Filters:
NameProjectTypeCompare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Compare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Compare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Compare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Uncompare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
Lecce, SmartEnCity SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
Firenze, Novoli-Cascine district on “le PIagge” buildings PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Uncompare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Uncompare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Uncompare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Uncompare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleGroningen, PED North
Torres Vedras, Encosta de São Vicente
Roubaix, MustBe0 - Résidence Philippe le Hardi – 125 Rue d’Oran
Freiburg, Waldsee
Borlänge, Rymdgatan’s Residential Portfolio
Amsterdam, Buiksloterham PED
Izmir, District of Karşıyaka
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabGroningen, PED NorthTorres Vedras, Encosta de São VicenteRoubaix, MustBe0 - Résidence Philippe le Hardi – 125 Rue d’OranFreiburg, WaldseeBorlänge, Rymdgatan’s Residential PortfolioAmsterdam, Buiksloterham PEDIzmir, District of Karşıyaka
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynononoyesnoyesyes
PED relevant case studynonoyesnoyesnono
PED Lab.yesyesnonononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesyesyesyesyes
Annual energy surplusyesnoyesnoyesyesyes
Energy communityyesyesnoyesyesyesno
Circularityyesnonononoyesno
Air quality and urban comfortnonoyesnononoyes
Electrificationnononoyesyesyesno
Net-zero energy costnonononononoyes
Net-zero emissionyesnonoyesnoyesno
Self-sufficiency (energy autonomous)nonononononono
Maximise self-sufficiencynonononoyesnoyes
Othernoyesnonononono
Other (A1P004)Urban regeneration: Repair and retrofitting houses, greening public space, building and maintaining walking and cycling paths and access to public transport.
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabImplementation PhaseImplementation PhaseCompletedPlanning PhasePlanning PhaseImplementation PhasePlanning Phase
A1P006: Start Date
A1P006: Start date12/1804/1801/2211/2111/1910/22
A1P007: End Date
A1P007: End date12/2312/3301/2411/2410/2510/25
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
  • Monitoring data available within the districts,
  • General statistical datasets,
  • GIS open datasets
  • Open data city platform – different dashboards
  • Monitoring data available within the districts
  • Monitoring data available within the districts
A1P009: Otherhttps://smartcity-atelier.eu/about/lighthouse-cities/amsterdam/Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • TNO, Hanze, RUG,
  • Ped noord book
      • Data from the local energy provider available (restricted usage for some data points because of data security reasons,
      • renewable energy potential,
      • own calculations based on publicly available data,
      • Some data can be found in https://geoportal.freiburg.de/freigis/
          A1P011: Geographic coordinates
          X Coordinate (longitude):6.535121-9.2632249023890593.16517.88585713584291715.3944954.904127.110049
          Y Coordinate (latitude):53.23484639.1026173326919550.693747.98653520708004560.48660952.367638.496054
          A1P012: Country
          A1P012: CountryNetherlandsPortugalFranceGermanySwedenNetherlandsTurkey
          A1P013: City
          A1P013: CityGroningenTorres VedrasRoubaixFreiburg im BreisgauBorlängeAmsterdamİzmir
          A1P014: Climate Zone (Köppen Geiger classification)
          A1P014: Climate Zone (Köppen Geiger classification).CfaCfaCfbCfbDsbCfbCsa
          A1P015: District boundary
          A1P015: District boundaryFunctionalGeographicOtherVirtualGeographicFunctionalGeographic
          OtherPEB
          A1P016: Ownership of the case study/PED Lab
          A1P016: Ownership of the case study/PED Lab:MixedMixedPrivateMixedMixedMixedPrivate
          A1P017: Ownership of the land / physical infrastructure
          A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersSingle OwnerMultiple OwnersSingle OwnerMultiple OwnersMultiple Owners
          A1P018: Number of buildings in PED
          A1P018: Number of buildings in PED712941106021
          A1P019: Conditioned space
          A1P019: Conditioned space [m²]1.011442284070370028500102795
          A1P020: Total ground area
          A1P020: Total ground area [m²]17.13219000025004920000994532600
          A1P021: Floor area ratio: Conditioned space / total ground area
          A1P021: Floor area ratio: Conditioned space / total ground area0010003
          A1P022: Financial schemes
          A1P022a: Financing - PRIVATE - Real estateyesnoyesnonoyesno
          A1P022a: Add the value in EUR if available [EUR]0
          A1P022b: Financing - PRIVATE - ESCO schemenonononononono
          A1P022b: Add the value in EUR if available [EUR]
          A1P022c: Financing - PRIVATE - Otheryesnononononono
          A1P022c: Add the value in EUR if available [EUR]
          A1P022d: Financing - PUBLIC - EU structural fundingnoyesnonononono
          A1P022d: Add the value in EUR if available [EUR]5500000
          A1P022e: Financing - PUBLIC - National fundingyesnononononono
          A1P022e: Add the value in EUR if available [EUR]
          A1P022f: Financing - PUBLIC - Regional fundingnonoyesnononono
          A1P022f: Add the value in EUR if available [EUR]
          A1P022g: Financing - PUBLIC - Municipal fundingyesnoyesyesnonono
          A1P022g: Add the value in EUR if available [EUR]
          A1P022h: Financing - PUBLIC - Othernonononononono
          A1P022h: Add the value in EUR if available [EUR]
          A1P022i: Financing - RESEARCH FUNDING - EUyesyesyesyesnoyesyes
          A1P022i: Add the value in EUR if available [EUR]1246801193355
          A1P022j: Financing - RESEARCH FUNDING - Nationalnononoyesnonoyes
          A1P022j: Add the value in EUR if available [EUR]
          A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononono
          A1P022k: Add the value in EUR if available [EUR]
          A1P022l: Financing - RESEARCH FUNDING - Othernonononononono
          A1P022l: Add the value in EUR if available [EUR]
          A1P022: OtherRetrofitted through various subsidies
          A1P023: Economic Targets
          A1P023: Economic Targets
          • Boosting local businesses,
          • Boosting local and sustainable production
          • Positive externalities,
          • Boosting local businesses,
          • Boosting consumption of local and sustainable products
          • Boosting local businesses,
          • Boosting local and sustainable production,
          • Boosting consumption of local and sustainable products
          • Positive externalities,
          • Boosting local and sustainable production
          A1P023: Other
          A1P024: More comments:
          A1P024: More comments:The building comprises 32 homes. The refurbishment complies with EnergieSprong specifications. This implies a performance of E=0 over 25 years.
          A1P025: Estimated PED case study / PED LAB costs
          A1P025: Estimated PED case study / PED LAB costs [mil. EUR]5.623.6
          Contact person for general enquiries
          A1P026: NameJasper Tonen, Elisabeth KoopsMinh Thu NguyenJulien HolgardDr. Annette SteingrubeJingchun ShenOmar ShafqatOzlem Senyol
          A1P027: OrganizationMunicipality of GroningenISCTE-IULVilogiaFraunhofer Institute for solar energy systemsHögskolan DalarnaAmsterdam University of Applied SciencesKarsiyaka Municipality
          A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityOtherResearch Center / UniversityResearch Center / UniversityResearch Center / UniversityMunicipality / Public Bodies
          A1P028: OtherSocial Housing Company
          A1P029: EmailJasper.tonen@groningen.nlMtnnu@iscte-iul.ptjulien.holgard@vilogia.frAnnette.Steingrube@ise.fraunhofer.dejih@du.seo.shafqat@hva.nlozlemkocaer2@gmail.com
          Contact person for other special topics
          A1P030: NameJulien HolgardXingxing ZhangOmar ShafqatHasan Burak Cavka
          A1P031: Emailjulien.holgard@vilogia.frxza@du.seo.shafqat@hva.nlhasancavka@iyte.edu.tr
          Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYes
          A2P001: Fields of application
          A2P001: Fields of application
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Urban comfort (pollution, heat island, noise level etc.),
          • Waste management
          • Energy efficiency,
          • Energy production,
          • Urban comfort (pollution, heat island, noise level etc.),
          • Indoor air quality,
          • Construction materials
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Waste management
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Construction materials
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies,
          • Water use,
          • Waste management,
          • Construction materials
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • Urban comfort (pollution, heat island, noise level etc.)
          A2P001: Other
          A2P002: Tools/strategies/methods applied for each of the above-selected fields
          A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streamsEnergy system modelingLoad calculation and system optimisation: City Energy Analyst Identification of stranded assets for asset owners and investors to understand the carbon risks: CRREMCity vision, Innovation AteliersMethods involve studying the feasibility of digital PED references for the case cities about their energy, environmental, and economic performance by EnergyPlus tool. In case of insufficient energy data and the need of high resolution data, ‘Gaussian mixture model and expectation-maximization algorithm’ and ‘time-series decomposition-recombination’ method will be used to supplement data to EnergyPlus. The feasibility results will be returned to stakeholders for iterative discussion, and the iterative results will be used to update digital references. Replication plans are developed based on such a cooperation process for strategies to implement PEDs. If a PED is demonstrated during the project period, the measured data will be used to verify the feasibility model to optimize previous results (WP7– R3 & R4). In the MAKING-CITY project, the overall PED design method is developed, which will be further optimised in this project. In addition, PED-ACT will use the methods and knowledge, including how to choose a suitable PED in a city, energy balance calculation, and technologies available for PED. The RUGGEDISED project outputs the governance model into the replication plan in PED-ACT. Its ‘smart city open-data decision platform’ will illustrate an excellent example for the database in PED-ACT. The IEA EBC Annex 83 and Cost Action 19126 create the basis for data collection, developing existing PED databases, characterization of PED, and review of regulations of PED, as well as development of simulation tools. The UBEM project further enables a detailed high-resolution energy balance calculation of PED.
          A2P003: Application of ISO52000
          A2P003: Application of ISO52000NoNoYesNoYesYes
          A2P004: Appliances included in the calculation of the energy balance
          A2P004: Appliances included in the calculation of the energy balanceNoYesYesYesNoYes
          A2P005: Mobility included in the calculation of the energy balance
          A2P005: Mobility included in the calculation of the energy balanceNoNoYesNoNoNo
          A2P006: Description of how mobility is included (or not included) in the calculation
          A2P006: Description of how mobility is included (or not included) in the calculationMobility, till now, is not included in the energy model.All energy demands are included in energy balance, either fuel demands or electrical demand of transport sector; Projection is made of future share of electric mobilty, rest is covered with synthetic fuels to achieve climate neutralityMobility is not included in the calculations.
          A2P007: Annual energy demand in buildings / Thermal demand
          A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]2.3135.7150.67773.862
          A2P008: Annual energy demand in buildings / Electric Demand
          A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.3331.760.036561.226
          A2P009: Annual energy demand for e-mobility
          A2P009: Annual energy demand for e-mobility [GWh/annum]0
          A2P010: Annual energy demand for urban infrastructure
          A2P010: Annual energy demand for urban infrastructure [GWh/annum]0
          A2P011: Annual renewable electricity production on-site during target year
          A2P011: PVnonoyesnonoyesyes
          A2P011: PV - specify production in GWh/annum [GWh/annum]1.028
          A2P011: Windnonononononono
          A2P011: Wind - specify production in GWh/annum [GWh/annum]
          A2P011: Hydrononononononono
          A2P011: Hydro - specify production in GWh/annum [GWh/annum]
          A2P011: Biomass_elnononononoyesno
          A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
          A2P011: Biomass_peat_elnonononononono
          A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
          A2P011: PVT_elnonononoyesnono
          A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.01818
          A2P011: Othernonononononono
          A2P011: Other - specify production in GWh/annum [GWh/annum]
          A2P012: Annual renewable thermal production on-site during target year
          A2P012: Geothermalyesnonononoyesno
          A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
          A2P012: Solar Thermalyesnononononono
          A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_heatyesnonononoyesno
          A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.1
          A2P012: Waste heat+HPyesnonononoyesno
          A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_peat_heatnonononononono
          A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
          A2P012: PVT_thyesnononoyesnono
          A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]0.0825
          A2P012: Biomass_firewood_thnonononononono
          A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
          A2P012: Othernonononononono
          A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
          A2P013: Renewable resources on-site - Additional notes
          A2P013: Renewable resources on-site - Additional notesGeothermal heatpump systems, Waste heat from data centers53 MW PV potential in all three quarters; no other internal renewable energy potentials known
          A2P014: Annual energy use
          A2P014: Annual energy use [GWh/annum]0.084132.50.3185.088
          A2P015: Annual energy delivered
          A2P015: Annual energy delivered [GWh/annum]0.110.2055
          A2P016: Annual non-renewable electricity production on-site during target year
          A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]00
          A2P017: Annual non-renewable thermal production on-site during target year
          A2P017: Gasnononononoyesyes
          A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Coalnononononoyesno
          A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Oilnononononoyesno
          A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Othernonononoyesnono
          A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]0
          A2P018: Annual renewable electricity imports from outside the boundary during target year
          A2P018: PVnononononoyesyes
          A2P018 - PV: specify production in GWh/annum if available [GWh/annum]0.707
          A2P018: Windnononononoyesno
          A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
          A2P018: Hydronononononoyesno
          A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_elnononononoyesno
          A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_peat_elnononononoyesno
          A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: PVT_elnononononoyesno
          A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Othernonononoyesnono
          A2P018 - Other: specify production in GWh/annum if available [GWh/annum]0.187
          A2P019: Annual renewable thermal imports from outside the boundary during target year
          A2P019: Geothermalnononononoyesno
          A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Solar Thermalnononononoyesno
          A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_heatnononononoyesno
          A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Waste heat+HPnononononoyesno
          A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_peat_heatnononononoyesno
          A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
          A2P019: PVT_thnononononoyesno
          A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_firewood_thnononononoyesno
          A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Othernonononoyesnono
          A2P019 Other: Please specify imports in GWh/annum [GWh/annum]0
          A2P020: Share of RES on-site / RES outside the boundary
          A2P020: Share of RES on-site / RES outside the boundary00000.5383957219251301.4540311173975
          A2P021: GHG-balance calculated for the PED
          A2P021: GHG-balance calculated for the PED [tCO2/annum]6.93250
          A2P022: KPIs related to the PED case study / PED Lab
          A2P022: Safety & Securitynone
          A2P022: Healththermal comfort diagram
          A2P022: Educationnone
          A2P022: Mobilityyesnone
          A2P022: Energyyesnormalized CO2/GHG & Energy intensity
          A2P022: Water
          A2P022: Economic developmentcost of excess emissions
          A2P022: Housing and Communityyes
          A2P022: Waste
          A2P022: Other
          A2P023: Technological Solutions / Innovations - Energy Generation
          A2P023: Photovoltaicsyesnoyesyesyesyesyes
          A2P023: Solar thermal collectorsyesnonoyesyesnono
          A2P023: Wind Turbinesnonononononono
          A2P023: Geothermal energy systemyesnonoyesyesyesno
          A2P023: Waste heat recoveryyesnonoyesyesyesno
          A2P023: Waste to energyyesnonoyesnoyesno
          A2P023: Polygenerationnonononononono
          A2P023: Co-generationnononoyesnonono
          A2P023: Heat Pumpyesnonoyesyesyesyes
          A2P023: Hydrogennononoyesnonono
          A2P023: Hydropower plantnononoyesnonono
          A2P023: Biomassnononoyesnoyesno
          A2P023: Biogasnononoyesnoyesno
          A2P023: Other
          A2P024: Technological Solutions / Innovations - Energy Flexibility
          A2P024: A2P024: Information and Communication Technologies (ICT)yesnonoyesyesyesno
          A2P024: Energy management systemyesnonoyesnoyesno
          A2P024: Demand-side managementyesnonoyesnoyesno
          A2P024: Smart electricity gridnononoyesnoyesno
          A2P024: Thermal Storageyesnonoyesyesyesno
          A2P024: Electric Storageyesnonoyesnoyesno
          A2P024: District Heating and Coolingyesnonoyesyesyesno
          A2P024: Smart metering and demand-responsive control systemsyesnoyesyesnoyesno
          A2P024: P2P – buildingsnononoyesnoyesno
          A2P024: Other
          A2P025: Technological Solutions / Innovations - Energy Efficiency
          A2P025: Deep Retrofittingnonoyesyesyesyesyes
          A2P025: Energy efficiency measures in historic buildingsyesnonoyesnoyesno
          A2P025: High-performance new buildingsyesnonononoyesno
          A2P025: Smart Public infrastructure (e.g. smart lighting)yesnonononoyesno
          A2P025: Urban data platformsyesnonoyesnoyesno
          A2P025: Mobile applications for citizensnononononoyesno
          A2P025: Building services (HVAC & Lighting)nonononoyesyesyes
          A2P025: Smart irrigationnononononoyesno
          A2P025: Digital tracking for waste disposalnononononoyesno
          A2P025: Smart surveillancenonononononono
          A2P025: Other
          A2P026: Technological Solutions / Innovations - Mobility
          A2P026: Efficiency of vehicles (public and/or private)nononoyesnoyesno
          A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nononoyesnoyesno
          A2P026: e-Mobilityyesnonoyesnoyesno
          A2P026: Soft mobility infrastructures and last mile solutionsnononoyesnoyesno
          A2P026: Car-free areanononononoyesno
          A2P026: Other
          A2P027: Mobility strategies - Additional notes
          A2P027: Mobility strategies - Additional notes
          A2P028: Energy efficiency certificates
          A2P028: Energy efficiency certificatesYesNoNoNoNo
          A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate
          A2P029: Any other building / district certificates
          A2P029: Any other building / district certificatesNoNoNoNo
          A2P029: If yes, please specify and/or enter notes
          A3P001: Relevant city /national strategy
          A3P001: Relevant city /national strategy
          • Energy master planning (SECAP, etc.),
          • New development strategies,
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Climate change adaption plan/strategy (e.g. Climate City contract)
          • Smart cities strategies
          • Promotion of energy communities (REC/CEC),
          • Climate change adaption plan/strategy (e.g. Climate City contract)
          • Smart cities strategies,
          • Energy master planning (SECAP, etc.),
          • New development strategies,
          • Promotion of energy communities (REC/CEC),
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Energy master planning (SECAP, etc.),
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          A3P002: Quantitative targets included in the city / national strategy
          A3P002: Quantitative targets included in the city / national strategyClimate neutrality by 2035The study aligns closely with the decarbonisation and energy reduction pathways of residential multi family buildings with 1.5°C global warming target in Sweden. This study will also contribute to the achievement of the carbon neturality of whole Borlänge city by 2030.Karşıyaka Municipality is the first local government in Turkey to sign the Covenant of Mayors in 2011. During this period, the greenhouse gas inventory of the district was carried out three times and reduction targets were set for 2020 and 2030. In the 2021 Sustainable Energy and Climate Action Plan prepared as of the end of 2021, Karşıyaka Municipality has targeted a 40% reduction in its emissions for 2030 compared to the base year 2018. In the 2021 Sustainable Energy and Climate Action Plan, Karşıyaka Municipality aims to reduce its greenhouse gas emissions from 3.96 tCO2e / person in 2018 to 2.37 tCO2e / person in 2030. System solutions such as the use of renewable energy sources, air, ground or water source heat pump, cogeneration and microcogeneration are analysed by designers in order to fully or partially meet the energy requirements for heating, cooling, ventilation, hot water, electricity and lighting for all buildings with a floor area of less than 20,000 square metres. If at least 50% of the building's total energy consumption costs are covered by one or more of these applications, the points are taken in the assessment table in the Building and housing estate business certification guide of 2023.
          A3P003: Strategies towards decarbonization of the gas grid
          A3P003: Strategies towards decarbonization of the gas grid
          • Electrification of Heating System based on Heat Pumps,
          • Electrification of Cooking Methods,
          • Biogas
          • Electrification of Heating System based on Heat Pumps
          • Electrification of Heating System based on Heat Pumps,
          • Biogas,
          • Hydrogen
          • Electrification of Heating System based on Heat Pumps,
          • Electrification of Cooking Methods,
          • Biogas,
          • Hydrogen
          • Electrification of Heating System based on Heat Pumps
          A3P003: Other
          A3P004: Identification of needs and priorities
          A3P004: Identification of needs and prioritiesFreiburg has ambitious goals and wants to achieve climate neutrality until 2035, the PED concept could help to develop suitable strategies on district levelIn our project, we carried out a comprehensive exploration of strategies to achieve positive energy districts in a Swedish residential portfolio. The focus on urban energy transitions necessitates a holistic approach that integrates building retrofit, solar technology exploration, and heating supply optimisation. Exploration of Local Solar Sources: The analysis reveals varying solar irradiance resources throughout the year, emphasizing the importance of strategic placement. Integration of combined photovoltaic and thermal panels into building envelopes demonstrates the potential to cover a significant portion of the energy demand even in Sweden. Heating Supply Optimisation with Solar Technologies: Despite the surplus energy production from on-site solar technology, challenges arise due to temporal energy asymmetry. The introduction of heat pumps emerges as a feasible solution to balance energy gaps, utilising both rejected and free heat. Optimisation scenarios, utilising a combination of geothermal heat pumps, water source heat pumps, and PVT, showcase remarkable reductions in emissions and primary energy consumption. Urban Form and Energy Infrastructure Design: We realised the importance of returning to urban form and energy infrastructure design to optimise future residential portfolio potential. Building layout design, influenced by zoning regulations and innovative typologies, plays a crucial role in achieving district level energy efficiency. Future challenges, including demographic shifts, e-mobility, and climate change, necessitate a more holistic approach to energy infrastructure design, addressing not only heating and electricity demands but also cooling requirements.According to the model developed for the district, the electrification of heating and cooling is necessary.Therefore, there needs to be the implementation of a heat pump. The building-integrated photovoltaic panelsshould follow. Through net-metering practices, the district is expected to reach energy positivity throughthis scenario.
          A3P005: Sustainable behaviour
          A3P005: Sustainable behaviourIn Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.Energy efficiency by renovation measures for buildings and measures for saving electricity; electrification by installation of heat pumps and photovoltaics and switching to electric cars, additional measures not directly related to PED like sustainable diet and sharing economyWhile our investigation primarily centres on technical optimisation within Positive Energy District (PED) development, it is essential to acknowledge the broader scope encompassing social and governance dimensions. Specifically, understanding stakeholders' willingness to embrace technical recommendations upon project completion is important. Several potential influencing factors merit exploration, including economic considerations, technical optimisation-associated embodied carbon balance, the general public's technical perceptions, and operational feasibility. Evaluating these aspects holistically not only enhances the efficacy of PED initiatives but also fosters greater acceptance and participation within the communities they serve.
          A3P006: Economic strategies
          A3P006: Economic strategies
          • Innovative business models,
          • Blockchain
          • Demand management Living Lab,
          • Local trading,
          • Existing incentives
          • Open data business models,
          • Life Cycle Cost,
          • Circular economy models,
          • Local trading
          • Innovative business models,
          • Life Cycle Cost,
          • Circular economy models,
          • Demand management Living Lab,
          • Local trading,
          • Existing incentives
          A3P006: Other
          A3P007: Social models
          A3P007: Social models
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Citizen Social Research,
          • Prevention of energy poverty,
          • Citizen/owner involvement in planning and maintenance
          • Behavioural Change / End-users engagement,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Behavioural Change / End-users engagement,
          • Citizen/owner involvement in planning and maintenance,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Strategies towards (local) community-building,
          • Behavioural Change / End-users engagement,
          • Social incentives,
          • Affordability,
          • Digital Inclusion
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Behavioural Change / End-users engagement,
          • Citizen Social Research,
          • Social incentives,
          • Quality of Life,
          • Digital Inclusion,
          • Citizen/owner involvement in planning and maintenance,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Affordability
          A3P007: Other
          A3P008: Integrated urban strategies
          A3P008: Integrated urban strategies
          • Strategic urban planning,
          • District Energy plans,
          • City Vision 2050,
          • SECAP Updates
          • Strategic urban planning,
          • Digital twinning and visual 3D models,
          • District Energy plans
          • Strategic urban planning,
          • Digital twinning and visual 3D models,
          • District Energy plans,
          • Building / district Certification
          • Strategic urban planning,
          • Digital twinning and visual 3D models,
          • District Energy plans,
          • City Vision 2050,
          • SECAP Updates,
          • Building / district Certification
          • Digital twinning and visual 3D models,
          • District Energy plans,
          • SECAP Updates
          A3P008: Other
          A3P009: Environmental strategies
          A3P009: Environmental strategies
          • Energy Neutral
          • Energy Neutral
          • Low Emission Zone,
          • Net zero carbon footprint,
          • Life Cycle approach,
          • Sustainable Urban drainage systems (SUDS)
          • Energy Neutral,
          • Life Cycle approach
          • Energy Neutral,
          • Low Emission Zone,
          • Pollutants Reduction
          A3P009: Other
          A3P010: Legal / Regulatory aspects
          A3P010: Legal / Regulatory aspectsAt national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricityRegulatory sandbox
          B1P001: PED/PED relevant concept definition
          B1P001: PED/PED relevant concept definitionRefurbishment of social housing. The refurbishment complies with EnergieSprong specifications. This implies a performance of E=0 over 25 years.Assessment methods for this ped (and for germany) is defined in this project at the moment and will be tested at that case studyThe Rymdgatan's Residential Portfolio in Sweden presents a compelling case study for its classification as a PED-related research, given its alignment with sustainable behaviours and overarching PED development principles as follows: Inclusivity and Social Equity: The residential portfolio situated in Rymdgatan caters primarily to a low-income community. By focusing on this demographic, the project addresses critical aspects of social equity within sustainable urban development. Ensuring access to energy-efficient housing and amenities for economically disadvantaged populations not only fosters social cohesion but also mitigates energy poverty, a pressing concern in many urban contexts. Multifamily Residential Building: The inclusion of multifamily residential buildings within the portfolio underscores a commitment to density and efficient land use, both essential components of sustainable urban design. Such developments promote resource optimisation by consolidating housing units, thereby reducing per capita energy consumption and infrastructure demands. Moreover, multifamily dwellings often facilitate community engagement and shared resource management, fostering a culture of sustainability among residents. Low Carbon Retrofitting and Transition: The overarching initiative to transition the entire Jakobsgårdarna district. The included Rymdgatan portfolio, towards low carbon retrofitting, represents a significant example of decarbonization and climate resilience. By integrating energy-efficient technologies and renewable energy solutions into existing infrastructure, the project not only reduces carbon emissions but also serves as a blueprint for revitalising old urban environments sustainably. This holistic approach to retrofitting demonstrates a systemic commitment to environmental stewardship and long-term sustainability. Climate Adaptation and Renewable Energy Integration: Despite Sweden's climatic challenges, including lower solar resources during winter months, the Rymdgatan project leverages its geographical context to optimize renewable energy utilization. Sweden's greater solar resource availability during summer and geothermal potentials complement the design's emphasis on seasonal energy planning, where surplus energy generated during peak periods can be stored or redistributed efficiently. By embracing climate-responsive design strategies, the project demonstrates resilience in the face of climate variability while harnessing renewable energy potential effectively.Functional PEDThe pilot area was selected on the basis of several criteria: its location within areas prioritised by Karşıyaka Municipality for combating climate change, compliance with the building regulations set out in the Green Building-Site-Operation (2023) guide, which are in line with Municipality's energy policy, the presence of open spaces that allow various applications for renewable energy, proximity to public facilities such as schools and municipal services, the availability of data on energy consumption (e.g. electricity and natural gas bills) and architectural features, the potential for community building, the suitability for solar energy systems, considering orientation and roof structure, and the potential for future building renovations. The aim of the initiative is to explore the feasibility of transforming the district into a Positive Energy District (PED).
          B1P002: Motivation behind PED/PED relevant project development
          B1P002: Motivation behind PED/PED relevant project developmentRefurbishment of social housingCity is interested in transforming the quarter, as many buildings are old, have private owner structures and have decentralised heating systems. As the city wants to become climate neutral by 2035 action is needed now. In the research project PED urban the idea is to focus on the future energy system of the quarter and use it as a case study to develop a common assessment method for PEDs in alignment with european efforts in that regardBorlänge city has committed to become the carbon-neutral city by 2030.Brown field development of a former industrial neighbourhood into a low-carbon, smart Positive Energy District with mixed uses.
          B1P003: Environment of the case study area
          B2P003: Environment of the case study areaSuburban areaSuburban areaUrban areaUrban areaUrban area
          B1P004: Type of district
          B2P004: Type of district
          • Renovation
          • Renovation
          • Renovation
          • New construction
          • Renovation
          B1P005: Case Study Context
          B1P005: Case Study Context
          • Retrofitting Area
          • Retrofitting Area
          • Re-use / Transformation Area,
          • Retrofitting Area
          • New Development
          • Retrofitting Area
          B1P006: Year of construction
          B1P006: Year of construction195819902005
          B1P007: District population before intervention - Residential
          B1P007: District population before intervention - Residential5898100
          B1P008: District population after intervention - Residential
          B1P008: District population after intervention - Residential5898100
          B1P009: District population before intervention - Non-residential
          B1P009: District population before intervention - Non-residential6
          B1P010: District population after intervention - Non-residential
          B1P010: District population after intervention - Non-residential6
          B1P011: Population density before intervention
          B1P011: Population density before intervention000000
          B1P012: Population density after intervention
          B1P012: Population density after intervention000.00119878048780490.01065862242332800
          B1P013: Building and Land Use before intervention
          B1P013: Residentialnonoyesyesyesnoyes
          B1P013 - Residential: Specify the sqm [m²]4360102795
          B1P013: Officenononoyesnonono
          B1P013 - Office: Specify the sqm [m²]
          B1P013: Industry and Utilitynononoyesnoyesno
          B1P013 - Industry and Utility: Specify the sqm [m²]
          B1P013: Commercialnononoyesnonono
          B1P013 - Commercial: Specify the sqm [m²]
          B1P013: Institutionalnononoyesnonono
          B1P013 - Institutional: Specify the sqm [m²]
          B1P013: Natural areasnononoyesnonono
          B1P013 - Natural areas: Specify the sqm [m²]
          B1P013: Recreationalnononoyesnonono
          B1P013 - Recreational: Specify the sqm [m²]
          B1P013: Dismissed areasnonononononono
          B1P013 - Dismissed areas: Specify the sqm [m²]
          B1P013: Othernonononoyesnono
          B1P013 - Other: Specify the sqm [m²]706
          B1P014: Building and Land Use after intervention
          B1P014: Residentialnonoyesyesyesyesyes
          B1P014 - Residential: Specify the sqm [m²]4360102795
          B1P014: Officenononoyesnoyesno
          B1P014 - Office: Specify the sqm [m²]
          B1P014: Industry and Utilitynononoyesnonono
          B1P014 - Industry and Utility: Specify the sqm [m²]
          B1P014: Commercialnononoyesnoyesno
          B1P014 - Commercial: Specify the sqm [m²]
          B1P014: Institutionalnononoyesnonono
          B1P014 - Institutional: Specify the sqm [m²]
          B1P014: Natural areasnononoyesnonono
          B1P014 - Natural areas: Specify the sqm [m²]
          B1P014: Recreationalnononoyesnoyesno
          B1P014 - Recreational: Specify the sqm [m²]
          B1P014: Dismissed areasnonononononono
          B1P014 - Dismissed areas: Specify the sqm [m²]
          B1P014: Othernonononoyesnono
          B1P014 - Other: Specify the sqm [m²]706
          B2P001: PED Lab concept definition
          B2P001: PED Lab concept definitionGroningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.
          B2P002: Installation life time
          B2P002: Installation life timeThe MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.
          B2P003: Scale of action
          B2P003: ScaleDistrict
          B2P004: Operator of the installation
          B2P004: Operator of the installationThe Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.
          B2P005: Replication framework: Applied strategy to reuse and recycling the materials
          B2P005: Replication framework: Applied strategy to reuse and recycling the materialsGroningen does not have a strategy to reuse and recyle materials
          B2P006: Circular Economy Approach
          B2P006: Do you apply any strategy to reuse and recycling the materials?No
          B2P006: Other
          B2P007: Motivation for developing the PED Lab
          B2P007: Motivation for developing the PED Lab
          • Civic
          B2P007: Other
          B2P008: Lead partner that manages the PED Lab
          B2P008: Lead partner that manages the PED LabMunicipality
          B2P008: Other
          B2P009: Collaborative partners that participate in the PED Lab
          B2P009: Collaborative partners that participate in the PED Lab
          • Academia,
          • Private,
          • Industrial,
          • Other
          B2P009: Otherresearch companies, monitoring company, ict company
          B2P010: Synergies between the fields of activities
          B2P010: Synergies between the fields of activities
          B2P011: Available facilities to test urban configurations in PED Lab
          B2P011: Available facilities to test urban configurations in PED Lab
          • Buildings,
          • Demand-side management,
          • Energy storage,
          • Energy networks,
          • Waste management,
          • Lighting,
          • E-mobility,
          • Information and Communication Technologies (ICT),
          • Social interactions,
          • Business models
          B2P011: Other
          B2P012: Incubation capacities of PED Lab
          B2P012: Incubation capacities of PED Lab
          • Tools for prototyping and modelling
          B2P013: Availability of the facilities for external people
          B2P013: Availability of the facilities for external people
          B2P014: Monitoring measures
          B2P014: Monitoring measures
          • Execution plan,
          • Available data,
          • Type of measured data,
          • Equipment,
          • Level of access
          B2P015: Key Performance indicators
          B2P015: Key Performance indicators
          • Energy,
          • Social,
          • Economical / Financial
          B2P016: Execution of operations
          B2P016: Execution of operations
          B2P017: Capacities
          B2P017: Capacities
          B2P018: Relations with stakeholders
          B2P018: Relations with stakeholders
          B2P019: Available tools
          B2P019: Available tools
          • Energy modelling,
          • Social models,
          • Business and financial models
          B2P019: Available tools
          B2P020: External accessibility
          B2P020: External accessibility
          C1P001: Unlocking Factors
          C1P001: Recent technological improvements for on-site RES production3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important4 - Important5 - Very important
          C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important5 - Very important4 - Important
          C1P001: Energy Communities, P2P, Prosumers concepts4 - Important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant
          C1P001: Storage systems and E-mobility market penetration4 - Important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important3 - Moderately important1 - Unimportant
          C1P001: Decreasing costs of innovative materials5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important3 - Moderately important5 - Very important
          C1P001: Financial mechanisms to reduce costs and maximize benefits5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important4 - Important
          C1P001: The ability to predict Multiple Benefits3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important3 - Moderately important4 - Important
          C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important1 - Unimportant4 - Important
          C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important1 - Unimportant1 - Unimportant4 - Important5 - Very important2 - Slightly important2 - Slightly important
          C1P001: Social acceptance (top-down)3 - Moderately important1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant5 - Very important
          C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)4 - Important1 - Unimportant1 - Unimportant4 - Important4 - Important2 - Slightly important5 - Very important
          C1P001: Presence of integrated urban strategies and plans3 - Moderately important1 - Unimportant1 - Unimportant4 - Important5 - Very important3 - Moderately important5 - Very important
          C1P001: Multidisciplinary approaches available for systemic integration2 - Slightly important1 - Unimportant1 - Unimportant4 - Important5 - Very important4 - Important4 - Important
          C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important4 - Important5 - Very important
          C1P001: Availability of RES on site (Local RES)4 - Important1 - Unimportant1 - Unimportant4 - Important5 - Very important3 - Moderately important5 - Very important
          C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important2 - Slightly important5 - Very important
          C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P001: Any other UNLOCKING FACTORS (if any)
          C1P002: Driving Factors
          C1P002: Climate Change adaptation need2 - Slightly important1 - Unimportant1 - Unimportant4 - Important5 - Very important5 - Very important5 - Very important
          C1P002: Climate Change mitigation need (local RES production and efficiency)3 - Moderately important1 - Unimportant1 - Unimportant4 - Important5 - Very important5 - Very important5 - Very important
          C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important
          C1P002: Urban re-development of existing built environment4 - Important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important5 - Very important3 - Moderately important
          C1P002: Economic growth need2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important
          C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant4 - Important5 - Very important
          C1P002: Territorial and market attractiveness2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important
          C1P002: Energy autonomy/independence2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important2 - Slightly important5 - Very important
          C1P002: Any other DRIVING FACTOR4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P002: Any other DRIVING FACTOR (if any)Earthquakes due to gas extraction
          C1P003: Administrative barriers
          C1P003: Difficulty in the coordination of high number of partners and authorities3 - Moderately important1 - Unimportant1 - Unimportant4 - Important4 - Important2 - Slightly important4 - Important
          C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant3 - Moderately important
          C1P003: Lack of public participation1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important2 - Slightly important5 - Very important
          C1P003: Lack of institutions/mechanisms to disseminate information2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant4 - Important
          C1P003:Long and complex procedures for authorization of project activities4 - Important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important
          C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important
          C1P003: Complicated and non-comprehensive public procurement3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant5 - Very important
          C1P003: Fragmented and or complex ownership structure4 - Important1 - Unimportant1 - Unimportant4 - Important4 - Important2 - Slightly important5 - Very important
          C1P003: City administration & cross-sectoral attitude/approaches (silos)5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important5 - Very important
          C1P003: Lack of internal capacities to support energy transition1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant5 - Very important
          C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P003: Any other Administrative BARRIER (if any)
          C1P004: Policy barriers
          C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important2 - Slightly important5 - Very important
          C1P004: Lacking or fragmented local political commitment and support on the long term1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant4 - Important
          C1P004: Lack of Cooperation & support between national-regional-local entities2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important1 - Unimportant5 - Very important
          C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P004: Any other Political BARRIER (if any)
          C1P005: Legal and Regulatory barriers
          C1P005: Inadequate regulations for new technologies4 - Important1 - Unimportant1 - Unimportant4 - Important4 - Important3 - Moderately important5 - Very important
          C1P005: Regulatory instability3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important3 - Moderately important5 - Very important
          C1P005: Non-effective regulations3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important5 - Very important
          C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important4 - Important2 - Slightly important5 - Very important
          C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important
          C1P005: Insufficient or insecure financial incentives3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important4 - Important
          C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important2 - Slightly important3 - Moderately important
          C1P005: Shortage of proven and tested solutions and examples2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important2 - Slightly important3 - Moderately important
          C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P005: Any other Legal and Regulatory BARRIER (if any)
          C1P006: Environmental barriers
          C1P006: Environmental barriers2 - Slightly important- Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Air and Water Pollution: 2 - Natural Disasters: 1 - Water Scarcity: 1
          C1P007: Technical barriers
          C1P007: Lack of skilled and trained personnel4 - Important1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant5 - Very important
          C1P007: Deficient planning2 - Slightly important1 - Unimportant1 - Unimportant4 - Important4 - Important2 - Slightly important4 - Important
          C1P007: Retrofitting work in dwellings in occupied state2 - Slightly important1 - Unimportant1 - Unimportant4 - Important4 - Important3 - Moderately important5 - Very important
          C1P007: Lack of well-defined process3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important3 - Moderately important4 - Important
          C1P007: Inaccuracy in energy modelling and simulation4 - Important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant5 - Very important
          C1P007: Lack/cost of computational scalability1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important4 - Important
          C1P007: Grid congestion, grid instability4 - Important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important5 - Very important3 - Moderately important
          C1P007: Negative effects of project intervention on the natural environment1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important
          C1P007: Energy retrofitting work in dense and/or historical urban environment3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important
          C1P007: Difficult definition of system boundaries1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant3 - Moderately important4 - Important
          C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P007: Any other Thecnical BARRIER (if any)
          C1P008: Social and Cultural barriers
          C1P008: Inertia2 - Slightly important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important1 - Unimportant5 - Very important
          C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant4 - Important
          C1P008: Low acceptance of new projects and technologies2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important5 - Very important
          C1P008: Difficulty of finding and engaging relevant actors2 - Slightly important1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant4 - Important
          C1P008: Lack of trust beyond social network4 - Important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant5 - Very important
          C1P008: Rebound effect2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant5 - Very important
          C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important
          C1P008: Exclusion of socially disadvantaged groups5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important
          C1P008: Non-energy issues are more important and urgent for actors4 - Important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant4 - Important
          C1P008: Hostile or passive attitude towards energy collaboration2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important
          C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P008: Any other Social BARRIER (if any)
          C1P009: Information and Awareness barriers
          C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important4 - Important3 - Moderately important
          C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important2 - Slightly important4 - Important
          C1P009: Lack of awareness among authorities2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant4 - Important
          C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important4 - Important4 - Important
          C1P009: High costs of design, material, construction, and installation4 - Important1 - Unimportant1 - Unimportant4 - Important5 - Very important3 - Moderately important5 - Very important
          C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P009: Any other Information and Awareness BARRIER (if any)
          C1P010: Financial barriers
          C1P010: Hidden costs2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important4 - Important
          C1P010: Insufficient external financial support and funding for project activities3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important
          C1P010: Economic crisis1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important4 - Important5 - Very important
          C1P010: Risk and uncertainty3 - Moderately important1 - Unimportant1 - Unimportant4 - Important5 - Very important4 - Important4 - Important
          C1P010: Lack of consolidated and tested business models3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important4 - Important
          C1P010: Limited access to capital and cost disincentives2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant5 - Very important
          C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P010: Any other Financial BARRIER (if any)
          C1P011: Market barriers
          C1P011: Split incentives5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important3 - Moderately important5 - Very important
          C1P011: Energy price distortion4 - Important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important2 - Slightly important5 - Very important
          C1P011: Energy market concentration, gatekeeper actors (DSOs)4 - Important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important3 - Moderately important
          C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
          C1P011: Any other Market BARRIER (if any)
          C1P012: Stakeholders involved
          C1P012: Government/Public Authorities
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          • Planning/leading
          • Monitoring/operation/management
          • Monitoring/operation/management
          C1P012: Research & Innovation
          • Planning/leading,
          • Design/demand aggregation,
          • Monitoring/operation/management
          • Construction/implementation,
          • Monitoring/operation/management
          • Planning/leading
          • Monitoring/operation/management
          C1P012: Financial/Funding
          • Design/demand aggregation,
          • Construction/implementation
          • None
          • None
          C1P012: Analyst, ICT and Big Data
          • Design/demand aggregation,
          • Monitoring/operation/management
          • None
          • None
          • Construction/implementation
          C1P012: Business process management
          • Planning/leading
          • None
          • None
          C1P012: Urban Services providers
          • Design/demand aggregation,
          • Monitoring/operation/management
          • None
          • None
          C1P012: Real Estate developers
          • Construction/implementation
          • None
          • Design/demand aggregation
          C1P012: Design/Construction companies
          • Construction/implementation
          • Construction/implementation
          • None
          C1P012: End‐users/Occupants/Energy Citizens
          • None
          • Planning/leading,
          • Construction/implementation,
          • Monitoring/operation/management
          • Monitoring/operation/management
          • Design/demand aggregation
          C1P012: Social/Civil Society/NGOs
          • Planning/leading,
          • Design/demand aggregation
          • Construction/implementation,
          • Monitoring/operation/management
          • Monitoring/operation/management
          C1P012: Industry/SME/eCommerce
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • None
          • None
          • Construction/implementation
          C1P012: Other
          C1P012: Other (if any)
          Summary

          Authors (framework concept)

          Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

          Contributors (to the content)

          Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

          Implemented by

          Boutik.pt: Filipe Martins, Jamal Khan
          Marek Suchánek (Czech Technical University in Prague)