Local transportation hub with direct connection to metro & bus terminal; parking spaces for 1,400 bicycles and for 1,300 cars Promoting e-Mobility: 134 charging stations, A technical reservation for expanding EV charging system 1400 bicycle racks and charging cabinets for 10 e-bicycle batteries | (not specified) | (not specified) |
A2P027: Mobility strategies - Additional notes | ||||||
A2P027: Mobility strategies - Additional notes | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | - Multimodal mobility nodes - Support of public transport tickets - Mobility consulting - District management |
A2P028: Energy efficiency certificates | ||||||
A2P028: Energy efficiency certificates | No | Yes | Yes | Yes | (not specified) | Yes |
A2P028: If yes, please specify and/or enter notes | (not specified) | (not specified) | Two buildings are certified "Passive House new build" | Energy Performance Certificate => Energy efficiency class B (2018 version) | (not specified) | Energieausweis mandatory if buildings/ flats/ apartments are sold |
A2P029: Any other building / district certificates | ||||||
A2P029: Any other building / district certificates | No | Yes | No | Yes | (not specified) | Yes |
A2P029: If yes, please specify and/or enter notes | (not specified) | LEED BD+C, LEED NC CAMPUS | (not specified) | LEED (Core & Shell, v4) GOLD certification, Smart Building certification (GOLD) | (not specified) | Klimaaktiv standard Voluntary! Certification can be for buildings and/or quarters. The different quarters are built in different standards. Ranging from bronze/silver/gold |
A3P001: Relevant city /national strategy | ||||||
A3P001: Relevant city /national strategy |
|
|
|
|
|
|
A3P002: Quantitative targets included in the city / national strategy | ||||||
A3P002: Quantitative targets included in the city / national strategy | (not specified) | (not specified) | (not specified) | Relevant city strategies behind PED development in Espoo include the following: - The Espoo Story: Sustainability is heavily included within the values and goals of the current Espoo city strategy, also known as the Espoo Story, running from 2021 to 2025. For example, the strategy names being a responsible pioneer as one of the main values of the city and has chosen achieving carbon neutrality by 2030 as one of the main goals of the current council term. In addition to the Espoo story, four cross-administrative development programmes act as cooperation platforms that allow the city, together with its partners, to develop innovative solutions through experiments and pilot projects in line with the Espoo Story. The Sustainable Espoo development programme is one of the four programmes, thus putting sustainability on the forefront in city development work. - EU Mission: 100 climate-neutral and smart cities by 2030: Cities selected for the Mission commit to achieving carbon-neutrality in 2030. A key tool in the Mission is the Climate City Contract. Each selected city will prepare and implement its contracts in collaboration with local businesses as well as other stakeholders and residents. - Covenant of Mayors for Climate and Energy: Espoo is committed to the Covenant of Mayors for Climate and Energy, under which the signatories commit to supporting the European Union’s 40% greenhouse gas emission reduction goal by 2030. The Sustainable Energy and Climate Action Plan (SECAP) is a key instrument for implementing the agreement. The Action Plan outlines the key measures the city will take to achieve its carbon neutrality goal. The plan also includes a mapping of climate change risks and vulnerabilities, adaptation measures, emission calculations, emission reduction scenarios and impact estimations of measures. The SECAP of the City of Espoo is available here (only available in Finnish). - UN Sustainable development Goals: The city of Espoo has committed to becoming a forerunner and achieving the UN's Sustainable Development Goals (SDG) by 2025. The goal is to make Espoo financially, ecologically, socially, and culturally sustainable. - The Circular Cities Declaration: At the end of 2020, Espoo signed the Europe-wide circular economy commitment Circular Cities Declaration. The ten goals of the declaration promote the implementation of the city’s circular economy. - Espoo Clean Heat: Fortum and the City of Espoo are committed to producing carbon-neutral district heating in the network operating in the areas of Espoo, Kauniainen and Kirkkonummi during the 2020s. The district heating network provides heating to some 250,000 end-users in homes and offices. Coal will be completely abandoned in the production of district heating by 2025. The main targets related to PED development included in the noted city strategies are the following: - Espoo will achieve carbon neutrality by 2030. To be precise, this carbon neutrality goal is defined as an 80% emission reduction from the 1990 level by the year 2030. The remaining 20% share can be absorbed in carbon sinks or compensated by other means. - District heating in Espoo will be carbon-neutral by 2029, and coal-based production will be phased out from district heating by 2025. - Espoo aims to end the use of fossil fuels in the heating of city-owned buildings by 2025. - Quantitative goals within the Espoo SECAP report: - Espoo aims to reduce total energy consumption within the municipal sector by 7.5% by the end of 2025 in comparison to the 2015 level. The social housing company Espoon Asunnot OY aims to meet the same target. - Espoo aims to cover 10% of the energy consumption of new buildings via on-site production. - Espoo aims to raise the modal split of cycling to 15% by 2024. - Espoo aims to raise the modal split of public transport by 1.1% yearly. - Espoo aims to reduce the emissions of bus transport by 90% by the end of 2025, when compared to 2010 levels. | (not specified) | City level targets Klimaschutzplan Graz - 2022 | Targets: - Climate neutrality until 2040 - Social justice and high quality of life - High innovation levels Mobilitätsplan Graz 2040 – under development | Targets: - Modal Split 80:20 until 2040 80% Public transport, bike, walking | 20% cars Kommunales Energiekonzept (2017) | Targets: - Increase of district heating Energiemasterplan Graz (2018) | Targets: - Energy efficiency of urban dwellings and infrastructures - District heating and solar energy - Energy efficiency of private dwellings - Climate conscious mobility National level targets Klimaschutzplan Österreich -draft, expected by 2024 | Targets: - Decarbonisation (reduction of GHG, renewable energies, - Climate neutrality until 2040 - Energy efficiency - Security of energy supply |
A3P003: Strategies towards decarbonization of the gas grid | ||||||
A3P003: Strategies towards decarbonization of the gas grid | (not specified) |
|
| (not specified) | (not specified) |
|
A3P003: Other | (not specified) | Boiler Automation, Energy Management System, Electric Battery Storage, Demand Management and Flexible Pricing | District heating based mainly on heat pumps and renewable sources | (not specified) | (not specified) | (not specified) |
A3P004: Identification of needs and priorities | ||||||
A3P004: Identification of needs and priorities | (not specified) | Carbon and Energy Neutrality | The priority was to eliminate the CO2 emissions by optimizing the building envelope and the heating systems. | - Citycon (developer and owner of Lippulaiva) aims to be carbon neutral in its energy use by 2030 - Lippulaiva is a unique urban centre with state-of-the-art energy concept. The centre has a smart managing system, which allows for example the temporary reduction of power used in air conditioning and charging stations when energy consumption is at its peak. In addition, a backup generator and a large electric battery will balance the operation of the electricity network. - Lippulaiva is also an important mobility hub for the people of Espoo. Espoonlahti metro station is located under the centre, and the West Metro started to operate to Espoonlahti in December 2022. Lippulaiva also has a bus terminal, which serves the metro’s feeder traffic in the Espoonlahti major district. | (not specified) | Reininghaus needs green spaces and places Sector coupling of water, waste water, electricity ICT and demand side management Mobility - Reininghaus needs better infrastructure for bikes and pedestrians - Public transportation should be more affordable and Sharing should be implemented in the district Infrastructure should cover daily needs within walking distance Infrastructure for local jobs and shared offices |
A3P005: Sustainable behaviour | ||||||
A3P005: Sustainable behaviour | (not specified) | Under LEGOFIT project, promoting sustainable behavior for better occupant experience is a targeted aim under a work package. | (not specified) | For Citycon, it was important to engage local people within the Lippulaiva project. During the construction period as well as after opening of the shopping center, citizens have been engaged in multiple ways, such as informing local citizens of the progress of construction, engaging young people in the design processes of the shopping centre and long-term commitment of youngsters with Lippulaiva Buddy class initiative. Users’ engagement activities are conducted in close co-operation with SPARCS partners. | (not specified) | - citizen participation and promotion of functioning neighbourhoods (e.g., through city district management) As of today, solutions for the energy transition in the residential sector have focused on the construction of energy-efficient buildings and on the energy-efficient refurbishment of existing buildings. Measures to influence user behaviour and to directly address residents and neighbourhoods as actors of the energy transition play a minor role and are also not formalized. At the same time, moving into a new apartment offers a ‘window of opportunity’ to establish new everyday practices and behaviour. In already inhabited housing developments, well-functioning neighbourhoods or existing, ‘sustainability pioneers’ are key to motivating people to adopt more resource-efficient lifestyles. In order to prepare such agents of change towards more climate protection and sustainability in the context of housing, Austria launched the BAREWO project. The aim is to develop a kit of formats, methods, and interventions for resource-efficient housing. This toolkit will be tested in six testbeds, among which quarter 12 (Q12) of Graz- Reininghaus, as soon as first residents move in (approx. 2024). Austrian TRANS-PED partner StadtLABOR, which is also a partner in the BAREWO project, will support Q12 in this process. In parallel, a monitoring system will be developed to make the (climate) effects of the kit measurable. In addition, a guideline for property managers will be developed, which will serve as an orientation for them on how their residents can be coached in matters of climate protection and sustainability in everyday (residential) life. From the very beginning, (communication) measures are implemented and relevant stakeholders are involved in the project (project advisory board) to ensure the multiplicability, financing and broad application of the toolkit. If successful, the toolkit could also be scaled up to other quarters in Reininghaus. |
A3P006: Economic strategies | ||||||
A3P006: Economic strategies |
| (not specified) | (not specified) |
| (not specified) |
|
A3P006: Other | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
A3P007: Social models | ||||||
A3P007: Social models |
| (not specified) |
|
|
|
|
A3P007: Other | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
A3P008: Integrated urban strategies | ||||||
A3P008: Integrated urban strategies |
|
| (not specified) |
| (not specified) |
|
A3P008: Other | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
A3P009: Environmental strategies | ||||||
A3P009: Environmental strategies |
|
|
|
| (not specified) |
|
A3P009: Other | (not specified) | (not specified) | (not specified) | Carbon free in terms of energy | (not specified) | (not specified) |
A3P010: Legal / Regulatory aspects | ||||||
A3P010: Legal / Regulatory aspects | (not specified) | ISO 45001, ISO 14001, ISO 50001, Zero Waste Policy | (not specified) | - Energy efficiency regulations (Directive 2006/32/EC and 2009/72/EC) - EU directive 2010/31/EU on the energy performance of buildings => all new buildings should be “nearly zero-energy buildings” (nZEB) from 2021 | (not specified) | Mobility contracts: A mobility contract is concluded between the City of Graz and the property developers in the course of development plans and serves to reduce the motor vehicle traffic to be expected as a result of the construction project. Push & pull measures are agreed: With a lower car parking space key, which is significantly lower than today's usual requirements, offers and information for easier use of public transport, walking and cycling, as well as car sharing and e-mobility are simultaneously created by the property developers, leading to a win-win-win situation for all parties involved. Basic principles - Possibility of combining effective "push & pull" measures => control option (e.g. reduction of car parking spaces, but optimisation of accessibility to public transport and walking and cycling networks, public transport tickets, mobility information, ... etc.) - Changing mobility behaviour in favour of sustainable forms of transport from the moment the flat is handed over ("upheaval" in personal mobility behaviour when changing the residential location) - Reduction in construction and maintenance costs (underground car parks, public road infrastructure) - Easier realisation of larger construction projects in the inner city area with lower generation of vehicle demand Städtebauliche Verträge in Graz / Urban development contracts in Graz Qualitative urban (neighbourhood) development with added value for all stakeholders: urban development contracts are modern instruments in the development of cities and neighbourhoods. As one of the pioneers in this field, the City of Graz also increasingly favours this form of quality assurance. Urban development contracts are a contractual form of regulation between the City of Graz and landowners, which enables flexible control of urban (sub)development in the interests of the common interests while at the same time relieving the public authorities. The contracts make property-related stipulations in accordance with urban planning requirements (e.g. urban development concept, development concept, framework plan, zoning plan) and the specialist planning requirements in particular infrastructure, development, design and mobility. This is intended to infrastructure, services of general interest, building land quality and settlement development required for the (parts of the) city. |
B1P001: PED/PED relevant concept definition | ||||||
B1P001: PED/PED relevant concept definition | (not specified) | The campus should be considered a PED case study due to its exemplary commitment to sustainability and energy efficiency, as evidenced by several of its buildings achieving LEED certification. This certification underscores the campus's adherence to rigorous environmental standards and its proactive steps towards reducing carbon footprints. Also, the integration of sustainable practices across the campus aligns with the PED framework, which aims to create urban areas that produce more energy than they consume. Therefore, this campus serves as a model of how educational institutions can lead the way in fostering sustainable communities and advancing the goals of PED. | Extremely low building energy demand, the electric energy of the heat pump used for space heating is significantly lower compared to thermal energy for the domestic hot water preparation. | Lippulaiva is a project with high level goal in terms of energy efficiency, energy flexibility and energy production. | (not specified) | Reininghaus addresses some relevant key aspects listed in the JPI UE PED Framework Definition such as: - high level of aspiration in terms of energy efficiency, energy flexibility and energy production; - integration of different systems and infrastructures; - inclusion of aspects not only related to energy sector, but also connected with social, economic and environmental sustainability. |
B1P002: Motivation behind PED/PED relevant project development | ||||||
B1P002: Motivation behind PED/PED relevant project development | (not specified) | The purpose of implementing the PED project on this sustainable campus, where several buildings have LEED certification, is to further enhance its energy efficiency and environmental stewardship by creating a district that generates more energy than it consumes. The initiator was motivated by the need to address climate change, reduce greenhouse gas emissions, and promote renewable energy sources. Additionally, the campus's existing commitment to sustainability and the success of its LEED-certified buildings provided a strong foundation for demonstrating the feasibility and benefits of PED development, serving as a model for sustainable urban living and energy self-sufficiency. | Since it is an urban area, with high building and apartment density, the need for CO2 reduction is quite relevant and thus, in new built, the minimization of CO2 emissions is crucial. | - Citycon’s (developer and owner of Lippulaiva) target is to be carbon neutral by 2030 - Increasing sustainability requirements from the financing, tenants, cities, other stakeholders | (not specified) | The Reininghausgründe is a new quarter near the centre of the City of Graz. On the area of a former brewery, close to more, still working industries, a new town centre is being established. The quarter will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the historical city centre by bike paths, busses and a tram. Car sharing is provided as well. |
B1P003: Environment of the case study area | ||||||
B2P003: Environment of the case study area | Suburban area | Suburban area | Urban area | Urban area | Urban area | Urban area |
B1P004: Type of district | ||||||
B2P004: Type of district |
|
|
|
|
|
|
B1P005: Case Study Context | ||||||
B1P005: Case Study Context |
|
|
|
|
|
|
B1P006: Year of construction | ||||||
B1P006: Year of construction | (not specified) | 2024 | 2022 | 2022 | (not specified) | 2025 |
B1P007: District population before intervention - Residential | ||||||
B1P007: District population before intervention - Residential | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | 0 |
B1P008: District population after intervention - Residential | ||||||
B1P008: District population after intervention - Residential | (not specified) | (not specified) | 780 | (not specified) | (not specified) | 10000 |
B1P009: District population before intervention - Non-residential | ||||||
B1P009: District population before intervention - Non-residential | (not specified) | 9800 | (not specified) | (not specified) | (not specified) | 0 |
B1P010: District population after intervention - Non-residential | ||||||
B1P010: District population after intervention - Non-residential | (not specified) | 9800 | (not specified) | (not specified) | (not specified) | (not specified) |
B1P011: Population density before intervention | ||||||
B1P011: Population density before intervention | 0 | 34 | 0 | 0 | 0 | 0 |
B1P012: Population density after intervention | ||||||
B1P012: Population density after intervention | 0 | 34.337771548704 | 0.068716412650868 | 0 | 0 | 0.01 |
B1P013: Building and Land Use before intervention | ||||||
B1P013: Residential | no | no | no | no | yes | no |
B1P013 - Residential: Specify the sqm | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
B1P013: Office | no | no | no | no | no | no |
B1P013 - Office: Specify the sqm | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
B1P013: Industry and Utility | no | no | no | no | no | yes |
B1P013 - Industry and Utility: Specify the sqm | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
B1P013: Commercial | no | no | no | yes | no | no |
B1P013 - Commercial: Specify the sqm | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
B1P013: Institutional | no | yes | no | no | no | no |
B1P013 - Institutional: Specify the sqm | (not specified) | 285.400 m² | (not specified) | (not specified) | (not specified) | (not specified) |
B1P013: Natural areas | yes | no | no | yes | no | yes |
B1P013 - Natural areas: Specify the sqm | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
B1P013: Recreational | no | no | no | no | no | no |
B1P013 - Recreational: Specify the sqm | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
B1P013: Dismissed areas | no | no | no | no | no | no |
B1P013 - Dismissed areas: Specify the sqm | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
B1P013: Other | no | no | no | no | no | no |
B1P013 - Other: Specify the sqm | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
B1P014: Building and Land Use after intervention | ||||||
B1P014: Residential | no | no | yes | yes | yes | yes |
B1P014 - Residential: Specify the sqm | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
B1P014: Office | no | no | no | no | no | yes |
B1P014 - Office: Specify the sqm | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
B1P014: Industry and Utility | no | no | no | no | no | no |
B1P014 - Industry and Utility: Specify the sqm | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
B1P014: Commercial | no | no | yes | yes | no | yes |
B1P014 - Commercial: Specify the sqm | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
B1P014: Institutional | no | yes | yes | no | no | yes |
B1P014 - Institutional: Specify the sqm | (not specified) | 280000 m² | (not specified) | (not specified) | (not specified) | (not specified) |
B1P014: Natural areas | no | no | no | no | no | yes |
B1P014 - Natural areas: Specify the sqm | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
B1P014: Recreational | no | no | yes | no | no | yes |
B1P014 - Recreational: Specify the sqm | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
B1P014: Dismissed areas | no | no | no | no | no | no |
B1P014 - Dismissed areas: Specify the sqm | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
B1P014: Other | no | no | no | no | no | no |
B1P014 - Other: Specify the sqm | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
B2P001: PED Lab concept definition | ||||||
B2P001: PED Lab concept definition | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
B2P002: Installation life time | ||||||
B2P002: Installation life time | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
B2P003: Scale of action | ||||||
B2P003: Scale | (not specified) | (not specified) | (not specified) | (not specified) | District | (not specified) |
B2P004: Operator of the installation | ||||||
B2P004: Operator of the installation | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
B2P005: Replication framework: Applied strategy to reuse and recycling the materials | ||||||
B2P005: Replication framework: Applied strategy to reuse and recycling the materials | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
B2P006: Circular Economy Approach | ||||||
B2P006: Do you apply any strategy to reuse and recycling the materials? | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
B2P006: Other | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
B2P007: Motivation for developing the PED Lab | ||||||
B2P007: Motivation for developing the PED Lab | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
B2P007: Other | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
B2P008: Lead partner that manages the PED Lab | ||||||
B2P008: Lead partner that manages the PED Lab | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
B2P008: Other | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
B2P009: Collaborative partners that participate in the PED Lab | ||||||
B2P009: Collaborative partners that participate in the PED Lab | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
B2P009: Other | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
B2P010: Synergies between the fields of activities | ||||||
B2P010: Synergies between the fields of activities | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
B2P011: Available facilities to test urban configurations in PED Lab | ||||||
B2P011: Available facilities to test urban configurations in PED Lab | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
B2P011: Other | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
B2P012: Incubation capacities of PED Lab | ||||||
B2P012: Incubation capacities of PED Lab | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
B2P013: Availability of the facilities for external people | ||||||
B2P013: Availability of the facilities for external people | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
B2P014: Monitoring measures | ||||||
B2P014: Monitoring measures | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
B2P015: Key Performance indicators | ||||||
B2P015: Key Performance indicators | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
B2P016: Execution of operations | ||||||
B2P016: Execution of operations | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
B2P017: Capacities | ||||||
B2P017: Capacities | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
B2P018: Relations with stakeholders | ||||||
B2P018: Relations with stakeholders | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
B2P019: Available tools | ||||||
B2P019: Available tools | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
B2P019: Available tools | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
B2P020: External accessibility | ||||||
B2P020: External accessibility | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
C1P001: Unlocking Factors | ||||||
C1P001: Recent technological improvements for on-site RES production | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 4 - Important | 1 - Unimportant | 3 - Moderately important |
C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock | 1 - Unimportant | 5 - Very important | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important |
C1P001: Energy Communities, P2P, Prosumers concepts | 5 - Very important | 4 - Important | 3 - Moderately important | 4 - Important | 1 - Unimportant | 4 - Important |
C1P001: Storage systems and E-mobility market penetration | 5 - Very important | 4 - Important | 2 - Slightly important | 4 - Important | 1 - Unimportant | 2 - Slightly important |
C1P001: Decreasing costs of innovative materials | 1 - Unimportant | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important |
C1P001: Financial mechanisms to reduce costs and maximize benefits | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 2 - Slightly important |
C1P001: The ability to predict Multiple Benefits | 2 - Slightly important | 4 - Important | 3 - Moderately important | 4 - Important | 1 - Unimportant | 4 - Important |
C1P001: The ability to predict the distribution of benefits and impacts | 4 - Important | 4 - Important | 3 - Moderately important | 4 - Important | 1 - Unimportant | 4 - Important |
C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up) | 4 - Important | 5 - Very important | 2 - Slightly important | 3 - Moderately important | 1 - Unimportant | 5 - Very important |
C1P001: Social acceptance (top-down) | 4 - Important | 4 - Important | 4 - Important | 2 - Slightly important | 1 - Unimportant | 4 - Important |
C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.) | 4 - Important | 5 - Very important | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | 5 - Very important |
C1P001: Presence of integrated urban strategies and plans | 5 - Very important | 4 - Important | 4 - Important | 1 - Unimportant | 1 - Unimportant | 5 - Very important |
C1P001: Multidisciplinary approaches available for systemic integration | 4 - Important | 4 - Important | 4 - Important | 1 - Unimportant | 1 - Unimportant | 5 - Very important |
C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects | 1 - Unimportant | 4 - Important | 4 - Important | 1 - Unimportant | 1 - Unimportant | 4 - Important |
C1P001: Availability of RES on site (Local RES) | 5 - Very important | 5 - Very important | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 3 - Moderately important |
C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders | 3 - Moderately important | 4 - Important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 5 - Very important |
C1P001: Any other UNLOCKING FACTORS | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P001: Any other UNLOCKING FACTORS (if any) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
C1P002: Driving Factors | ||||||
C1P002: Climate Change adaptation need | 3 - Moderately important | 5 - Very important | 5 - Very important | 5 - Very important | 1 - Unimportant | 5 - Very important |
C1P002: Climate Change mitigation need (local RES production and efficiency) | 3 - Moderately important | 5 - Very important | 4 - Important | 4 - Important | 1 - Unimportant | 5 - Very important |
C1P002: Rapid urbanization trend and need of urban expansions | 2 - Slightly important | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 4 - Important |
C1P002: Urban re-development of existing built environment | 1 - Unimportant | 4 - Important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 5 - Very important |
C1P002: Economic growth need | 1 - Unimportant | 4 - Important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important |
C1P002: Improved local environmental quality (air, noise, aesthetics, etc.) | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 5 - Very important |
C1P002: Territorial and market attractiveness | 1 - Unimportant | 4 - Important | 4 - Important | 2 - Slightly important | 1 - Unimportant | 5 - Very important |
C1P002: Energy autonomy/independence | 2 - Slightly important | 5 - Very important | 4 - Important | 4 - Important | 1 - Unimportant | 3 - Moderately important |
C1P002: Any other DRIVING FACTOR | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P002: Any other DRIVING FACTOR (if any) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
C1P003: Administrative barriers | ||||||
C1P003: Difficulty in the coordination of high number of partners and authorities | 1 - Unimportant | 5 - Very important | 2 - Slightly important | 4 - Important | 1 - Unimportant | 5 - Very important |
C1P003: Lack of good cooperation and acceptance among partners | 1 - Unimportant | 5 - Very important | 2 - Slightly important | 2 - Slightly important | 1 - Unimportant | 2 - Slightly important |
C1P003: Lack of public participation | 1 - Unimportant | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 4 - Important |
C1P003: Lack of institutions/mechanisms to disseminate information | 3 - Moderately important | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important |
C1P003:Long and complex procedures for authorization of project activities | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 5 - Very important |
C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important |
C1P003: Complicated and non-comprehensive public procurement | 1 - Unimportant | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important |
C1P003: Fragmented and or complex ownership structure | 1 - Unimportant | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 5 - Very important |
C1P003: City administration & cross-sectoral attitude/approaches (silos) | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 4 - Important |
C1P003: Lack of internal capacities to support energy transition | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important |
C1P003: Any other Administrative BARRIER | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P003: Any other Administrative BARRIER (if any) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
C1P004: Policy barriers | ||||||
C1P004: Lack of long-term and consistent energy plans and policies | 4 - Important | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important |
C1P004: Lacking or fragmented local political commitment and support on the long term | 4 - Important | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important |
C1P004: Lack of Cooperation & support between national-regional-local entities | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important |
C1P004: Any other Political BARRIER | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P004: Any other Political BARRIER (if any) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
C1P005: Legal and Regulatory barriers | ||||||
C1P005: Inadequate regulations for new technologies | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant |
C1P005: Regulatory instability | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant |
C1P005: Non-effective regulations | 1 - Unimportant | 4 - Important | 1 - Unimportant | 4 - Important | 1 - Unimportant | 3 - Moderately important |
C1P005: Unfavorable local regulations for innovative technologies | 1 - Unimportant | 4 - Important | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant | 4 - Important |
C1P005: Building code and land-use planning hindering innovative technologies | 1 - Unimportant | 4 - Important | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant | 2 - Slightly important |
C1P005: Insufficient or insecure financial incentives | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant | 4 - Important |
C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important |
C1P005: Shortage of proven and tested solutions and examples | 1 - Unimportant | 4 - Important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 2 - Slightly important |
C1P005: Any other Legal and Regulatory BARRIER | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P005: Any other Legal and Regulatory BARRIER (if any) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
C1P006: Environmental barriers | ||||||
C1P006: Environmental barriers | (not specified) | Air Quality Management Importance Level: 5 (Very Important) Energy Efficiency Importance Level: 5 (Very Important) Water Conservation Importance Level: 5 (Very Important) Waste Management Importance Level: 4 (Important) Material Selection Importance Level: 4 (Important) Renewable Energy Integration Importance Level: 5 (Very Important) Heat Island Effect Mitigation Importance Level: 4 (Important) Noise Pollution Control Importance Level: 3 (Moderately Important) | Urban area very high buildings (and apartment) density and thus, less available space for renewable sources. | (not specified) | (not specified) | (not specified) |
C1P007: Technical barriers | ||||||
C1P007: Lack of skilled and trained personnel | 1 - Unimportant | 5 - Very important | 2 - Slightly important | 4 - Important | 1 - Unimportant | 2 - Slightly important |
C1P007: Deficient planning | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important |
C1P007: Retrofitting work in dwellings in occupied state | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 4 - Important | 1 - Unimportant | 1 - Unimportant |
C1P007: Lack of well-defined process | 1 - Unimportant | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 4 - Important |
C1P007: Inaccuracy in energy modelling and simulation | 5 - Very important | 5 - Very important | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant | 2 - Slightly important |
C1P007: Lack/cost of computational scalability | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important |
C1P007: Grid congestion, grid instability | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P007: Negative effects of project intervention on the natural environment | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important |
C1P007: Energy retrofitting work in dense and/or historical urban environment | 1 - Unimportant | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P007: Difficult definition of system boundaries | 1 - Unimportant | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P007: Any other Thecnical BARRIER | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P007: Any other Thecnical BARRIER (if any) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
C1P008: Social and Cultural barriers | ||||||
C1P008: Inertia | 1 - Unimportant | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important |
C1P008: Lack of values and interest in energy optimization measurements | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 4 - Important |
C1P008: Low acceptance of new projects and technologies | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important |
C1P008: Difficulty of finding and engaging relevant actors | 4 - Important | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 4 - Important |
C1P008: Lack of trust beyond social network | 1 - Unimportant | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important |
C1P008: Rebound effect | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 2 - Slightly important |
C1P008: Hostile or passive attitude towards environmentalism | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant |
C1P008: Exclusion of socially disadvantaged groups | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant |
C1P008: Non-energy issues are more important and urgent for actors | 1 - Unimportant | 4 - Important | 1 - Unimportant | 4 - Important | 1 - Unimportant | 4 - Important |
C1P008: Hostile or passive attitude towards energy collaboration | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant |
C1P008: Any other Social BARRIER | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P008: Any other Social BARRIER (if any) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
C1P009: Information and Awareness barriers | ||||||
C1P009: Insufficient information on the part of potential users and consumers | 5 - Very important | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 2 - Slightly important |
C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 4 - Important |
C1P009: Lack of awareness among authorities | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important |
C1P009: Information asymmetry causing power asymmetry of established actors | 2 - Slightly important | 4 - Important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 4 - Important |
C1P009: High costs of design, material, construction, and installation | 1 - Unimportant | 4 - Important | 5 - Very important | 4 - Important | 1 - Unimportant | 4 - Important |
C1P009: Any other Information and Awareness BARRIER | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P009: Any other Information and Awareness BARRIER (if any) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
C1P010: Financial barriers | ||||||
C1P010: Hidden costs | 1 - Unimportant | 4 - Important | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important |
C1P010: Insufficient external financial support and funding for project activities | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 2 - Slightly important |
C1P010: Economic crisis | 1 - Unimportant | 4 - Important | 4 - Important | 4 - Important | 1 - Unimportant | 4 - Important |
C1P010: Risk and uncertainty | 2 - Slightly important | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 2 - Slightly important |
C1P010: Lack of consolidated and tested business models | 4 - Important | 4 - Important | 1 - Unimportant | 4 - Important | 1 - Unimportant | 2 - Slightly important |
C1P010: Limited access to capital and cost disincentives | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 2 - Slightly important |
C1P010: Any other Financial BARRIER | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P010: Any other Financial BARRIER (if any) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
C1P011: Market barriers | ||||||
C1P011: Split incentives | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 2 - Slightly important |
C1P011: Energy price distortion | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 4 - Important |
C1P011: Energy market concentration, gatekeeper actors (DSOs) | 1 - Unimportant | 4 - Important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 4 - Important |
C1P011: Any other Market BARRIER | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P011: Any other Market BARRIER (if any) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
C1P012: Stakeholders involved | ||||||
C1P012: Government/Public Authorities |
|
|
|
| (not specified) |
|
C1P012: Research & Innovation | (not specified) |
|
|
| (not specified) |
|
C1P012: Financial/Funding | (not specified) |
|
|
| (not specified) |
|
C1P012: Analyst, ICT and Big Data |
|
|
|
| (not specified) |
|
C1P012: Business process management |
|
| (not specified) |
| (not specified) |
|
C1P012: Urban Services providers |
|
|
|
| (not specified) |
|
C1P012: Real Estate developers |
|
|
|
| (not specified) |
|
C1P012: Design/Construction companies |
|
|
|
| (not specified) |
|
C1P012: End‐users/Occupants/Energy Citizens |
|
|
|
| (not specified) |
|
C1P012: Social/Civil Society/NGOs |
|
|
|
| (not specified) |
|
C1P012: Industry/SME/eCommerce |
|
|
|
| (not specified) |
|
C1P012: Other | (not specified) |
| (not specified) | (not specified) | (not specified) |
|
C1P012: Other (if any) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) | (not specified) |
Summary |
Authors (framework concept)
Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)
Contributors (to the content)
Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)
Implemented by
Boutik.pt: Filipe Martins, Jamal Khan
Marek Suchánek (Czech Technical University in Prague)