Filters:
NameProjectTypeCompare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Compare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Compare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Compare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
Lecce, SmartEnCity SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
Firenze, Novoli-Cascine district on “le PIagge” buildings PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Uncompare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Uncompare
Innsbruck, Campagne-Areal PED Relevant Case Study Uncompare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Halmstad, Fyllinge PED Relevant Case Study
Lund, Brunnshög district PED Case Study Uncompare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleHalmstad, Fyllinge
Oulu, Kaukovainio
Innsbruck, Campagne-Areal
Freiburg, Waldsee
Espoo, Leppävaara district, Sello center
Izmir, District of Karşıyaka
Lund, Brunnshög district
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabHalmstad, FyllingeOulu, KaukovainioInnsbruck, Campagne-ArealFreiburg, WaldseeEspoo, Leppävaara district, Sello centerIzmir, District of KarşıyakaLund, Brunnshög district
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesnoyesyesyesyes
PED relevant case studyyesnoyesnononono
PED Lab.nonononononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesyesyesyesyesyes
Annual energy surplusnononononoyesyes
Energy communityyesnonoyesnonoyes
Circularitynoyesnonononoyes
Air quality and urban comfortnononononoyesyes
Electrificationnoyesnoyesnonoyes
Net-zero energy costnononononoyesno
Net-zero emissionnonoyesyesnonoyes
Self-sufficiency (energy autonomous)nonononononono
Maximise self-sufficiencynonononoyesyesno
Othernonononononoyes
Other (A1P004)Holistic approach on city planning; Minimise car traffic - walkability; Local service; Climate neutral buildings 2030;
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhaseIn operationCompletedPlanning PhaseImplementation PhasePlanning PhaseIn operation
A1P006: Start Date
A1P006: Start date01/2104/1611/2109/1910/222015
A1P007: End Date
A1P007: End date01/3004/2211/2410/2210/252040
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • General statistical datasets
  • Monitoring data available within the districts
  • Monitoring data available within the districts,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts,
  • General statistical datasets
  • Monitoring data available within the districts
A1P009: OtherOtherGIS open dataset is under construction
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
    • Data from the local energy provider available (restricted usage for some data points because of data security reasons,
    • renewable energy potential,
    • own calculations based on publicly available data,
    • Some data can be found in https://geoportal.freiburg.de/freigis/
    • M. Hukkalainen, F. Zarrin, K. Klobut, O. Lindholm, M. Ranta, P. Hajduk, T. Vainio-Kaila, E. Wanne, J. Tartia, H. Horn, K. Kontu, J. Juhmen, S. Santala, R. Turtiainen, J. Töyräs, T. Koljonen. (2020). Deliverable D3.1 Detailed plan of the Espoo smart city lighthouse demonstrations. Available online: https://www.sparcs.info/sites/default/files/2020-09/SPARCS_D3.1_Detailed_plan_Espoo.pdf,
    • Hukkalainen, Zarrin Fatima, Krzysztof Klobut, Kalevi Piira, Mikaela Ranta, Petr Hajduk, Tiina Vainio-Kaila , Elina Wanne, Jani Tartia, Angela Bartel, Joni Mäkinen, Mia Kaurila, Kaisa Kontu, Jaano Juhmen, Merja Ryöppy, Reetta Turtiainen, Joona Töyräs, Timo Koljonen (2021) Deliverable 3.2 Midterm report on the implemented demonstrations of solutions for energy positive blocks in Espoo. Available online: https://www.sparcs.info/sites/default/files/2022-02/SPARCS_D3.2.pdf
    A1P011: Geographic coordinates
    X Coordinate (longitude):12.9205425.51759508409350711.4243467381402567.88585713584291724.810127.11004913.232469400769599
    Y Coordinate (latitude):56.6519464.9928809817313247.27147078672910447.98653520708004560.217938.49605455.71989792207193
    A1P012: Country
    A1P012: CountrySwedenFinlandAustriaGermanyFinlandTurkeySweden
    A1P013: City
    A1P013: CityHalmstadOuluInnsbruckFreiburg im BreisgauEspooİzmirLund
    A1P014: Climate Zone (Köppen Geiger classification)
    A1P014: Climate Zone (Köppen Geiger classification).DwbDfcDfbCfbDfbCsaDfb
    A1P015: District boundary
    A1P015: District boundaryGeographicGeographicVirtualGeographicGeographicGeographic
    OtherRegional (close to virtual)
    A1P016: Ownership of the case study/PED Lab
    A1P016: Ownership of the case study/PED Lab:MixedMixedMixedMixedPrivatePublic
    A1P017: Ownership of the land / physical infrastructure
    A1P017: Ownership of the land / physical infrastructure:Multiple OwnersSingle OwnerMultiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersMultiple Owners
    A1P018: Number of buildings in PED
    A1P018: Number of buildings in PED250642941521200
    A1P019: Conditioned space
    A1P019: Conditioned space [m²]19700222772840702679561027951500000
    A1P020: Total ground area
    A1P020: Total ground area [m²]6000011351492000053000326001500000
    A1P021: Floor area ratio: Conditioned space / total ground area
    A1P021: Floor area ratio: Conditioned space / total ground area0020531
    A1P022: Financial schemes
    A1P022a: Financing - PRIVATE - Real estateyesyesnonononoyes
    A1P022a: Add the value in EUR if available [EUR]99999999
    A1P022b: Financing - PRIVATE - ESCO schemenonononononono
    A1P022b: Add the value in EUR if available [EUR]
    A1P022c: Financing - PRIVATE - Othernonononononono
    A1P022c: Add the value in EUR if available [EUR]
    A1P022d: Financing - PUBLIC - EU structural fundingnonononononoyes
    A1P022d: Add the value in EUR if available [EUR]1000000
    A1P022e: Financing - PUBLIC - National fundingnonononononoyes
    A1P022e: Add the value in EUR if available [EUR]30000000
    A1P022f: Financing - PUBLIC - Regional fundingnonononononoyes
    A1P022f: Add the value in EUR if available [EUR]30000000
    A1P022g: Financing - PUBLIC - Municipal fundingnoyesnoyesnonoyes
    A1P022g: Add the value in EUR if available [EUR]180000000
    A1P022h: Financing - PUBLIC - Othernonononononono
    A1P022h: Add the value in EUR if available [EUR]
    A1P022i: Financing - RESEARCH FUNDING - EUyesyesnoyesyesyesyes
    A1P022i: Add the value in EUR if available [EUR]62900011933552000000
    A1P022j: Financing - RESEARCH FUNDING - Nationalnonoyesyesnoyesno
    A1P022j: Add the value in EUR if available [EUR]
    A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononono
    A1P022k: Add the value in EUR if available [EUR]
    A1P022l: Financing - RESEARCH FUNDING - Othernonononononono
    A1P022l: Add the value in EUR if available [EUR]
    A1P022: Other
    A1P023: Economic Targets
    A1P023: Economic Targets
    • Boosting local and sustainable production
    • Positive externalities,
    • Boosting local and sustainable production
    • Job creation,
    • Other
    • Job creation,
    • Positive externalities,
    • Boosting local businesses
    • Positive externalities,
    • Boosting local and sustainable production
    • Other
    A1P023: OtherDeveloping and demonstrating new solutionsCreate affordable appartments for the citizensWorld class sustainable living and research environments
    A1P024: More comments:
    A1P024: More comments:Owners are two local social housing companies. The complete district will consist 4 building blocks, from which only the first one with 4 building is ready built and occupied. At the end, it would be a district of ca. 1100 flats in 16 buildings with 78000 m2
    A1P025: Estimated PED case study / PED LAB costs
    A1P025: Estimated PED case study / PED LAB costs [mil. EUR]5
    Contact person for general enquiries
    A1P026: NameMarkus OlofsgårdSamuli RinneGeorgios DermentzisDr. Annette SteingrubeJaano JuhmenOzlem SenyolMarkus Paulsson
    A1P027: OrganizationAFRYCity of OuluUniversity of InnsbruckFraunhofer Institute for solar energy systemsSIEMENS - Data Center ForumKarsiyaka MunicipalityCity of Lund
    A1P028: AffiliationOtherMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversitySME / IndustryMunicipality / Public BodiesMunicipality / Public Bodies
    A1P028: Other
    A1P029: Emailmarkus.olofsgard@afry.comsamuli.rinne@ouka.fiGeorgios.Dermentzis@uibk.ac.atAnnette.Steingrube@ise.fraunhofer.deJaano.juhmen@siemens.comozlemkocaer2@gmail.commarkus.paulsson@lund.se
    Contact person for other special topics
    A1P030: NameSamuli RinneHasan Burak CavkaEva Dalman
    A1P031: Emailsamuli.rinne@ouka.fihasancavka@iyte.edu.treva.dalman@lund.se
    Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYes
    A2P001: Fields of application
    A2P001: Fields of application
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Digital technologies
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Digital technologies,
    • Water use,
    • Indoor air quality
    • Energy efficiency,
    • Energy production,
    • Indoor air quality
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Waste management
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • Urban comfort (pollution, heat island, noise level etc.)
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Urban comfort (pollution, heat island, noise level etc.),
    • Digital technologies,
    • Water use,
    • Waste management,
    • Construction materials,
    • Other
    A2P001: OtherWalkability and biking
    A2P002: Tools/strategies/methods applied for each of the above-selected fields
    A2P002: Tools/strategies/methods applied for each of the above-selected fieldslink based regulation of electricity gridDifferent kinds of waste heat streams are utilized by heat pumps. These are district heating return water (actually this is an indirect way to cool down the flue gas in the scrubber), ventilation exhaust air and sewage water. As a normal case, in ventilation also air-to-air heat exchanges are used. PV power is harvested also, in vertical and more horizontal panels. Buildings are well insulated to decrease the needed amount of heating energy in the first place.The buildings are designed based on Passive House standards and dynamic building and system simulations are performed to optimise the HVAC systems, that are a ground-water heat pump for space heating and district heating for domestic hot water preparation. Photovoltaic systems are installed in the available roof spaces, however, more renewable sources are required due to very large number of apartments (very high density) to reach PED, and thus, simulation studies are performed.Energy system modelingMethods involve studying the feasibility of digital PED references for the case cities about their energy, environmental, and economic performance by EnergyPlus tool. In case of insufficient energy data and the need of high resolution data, ‘Gaussian mixture model and expectation-maximization algorithm’ and ‘time-series decomposition-recombination’ method will be used to supplement data to EnergyPlus. The feasibility results will be returned to stakeholders for iterative discussion, and the iterative results will be used to update digital references. Replication plans are developed based on such a cooperation process for strategies to implement PEDs. If a PED is demonstrated during the project period, the measured data will be used to verify the feasibility model to optimize previous results (WP7– R3 & R4). In the MAKING-CITY project, the overall PED design method is developed, which will be further optimised in this project. In addition, PED-ACT will use the methods and knowledge, including how to choose a suitable PED in a city, energy balance calculation, and technologies available for PED. The RUGGEDISED project outputs the governance model into the replication plan in PED-ACT. Its ‘smart city open-data decision platform’ will illustrate an excellent example for the database in PED-ACT. The IEA EBC Annex 83 and Cost Action 19126 create the basis for data collection, developing existing PED databases, characterization of PED, and review of regulations of PED, as well as development of simulation tools. The UBEM project further enables a detailed high-resolution energy balance calculation of PED.LundaMaTs methodology for traffic and city planning. LundaEko - Lund's programme for ecological sustainability. Municipally owned land is sold to property developers on environmental conditions.
    A2P003: Application of ISO52000
    A2P003: Application of ISO52000NoNoNoYesYesNo
    A2P004: Appliances included in the calculation of the energy balance
    A2P004: Appliances included in the calculation of the energy balanceNoNoYesYesYesYes
    A2P005: Mobility included in the calculation of the energy balance
    A2P005: Mobility included in the calculation of the energy balanceYesNoNoYesNoYes
    A2P006: Description of how mobility is included (or not included) in the calculation
    A2P006: Description of how mobility is included (or not included) in the calculationNot included. However, there is a charging place for a shared EV in one building.All energy demands are included in energy balance, either fuel demands or electrical demand of transport sector; Projection is made of future share of electric mobilty, rest is covered with synthetic fuels to achieve climate neutralityMobility is not included in the calculations.Today electrically charged vehicles are included in the energy balance. In the future also other fuels should be included.
    A2P007: Annual energy demand in buildings / Thermal demand
    A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]2.10.39135.7153.86225
    A2P008: Annual energy demand in buildings / Electric Demand
    A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.20.65531.761.22630
    A2P009: Annual energy demand for e-mobility
    A2P009: Annual energy demand for e-mobility [GWh/annum]0
    A2P010: Annual energy demand for urban infrastructure
    A2P010: Annual energy demand for urban infrastructure [GWh/annum]
    A2P011: Annual renewable electricity production on-site during target year
    A2P011: PVyesyesyesnonoyesyes
    A2P011: PV - specify production in GWh/annum [GWh/annum]0.10.421.028
    A2P011: Windnonononononoyes
    A2P011: Wind - specify production in GWh/annum [GWh/annum]
    A2P011: Hydrononononononono
    A2P011: Hydro - specify production in GWh/annum [GWh/annum]
    A2P011: Biomass_elnonononononono
    A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
    A2P011: Biomass_peat_elnonononononono
    A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
    A2P011: PVT_elnonononononono
    A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
    A2P011: Othernonononononono
    A2P011: Other - specify production in GWh/annum [GWh/annum]
    A2P012: Annual renewable thermal production on-site during target year
    A2P012: Geothermalyesnononononono
    A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
    A2P012: Solar Thermalnonononononono
    A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
    A2P012: Biomass_heatnonononononono
    A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
    A2P012: Waste heat+HPnoyesnonononoyes
    A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]2.2200
    A2P012: Biomass_peat_heatnonononononono
    A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
    A2P012: PVT_thnonononononono
    A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
    A2P012: Biomass_firewood_thnonononononono
    A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
    A2P012: Othernonononononono
    A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
    A2P013: Renewable resources on-site - Additional notes
    A2P013: Renewable resources on-site - Additional notesHeat is produced from DH return, refrigeration and exhaust air. The mentioned 2200 MWh/a includes HP el. consumption (about 1/6 of that)53 MW PV potential in all three quarters; no other internal renewable energy potentials known
    A2P014: Annual energy use
    A2P014: Annual energy use [GWh/annum]2.30.96132.55.088
    A2P015: Annual energy delivered
    A2P015: Annual energy delivered [GWh/annum]-2
    A2P016: Annual non-renewable electricity production on-site during target year
    A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]00
    A2P017: Annual non-renewable thermal production on-site during target year
    A2P017: Gasnononononoyesno
    A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P017: Coalnonononononono
    A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P017: Oilnonononononono
    A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P017: Othernonononononono
    A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P018: Annual renewable electricity imports from outside the boundary during target year
    A2P018: PVnoyesnononoyesyes
    A2P018 - PV: specify production in GWh/annum if available [GWh/annum]0.707
    A2P018: Windnoyesnonononoyes
    A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
    A2P018: Hydronoyesnonononoyes
    A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
    A2P018: Biomass_elnoyesnonononoyes
    A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: Biomass_peat_elnoyesnonononono
    A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: PVT_elnonononononono
    A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: Othernonononononono
    A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
    A2P019: Annual renewable thermal imports from outside the boundary during target year
    A2P019: Geothermalnonononononono
    A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Solar Thermalnonononononono
    A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_heatnoyesnonononono
    A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]0.7
    A2P019: Waste heat+HPnonononononono
    A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_peat_heatnonononononono
    A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
    A2P019: PVT_thnonononononono
    A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_firewood_thnonononononono
    A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Othernonononononono
    A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
    A2P020: Share of RES on-site / RES outside the boundary
    A2P020: Share of RES on-site / RES outside the boundary03.28571428571430001.45403111739750
    A2P021: GHG-balance calculated for the PED
    A2P021: GHG-balance calculated for the PED [tCO2/annum]0
    A2P022: KPIs related to the PED case study / PED Lab
    A2P022: Safety & Security
    A2P022: HealthEncouraging a healthy lifestyleindoor air quility (indoor CO2 concentration) - measured on the extract air of the mechanical ventilation system. Relative humidity to avoid mold.
    A2P022: Education
    A2P022: MobilityModal Split, Fuel mix in mobility, Energy use for transportation, Access to public transport, Public infrastructure promoting low-carbon mobility, Number of public EV charging stations, Energy delivered for EV chargingyesMaximum 1/3 transport with car
    A2P022: EnergyFinal energy consumption, Primary energy consumption, Energy imported to PED, Energy exported from PED, RES production, PED energy balance, Energy savings in the PED, GHG emissions, Reduction of emissions, Final energy consumption per capita, Primary energy consumption per capita, Primary energy sources (shares), Buildings connected to DH-network or renewable energy grid, GHG emissions per capita, System flexibility for energy players, RES storage usage, Peak load reductionSpace heating demand, thermal energy delivered by district heating, electricity of the heat pump, thermal losses of the pipes, and PV production.yesLocal energy production 150% of energy need
    A2P022: Water
    A2P022: Economic developmentTotal investments, Payback time, Economic value of savings
    A2P022: Housing and CommunityDevelopment of housing prices, Housing cost overburden rate, Citizen engagement/empowerment to climate conscious actions, Inhabitants in dense areas, Energy povertyyes50% rental apartments and 50% owner apartments
    A2P022: WasteRecycling rate
    A2P022: OtherSmart Cities strategies, Quality of open data
    A2P023: Technological Solutions / Innovations - Energy Generation
    A2P023: Photovoltaicsyesyesyesyesnoyesyes
    A2P023: Solar thermal collectorsnononoyesnonoyes
    A2P023: Wind Turbinesnonononononoyes
    A2P023: Geothermal energy systemnononoyesnonoyes
    A2P023: Waste heat recoverynoyesnoyesnonoyes
    A2P023: Waste to energynononoyesnonono
    A2P023: Polygenerationnonononononoyes
    A2P023: Co-generationnoyesnoyesnonono
    A2P023: Heat Pumpnoyesyesyesnoyesyes
    A2P023: Hydrogennononoyesnonoyes
    A2P023: Hydropower plantnononoyesnonono
    A2P023: Biomassnoyesnoyesnonono
    A2P023: Biogasnononoyesnonono
    A2P023: Other
    A2P024: Technological Solutions / Innovations - Energy Flexibility
    A2P024: A2P024: Information and Communication Technologies (ICT)yesyesnoyesnonoyes
    A2P024: Energy management systemnoyesnoyesnonoyes
    A2P024: Demand-side managementyesnonoyesnonoyes
    A2P024: Smart electricity gridyesnonoyesnonoyes
    A2P024: Thermal Storagenoyesyesyesnonoyes
    A2P024: Electric Storagenononoyesnonoyes
    A2P024: District Heating and Coolingnoyesyesyesnonoyes
    A2P024: Smart metering and demand-responsive control systemsyesnonoyesnonoyes
    A2P024: P2P – buildingsnonoyesyesnonono
    A2P024: Other
    A2P025: Technological Solutions / Innovations - Energy Efficiency
    A2P025: Deep Retrofittingnoyesnoyesnoyesno
    A2P025: Energy efficiency measures in historic buildingsnononoyesnonono
    A2P025: High-performance new buildingsnoyesyesnononoyes
    A2P025: Smart Public infrastructure (e.g. smart lighting)nonononononoyes
    A2P025: Urban data platformsnoyesnoyesnonoyes
    A2P025: Mobile applications for citizensnonononononono
    A2P025: Building services (HVAC & Lighting)noyesyesnonoyesyes
    A2P025: Smart irrigationnonononononono
    A2P025: Digital tracking for waste disposalnonononononoyes
    A2P025: Smart surveillancenonononononono
    A2P025: Other
    A2P026: Technological Solutions / Innovations - Mobility
    A2P026: Efficiency of vehicles (public and/or private)noyesnoyesnonono
    A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)noyesnoyesnonoyes
    A2P026: e-Mobilitynoyesnoyesnonoyes
    A2P026: Soft mobility infrastructures and last mile solutionsnoyesnoyesnonoyes
    A2P026: Car-free areanonononononoyes
    A2P026: Other
    A2P027: Mobility strategies - Additional notes
    A2P027: Mobility strategies - Additional notesWalkability
    A2P028: Energy efficiency certificates
    A2P028: Energy efficiency certificatesNoYesYesNoNoYes
    A2P028: If yes, please specify and/or enter notesThe obligatory buildijng energy classificationTwo buildings are certified "Passive House new build"Miljöbyggnad silver/guld
    A2P029: Any other building / district certificates
    A2P029: Any other building / district certificatesNoNoNoNoNoNo
    A2P029: If yes, please specify and/or enter notes
    A3P001: Relevant city /national strategy
    A3P001: Relevant city /national strategy
    • Promotion of energy communities (REC/CEC)
    • Smart cities strategies,
    • Urban Renewal Strategies,
    • Energy master planning (SECAP, etc.),
    • New development strategies,
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Smart cities strategies
    • Smart cities strategies
    • Energy master planning (SECAP, etc.),
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Climate change adaption plan/strategy (e.g. Climate City contract)
    A3P002: Quantitative targets included in the city / national strategy
    A3P002: Quantitative targets included in the city / national strategyCarbon neutrality by 2035Climate neutrality by 2035Karşıyaka Municipality is the first local government in Turkey to sign the Covenant of Mayors in 2011. During this period, the greenhouse gas inventory of the district was carried out three times and reduction targets were set for 2020 and 2030. In the 2021 Sustainable Energy and Climate Action Plan prepared as of the end of 2021, Karşıyaka Municipality has targeted a 40% reduction in its emissions for 2030 compared to the base year 2018. In the 2021 Sustainable Energy and Climate Action Plan, Karşıyaka Municipality aims to reduce its greenhouse gas emissions from 3.96 tCO2e / person in 2018 to 2.37 tCO2e / person in 2030. System solutions such as the use of renewable energy sources, air, ground or water source heat pump, cogeneration and microcogeneration are analysed by designers in order to fully or partially meet the energy requirements for heating, cooling, ventilation, hot water, electricity and lighting for all buildings with a floor area of less than 20,000 square metres. If at least 50% of the building's total energy consumption costs are covered by one or more of these applications, the points are taken in the assessment table in the Building and housing estate business certification guide of 2023.City strategy: Net climate neutrality 2030
    A3P003: Strategies towards decarbonization of the gas grid
    A3P003: Strategies towards decarbonization of the gas grid
    • Electrification of Heating System based on Heat Pumps,
    • Other
    • Electrification of Heating System based on Heat Pumps,
    • Biogas,
    • Hydrogen
    • Electrification of Heating System based on Heat Pumps
    A3P003: OtherDistrict heating based mainly on heat pumps and renewable sourcesNo gas grid in Brunnshög
    A3P004: Identification of needs and priorities
    A3P004: Identification of needs and prioritiesDeveloping and demonstrating solutions for carbon neutralityThe priority was to eliminate the CO2 emissions by optimizing the building envelope and the heating systems.Freiburg has ambitious goals and wants to achieve climate neutrality until 2035, the PED concept could help to develop suitable strategies on district levelAccording to the model developed for the district, the electrification of heating and cooling is necessary.Therefore, there needs to be the implementation of a heat pump. The building-integrated photovoltaic panelsshould follow. Through net-metering practices, the district is expected to reach energy positivity throughthis scenario.Local waste heat is utlized to a very large extent. More local electricity production is needed. Need to minimise the use of private cars.
    A3P005: Sustainable behaviour
    A3P005: Sustainable behaviourE. g. visualizing energy and water consumptionEnergy efficiency by renovation measures for buildings and measures for saving electricity; electrification by installation of heat pumps and photovoltaics and switching to electric cars, additional measures not directly related to PED like sustainable diet and sharing economyNeed to minimise the use of private cars. Need to provide efficient methods for sorce separated waste collection.
    A3P006: Economic strategies
    A3P006: Economic strategies
    • Local trading
    • Open data business models,
    • Innovative business models,
    • PPP models,
    • Life Cycle Cost,
    • Circular economy models
    • Demand management Living Lab,
    • Local trading,
    • Existing incentives
    • PPP models,
    • Other
    A3P006: OtherAttractivenes
    A3P007: Social models
    A3P007: Social models
    • Behavioural Change / End-users engagement,
    • Citizen/owner involvement in planning and maintenance
    • Co-creation / Citizen engagement strategies,
    • Behavioural Change / End-users engagement,
    • Citizen Social Research,
    • Policy Forums,
    • Quality of Life,
    • Strategies towards social mix,
    • Affordability,
    • Prevention of energy poverty,
    • Citizen/owner involvement in planning and maintenance,
    • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
    • Co-creation / Citizen engagement strategies,
    • Social incentives,
    • Affordability,
    • Prevention of energy poverty,
    • Citizen/owner involvement in planning and maintenance
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Behavioural Change / End-users engagement,
    • Citizen/owner involvement in planning and maintenance,
    • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Affordability
    • Co-creation / Citizen engagement strategies,
    • Behavioural Change / End-users engagement,
    • Quality of Life,
    • Strategies towards social mix
    A3P007: Other
    A3P008: Integrated urban strategies
    A3P008: Integrated urban strategies
    • Strategic urban planning
    • Strategic urban planning,
    • District Energy plans,
    • City Vision 2050,
    • SECAP Updates
    • Strategic urban planning,
    • Digital twinning and visual 3D models,
    • District Energy plans
    • Digital twinning and visual 3D models,
    • District Energy plans,
    • SECAP Updates
    • Strategic urban planning,
    • Digital twinning and visual 3D models,
    • City Vision 2050,
    • SECAP Updates
    A3P008: Other
    A3P009: Environmental strategies
    A3P009: Environmental strategies
    • Energy Neutral,
    • Carbon-free
    • Energy Neutral,
    • Net zero carbon footprint
    • Energy Neutral,
    • Low Emission Zone
    • Energy Neutral,
    • Low Emission Zone,
    • Pollutants Reduction
    • Net zero carbon footprint,
    • Greening strategies,
    • Sustainable Urban drainage systems (SUDS),
    • Nature Based Solutions (NBS)
    A3P009: Other
    A3P010: Legal / Regulatory aspects
    A3P010: Legal / Regulatory aspectsThe municipality cannot demand a specific energy solution to private property owners. It has to be voluntary and market based solutions.
    B1P001: PED/PED relevant concept definition
    B1P001: PED/PED relevant concept definitionThe original idea is that the area produces at least as much it consumes.Extremely low building energy demand, the electric energy of the heat pump used for space heating is significantly lower compared to thermal energy for the domestic hot water preparation.Assessment methods for this ped (and for germany) is defined in this project at the moment and will be tested at that case studyThe pilot area was selected on the basis of several criteria: its location within areas prioritised by Karşıyaka Municipality for combating climate change, compliance with the building regulations set out in the Green Building-Site-Operation (2023) guide, which are in line with Municipality's energy policy, the presence of open spaces that allow various applications for renewable energy, proximity to public facilities such as schools and municipal services, the availability of data on energy consumption (e.g. electricity and natural gas bills) and architectural features, the potential for community building, the suitability for solar energy systems, considering orientation and roof structure, and the potential for future building renovations. The aim of the initiative is to explore the feasibility of transforming the district into a Positive Energy District (PED).Vision: The city as a power plant. The ultimate goal is that more energy is produced within the distric boundaries than is being used (heating, electricity & mobility). Energy efficient buildings, efficient mobility, reuse of residual heat and solar electricity are the main methods.
    B1P002: Motivation behind PED/PED relevant project development
    B1P002: Motivation behind PED/PED relevant project developmentDeveloping systems towards carbon neutrality. Also urban renewal.Since it is an urban area, with high building and apartment density, the need for CO2 reduction is quite relevant and thus, in new built, the minimization of CO2 emissions is crucial.City is interested in transforming the quarter, as many buildings are old, have private owner structures and have decentralised heating systems. As the city wants to become climate neutral by 2035 action is needed now. In the research project PED urban the idea is to focus on the future energy system of the quarter and use it as a case study to develop a common assessment method for PEDs in alignment with european efforts in that regardThe aim is to build a sustainable city with minimal climate impact and maximum quality of life. PED is an important step to acheive the aims of a very ambitious city development.
    B1P003: Environment of the case study area
    B2P003: Environment of the case study areaSuburban areaSuburban areaUrban areaSuburban areaUrban areaUrban area
    B1P004: Type of district
    B2P004: Type of district
    • New construction
    • New construction,
    • Renovation
    • New construction
    • Renovation
    • Renovation
    • New construction
    B1P005: Case Study Context
    B1P005: Case Study Context
    • New Development
    • New Development,
    • Retrofitting Area
    • Re-use / Transformation Area,
    • New Development
    • Retrofitting Area
    • Retrofitting Area
    • New Development
    B1P006: Year of construction
    B1P006: Year of construction20222005
    B1P007: District population before intervention - Residential
    B1P007: District population before intervention - Residential350058980
    B1P008: District population after intervention - Residential
    B1P008: District population after intervention - Residential3500780589818000
    B1P009: District population before intervention - Non-residential
    B1P009: District population before intervention - Non-residential2000
    B1P010: District population after intervention - Non-residential
    B1P010: District population after intervention - Non-residential22000
    B1P011: Population density before intervention
    B1P011: Population density before intervention0000000
    B1P012: Population density after intervention
    B1P012: Population density after intervention00.0583333333333330.0687164126508680.0011987804878049000.026666666666667
    B1P013: Building and Land Use before intervention
    B1P013: Residentialnoyesnoyesnoyesno
    B1P013 - Residential: Specify the sqm [m²]102795
    B1P013: Officenononoyesnonoyes
    B1P013 - Office: Specify the sqm [m²]60000
    B1P013: Industry and Utilitynononoyesnonono
    B1P013 - Industry and Utility: Specify the sqm [m²]
    B1P013: Commercialnoyesnoyesnonono
    B1P013 - Commercial: Specify the sqm [m²]
    B1P013: Institutionalnononoyesnonono
    B1P013 - Institutional: Specify the sqm [m²]
    B1P013: Natural areasyesyesnoyesnonoyes
    B1P013 - Natural areas: Specify the sqm [m²]2000000
    B1P013: Recreationalnoyesnoyesnonono
    B1P013 - Recreational: Specify the sqm [m²]
    B1P013: Dismissed areasnonononononono
    B1P013 - Dismissed areas: Specify the sqm [m²]
    B1P013: Othernonononononoyes
    B1P013 - Other: Specify the sqm [m²]Outdoor parking: 100000
    B1P014: Building and Land Use after intervention
    B1P014: Residentialnoyesyesyesnoyesyes
    B1P014 - Residential: Specify the sqm [m²]102795600000
    B1P014: Officenononoyesnonoyes
    B1P014 - Office: Specify the sqm [m²]650000
    B1P014: Industry and Utilitynononoyesnonono
    B1P014 - Industry and Utility: Specify the sqm [m²]
    B1P014: Commercialnoyesyesyesnonono
    B1P014 - Commercial: Specify the sqm [m²]
    B1P014: Institutionalnonoyesyesnonoyes
    B1P014 - Institutional: Specify the sqm [m²]50000
    B1P014: Natural areasnoyesnoyesnonono
    B1P014 - Natural areas: Specify the sqm [m²]
    B1P014: Recreationalnoyesyesyesnonoyes
    B1P014 - Recreational: Specify the sqm [m²]400000
    B1P014: Dismissed areasnonononononono
    B1P014 - Dismissed areas: Specify the sqm [m²]
    B1P014: Othernonononononono
    B1P014 - Other: Specify the sqm [m²]
    B2P001: PED Lab concept definition
    B2P001: PED Lab concept definition
    B2P002: Installation life time
    B2P002: Installation life time
    B2P003: Scale of action
    B2P003: Scale
    B2P004: Operator of the installation
    B2P004: Operator of the installation
    B2P005: Replication framework: Applied strategy to reuse and recycling the materials
    B2P005: Replication framework: Applied strategy to reuse and recycling the materials
    B2P006: Circular Economy Approach
    B2P006: Do you apply any strategy to reuse and recycling the materials?
    B2P006: Other
    B2P007: Motivation for developing the PED Lab
    B2P007: Motivation for developing the PED Lab
    B2P007: Other
    B2P008: Lead partner that manages the PED Lab
    B2P008: Lead partner that manages the PED Lab
    B2P008: Other
    B2P009: Collaborative partners that participate in the PED Lab
    B2P009: Collaborative partners that participate in the PED Lab
    B2P009: Other
    B2P010: Synergies between the fields of activities
    B2P010: Synergies between the fields of activities
    B2P011: Available facilities to test urban configurations in PED Lab
    B2P011: Available facilities to test urban configurations in PED Lab
    B2P011: Other
    B2P012: Incubation capacities of PED Lab
    B2P012: Incubation capacities of PED Lab
    B2P013: Availability of the facilities for external people
    B2P013: Availability of the facilities for external people
    B2P014: Monitoring measures
    B2P014: Monitoring measures
    B2P015: Key Performance indicators
    B2P015: Key Performance indicators
    B2P016: Execution of operations
    B2P016: Execution of operations
    B2P017: Capacities
    B2P017: Capacities
    B2P018: Relations with stakeholders
    B2P018: Relations with stakeholders
    B2P019: Available tools
    B2P019: Available tools
    B2P019: Available tools
    B2P020: External accessibility
    B2P020: External accessibility
    C1P001: Unlocking Factors
    C1P001: Recent technological improvements for on-site RES production3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important5 - Very important
    C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock1 - Unimportant2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant4 - Important5 - Very important
    C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
    C1P001: Storage systems and E-mobility market penetration5 - Very important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P001: Decreasing costs of innovative materials1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important4 - Important
    C1P001: Financial mechanisms to reduce costs and maximize benefits3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important3 - Moderately important
    C1P001: The ability to predict Multiple Benefits2 - Slightly important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important2 - Slightly important
    C1P001: The ability to predict the distribution of benefits and impacts4 - Important2 - Slightly important3 - Moderately important2 - Slightly important1 - Unimportant4 - Important3 - Moderately important
    C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)4 - Important3 - Moderately important2 - Slightly important4 - Important1 - Unimportant2 - Slightly important4 - Important
    C1P001: Social acceptance (top-down)4 - Important5 - Very important4 - Important4 - Important1 - Unimportant5 - Very important3 - Moderately important
    C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)4 - Important2 - Slightly important3 - Moderately important4 - Important1 - Unimportant5 - Very important5 - Very important
    C1P001: Presence of integrated urban strategies and plans5 - Very important4 - Important4 - Important4 - Important1 - Unimportant5 - Very important3 - Moderately important
    C1P001: Multidisciplinary approaches available for systemic integration4 - Important4 - Important4 - Important4 - Important1 - Unimportant4 - Important5 - Very important
    C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects1 - Unimportant3 - Moderately important4 - Important3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important
    C1P001: Availability of RES on site (Local RES)5 - Very important4 - Important3 - Moderately important4 - Important1 - Unimportant5 - Very important5 - Very important
    C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders3 - Moderately important4 - Important3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important2 - Slightly important
    C1P001: Any other UNLOCKING FACTORS1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P001: Any other UNLOCKING FACTORS (if any)
    C1P002: Driving Factors
    C1P002: Climate Change adaptation need3 - Moderately important1 - Unimportant5 - Very important4 - Important1 - Unimportant5 - Very important5 - Very important
    C1P002: Climate Change mitigation need (local RES production and efficiency)3 - Moderately important5 - Very important4 - Important4 - Important1 - Unimportant5 - Very important5 - Very important
    C1P002: Rapid urbanization trend and need of urban expansions2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
    C1P002: Urban re-development of existing built environment1 - Unimportant5 - Very important3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important
    C1P002: Economic growth need1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important
    C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important5 - Very important
    C1P002: Territorial and market attractiveness1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant5 - Very important5 - Very important
    C1P002: Energy autonomy/independence2 - Slightly important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant
    C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P002: Any other DRIVING FACTOR (if any)
    C1P003: Administrative barriers
    C1P003: Difficulty in the coordination of high number of partners and authorities1 - Unimportant2 - Slightly important2 - Slightly important4 - Important1 - Unimportant4 - Important5 - Very important
    C1P003: Lack of good cooperation and acceptance among partners1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important
    C1P003: Lack of public participation1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important2 - Slightly important
    C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important3 - Moderately important
    C1P003:Long and complex procedures for authorization of project activities1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important4 - Important
    C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
    C1P003: Complicated and non-comprehensive public procurement1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important3 - Moderately important
    C1P003: Fragmented and or complex ownership structure1 - Unimportant2 - Slightly important1 - Unimportant4 - Important1 - Unimportant5 - Very important2 - Slightly important
    C1P003: City administration & cross-sectoral attitude/approaches (silos)1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important5 - Very important
    C1P003: Lack of internal capacities to support energy transition1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant
    C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P003: Any other Administrative BARRIER (if any)
    C1P004: Policy barriers
    C1P004: Lack of long-term and consistent energy plans and policies4 - Important2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important5 - Very important
    C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important5 - Very important
    C1P004: Lack of Cooperation & support between national-regional-local entities1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important2 - Slightly important
    C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P004: Any other Political BARRIER (if any)
    C1P005: Legal and Regulatory barriers
    C1P005: Inadequate regulations for new technologies1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant5 - Very important5 - Very important
    C1P005: Regulatory instability1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important5 - Very important
    C1P005: Non-effective regulations1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important
    C1P005: Unfavorable local regulations for innovative technologies1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant5 - Very important3 - Moderately important
    C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important
    C1P005: Insufficient or insecure financial incentives3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important5 - Very important
    C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation1 - Unimportant4 - Important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
    C1P005: Shortage of proven and tested solutions and examples1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important4 - Important
    C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P005: Any other Legal and Regulatory BARRIER (if any)
    C1P006: Environmental barriers
    C1P006: Environmental barriersUrban area very high buildings (and apartment) density and thus, less available space for renewable sources.- Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Air and Water Pollution: 2 - Natural Disasters: 1 - Water Scarcity: 1?
    C1P007: Technical barriers
    C1P007: Lack of skilled and trained personnel1 - Unimportant2 - Slightly important2 - Slightly important4 - Important1 - Unimportant5 - Very important5 - Very important
    C1P007: Deficient planning3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important3 - Moderately important
    C1P007: Retrofitting work in dwellings in occupied state1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant
    C1P007: Lack of well-defined process1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important4 - Important
    C1P007: Inaccuracy in energy modelling and simulation5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important2 - Slightly important
    C1P007: Lack/cost of computational scalability1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
    C1P007: Grid congestion, grid instability1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important4 - Important
    C1P007: Negative effects of project intervention on the natural environment1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
    C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant
    C1P007: Difficult definition of system boundaries1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant4 - Important2 - Slightly important
    C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Any other Thecnical BARRIER (if any)
    C1P008: Social and Cultural barriers
    C1P008: Inertia1 - Unimportant2 - Slightly important1 - Unimportant4 - Important1 - Unimportant5 - Very important3 - Moderately important
    C1P008: Lack of values and interest in energy optimization measurements1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important4 - Important
    C1P008: Low acceptance of new projects and technologies1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important2 - Slightly important
    C1P008: Difficulty of finding and engaging relevant actors4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important5 - Very important
    C1P008: Lack of trust beyond social network1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important
    C1P008: Rebound effect1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant
    C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
    C1P008: Exclusion of socially disadvantaged groups1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
    C1P008: Non-energy issues are more important and urgent for actors1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important3 - Moderately important
    C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
    C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P008: Any other Social BARRIER (if any)
    C1P009: Information and Awareness barriers
    C1P009: Insufficient information on the part of potential users and consumers5 - Very important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important4 - Important
    C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important4 - Important
    C1P009: Lack of awareness among authorities3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant4 - Important3 - Moderately important
    C1P009: Information asymmetry causing power asymmetry of established actors2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important2 - Slightly important
    C1P009: High costs of design, material, construction, and installation1 - Unimportant3 - Moderately important5 - Very important4 - Important1 - Unimportant5 - Very important5 - Very important
    C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P009: Any other Information and Awareness BARRIER (if any)
    C1P010: Financial barriers
    C1P010: Hidden costs1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant4 - Important3 - Moderately important
    C1P010: Insufficient external financial support and funding for project activities1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important
    C1P010: Economic crisis1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant5 - Very important5 - Very important
    C1P010: Risk and uncertainty2 - Slightly important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important5 - Very important
    C1P010: Lack of consolidated and tested business models4 - Important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important4 - Important
    C1P010: Limited access to capital and cost disincentives1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important5 - Very important
    C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P010: Any other Financial BARRIER (if any)
    C1P011: Market barriers
    C1P011: Split incentives1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important3 - Moderately important
    C1P011: Energy price distortion1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important
    C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important
    C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P011: Any other Market BARRIER (if any)
    C1P012: Stakeholders involved
    C1P012: Government/Public Authorities
    • Design/demand aggregation
    • Planning/leading,
    • Design/demand aggregation,
    • Monitoring/operation/management
    • Planning/leading
    • Planning/leading
    • Planning/leading,
    • Monitoring/operation/management
    C1P012: Research & Innovation
    • Planning/leading,
    • Design/demand aggregation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Monitoring/operation/management
    • Construction/implementation,
    • Monitoring/operation/management
    • Design/demand aggregation
    C1P012: Financial/Funding
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Construction/implementation
    • None
    • Construction/implementation
    C1P012: Analyst, ICT and Big Data
    • Monitoring/operation/management
    • Monitoring/operation/management
    • Monitoring/operation/management
    • None
    • Monitoring/operation/management
    C1P012: Business process management
    • Design/demand aggregation
    • Planning/leading,
    • Monitoring/operation/management
    • None
    • Design/demand aggregation,
    • Construction/implementation
    C1P012: Urban Services providers
    • Design/demand aggregation
    • Planning/leading
    • Construction/implementation
    • None
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    C1P012: Real Estate developers
    • Construction/implementation
    • Design/demand aggregation,
    • Construction/implementation
    • Planning/leading
    • None
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    C1P012: Design/Construction companies
    • Design/demand aggregation
    • Design/demand aggregation
    • Design/demand aggregation,
    • Construction/implementation
    • Construction/implementation
    • Design/demand aggregation,
    • Construction/implementation
    C1P012: End‐users/Occupants/Energy Citizens
    • Monitoring/operation/management
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation
    • Planning/leading,
    • Construction/implementation,
    • Monitoring/operation/management
    • Monitoring/operation/management
    C1P012: Social/Civil Society/NGOs
    • Design/demand aggregation
    • Monitoring/operation/management
    • Planning/leading
    • Construction/implementation,
    • Monitoring/operation/management
    • None
    C1P012: Industry/SME/eCommerce
    • Construction/implementation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • None
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    C1P012: Other
    C1P012: Other (if any)
    Summary

    Authors (framework concept)

    Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

    Contributors (to the content)

    Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

    Implemented by

    Boutik.pt: Filipe Martins, Jamal Khan
    Marek Suchánek (Czech Technical University in Prague)