Name | Project | Type | Compare |
---|---|---|---|
Romania, Alba Iulia PED | ASCEND – Accelerate poSitive Clean ENergy Districts | PED Case Study | Compare |
Romania, Alba Iulia PED | InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts | PED Case Study | Compare |
Munich, Harthof district | PED Case Study | Compare | |
Lublin | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran | CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings | PED Relevant Case Study | Compare |
Bærum, Eiksveien 116 | CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings | PED Relevant Case Study | Compare |
Findhorn, the Park | InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts | PED Case Study | Uncompare |
Amsterdam, Buiksloterham PED | ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities | PED Case Study | Compare |
Schönbühel-Aggsbach, Schönbühel an der Donau | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Relevant Case Study | Compare |
Umeå, Ålidhem district | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study | Compare |
Aalborg East | PED Relevant Case Study / PED Lab | Compare | |
Ankara, Çamlık District | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study / PED Relevant Case Study | Compare |
Trenčín | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Luxembourg, Betzdorf | LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes | PED Relevant Case Study | Compare |
Vantaa, Aviapolis | NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts | PED Case Study / PED Relevant Case Study / PED Lab | Compare |
Vidin, Himik and Bononia | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Oslo, Verksbyen | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Compare |
Uden, Loopkantstraat | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Relevant Case Study | Uncompare |
Zaragoza, Actur | NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts | PED Relevant Case Study | Compare |
Aarhus, Brabrand | BIPED – Building Intelligent Positive Energy Districts | PED Case Study / PED Relevant Case Study / PED Lab | Compare |
Riga, Ķīpsala, RTU smart student city | ExPEDite – Enabling Positive Energy Districts through Digital Twins | PED Case Study | Uncompare |
Izmir, District of Karşıyaka | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study | Compare |
Istanbul, Ozyegin University Campus | LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes | PED Relevant Case Study | Compare |
Espoo, Kera | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study / PED Relevant Case Study | Compare |
Borlänge, Rymdgatan’s Residential Portfolio | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Relevant Case Study | Compare |
Freiburg, Waldsee | PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district | PED Case Study | Compare |
Innsbruck, Campagne-Areal | PED Relevant Case Study | Uncompare | |
Graz, Reininghausgründe | PED Case Study | Compare | |
Stor-Elvdal, Campus Evenstad | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Relevant Case Study | Compare |
Oulu, Kaukovainio | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Uncompare |
Halmstad, Fyllinge | PED Relevant Case Study | Compare | |
Lund, Brunnshög district | PED Case Study | Uncompare | |
Vienna, Am Kempelenpark | PED Case Study | Compare | |
Évora, Portugal | POCITYF – A POsitive Energy CITY Transformation Framework | PED Relevant Case Study / PED Lab | Compare |
Kladno, Sletiště (Sport Area), PED Winter Stadium | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Relevant Case Study | Compare |
Groningen, PED South | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Lab | Compare |
Groningen, PED North | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Lab | |
Maia, Sobreiro Social Housing | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Lab | Compare |
Lubia (Soria), CEDER-CIEMAT | PED Lab | Compare | |
Tampere, Ilokkaanpuisto district | STARDUST – Holistic and Integrated Urban Model for Smart Cities | PED Relevant Case Study | Compare |
Leon, Former Sugar Factory district | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Istanbul, Kadikoy district, Caferaga | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Espoo, Leppävaara district, Sello center | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Compare |
Espoo, Espoonlahti district, Lippulaiva block | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Compare |
Salzburg, Gneis district | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Compare |
Barcelona, Santa Coloma de Gramenet | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Compare |
Tartu, City centre area | SmartEnCity – Towards Smart Zero CO2 Cities across Europe | PED Relevant Case Study / PED Lab | Compare |
Bologna, Pilastro-Roveri district | GRETA – GReen Energy Transition Actions | PED Relevant Case Study | Compare |
Barcelona, SEILAB & Energy SmartLab | PED Lab | Compare | |
Leipzig, Baumwollspinnerei district | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Compare |
Kifissia, Energy community | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Relevant Case Study | Compare |
Title | Groningen, PED North | Uden, Loopkantstraat | Riga, Ķīpsala, RTU smart student city | Innsbruck, Campagne-Areal | Findhorn, the Park | Lund, Brunnshög district | Oulu, Kaukovainio |
---|---|---|---|---|---|---|---|
A1P001: Name of the PED case study / PED Lab | |||||||
A1P001: Name of the PED case study / PED Lab | Groningen, PED North | Uden, Loopkantstraat | Riga, Ķīpsala, RTU smart student city | Innsbruck, Campagne-Areal | Findhorn, the Park | Lund, Brunnshög district | Oulu, Kaukovainio |
A1P002: Map / aerial view / photos / graphic details / leaflet | |||||||
A1P002: Map / aerial view / photos / graphic details / leaflet |
|
|
|
| |||
A1P003: Categorisation of the PED site | |||||||
PED case study | no | no | yes | no | yes | yes | yes |
PED relevant case study | no | yes | no | yes | no | no | no |
PED Lab. | yes | no | no | no | no | no | no |
A1P004: Targets of the PED case study / PED Lab | |||||||
Climate neutrality | yes | yes | yes | yes | yes | yes | yes |
Annual energy surplus | yes | yes | no | no | yes | yes | no |
Energy community | yes | no | yes | no | yes | yes | no |
Circularity | yes | no | no | no | yes | yes | yes |
Air quality and urban comfort | no | no | no | no | no | yes | no |
Electrification | no | yes | no | no | yes | yes | yes |
Net-zero energy cost | no | no | no | no | no | no | no |
Net-zero emission | yes | no | no | yes | yes | yes | no |
Self-sufficiency (energy autonomous) | no | no | yes | no | no | no | no |
Maximise self-sufficiency | no | no | yes | no | yes | no | no |
Other | no | no | no | no | no | yes | no |
Other (A1P004) | Holistic approach on city planning; Minimise car traffic - walkability; Local service; Climate neutral buildings 2030; | ||||||
A1P005: Phase of the PED case study / PED Lab | |||||||
A1P005: Project Phase of your case study/PED Lab | Implementation Phase | In operation | Planning Phase | Completed | In operation | In operation | In operation |
A1P006: Start Date | |||||||
A1P006: Start date | 12/18 | 06/17 | 01/24 | 04/16 | 01/62 | 2015 | |
A1P007: End Date | |||||||
A1P007: End date | 12/23 | 05/23 | 12/26 | 04/22 | 2040 | ||
A1P008: Reference Project | |||||||
A1P008: Reference Project | |||||||
A1P009: Data availability | |||||||
A1P009: Data availability |
|
|
|
| |||
A1P009: Other | GIS open dataset is under construction | ||||||
A1P010: Sources | |||||||
Any publication, link to website, deliverable referring to the PED/PED Lab |
|
|
| ||||
A1P011: Geographic coordinates | |||||||
X Coordinate (longitude): | 6.535121 | 5.6191 | 24.08168339 | 11.424346738140256 | -3.6099 | 13.232469400769599 | 25.517595084093507 |
Y Coordinate (latitude): | 53.234846 | 51.6606 | 56.95245956 | 47.271470786729104 | 57.6530 | 55.71989792207193 | 64.99288098173132 |
A1P012: Country | |||||||
A1P012: Country | Netherlands | Netherlands | Latvia | Austria | United Kingdom | Sweden | Finland |
A1P013: City | |||||||
A1P013: City | Groningen | Uden | Riga | Innsbruck | Findhorn | Lund | Oulu |
A1P014: Climate Zone (Köppen Geiger classification) | |||||||
A1P014: Climate Zone (Köppen Geiger classification). | Cfa | Cfb | Cfb | Dfb | Dwc | Dfb | Dfc |
A1P015: District boundary | |||||||
A1P015: District boundary | Functional | Geographic | Geographic | Geographic | Geographic | Geographic | |
Other | Regional (close to virtual) | ||||||
A1P016: Ownership of the case study/PED Lab | |||||||
A1P016: Ownership of the case study/PED Lab: | Mixed | Private | Public | Mixed | Mixed | Public | Mixed |
A1P017: Ownership of the land / physical infrastructure | |||||||
A1P017: Ownership of the land / physical infrastructure: | Multiple Owners | Single Owner | Multiple Owners | Multiple Owners | Multiple Owners | Multiple Owners | Single Owner |
A1P018: Number of buildings in PED | |||||||
A1P018: Number of buildings in PED | 7 | 1 | 15 | 4 | 160 | 200 | 6 |
A1P019: Conditioned space | |||||||
A1P019: Conditioned space [m²] | 1.01 | 2360 | 170000 | 22277 | 1500000 | 19700 | |
A1P020: Total ground area | |||||||
A1P020: Total ground area [m²] | 17.132 | 3860 | 119264 | 11351 | 180000 | 1500000 | 60000 |
A1P021: Floor area ratio: Conditioned space / total ground area | |||||||
A1P021: Floor area ratio: Conditioned space / total ground area | 0 | 1 | 1 | 2 | 0 | 1 | 0 |
A1P022: Financial schemes | |||||||
A1P022a: Financing - PRIVATE - Real estate | yes | yes | no | no | yes | yes | yes |
A1P022a: Add the value in EUR if available [EUR] | 7804440 | 99999999 | |||||
A1P022b: Financing - PRIVATE - ESCO scheme | no | no | no | no | no | no | no |
A1P022b: Add the value in EUR if available [EUR] | |||||||
A1P022c: Financing - PRIVATE - Other | yes | no | no | no | no | no | no |
A1P022c: Add the value in EUR if available [EUR] | |||||||
A1P022d: Financing - PUBLIC - EU structural funding | no | no | no | no | no | yes | no |
A1P022d: Add the value in EUR if available [EUR] | 1000000 | ||||||
A1P022e: Financing - PUBLIC - National funding | yes | no | no | no | yes | yes | no |
A1P022e: Add the value in EUR if available [EUR] | 30000000 | ||||||
A1P022f: Financing - PUBLIC - Regional funding | no | no | no | no | no | yes | no |
A1P022f: Add the value in EUR if available [EUR] | 30000000 | ||||||
A1P022g: Financing - PUBLIC - Municipal funding | yes | no | no | no | no | yes | yes |
A1P022g: Add the value in EUR if available [EUR] | 180000000 | ||||||
A1P022h: Financing - PUBLIC - Other | no | no | no | no | no | no | no |
A1P022h: Add the value in EUR if available [EUR] | |||||||
A1P022i: Financing - RESEARCH FUNDING - EU | yes | no | yes | no | yes | yes | yes |
A1P022i: Add the value in EUR if available [EUR] | 7500000 | 2000000 | |||||
A1P022j: Financing - RESEARCH FUNDING - National | no | no | no | yes | no | no | no |
A1P022j: Add the value in EUR if available [EUR] | |||||||
A1P022k: Financing - RESEARCH FUNDING - Local/regional | no | no | no | no | no | no | no |
A1P022k: Add the value in EUR if available [EUR] | |||||||
A1P022l: Financing - RESEARCH FUNDING - Other | no | no | no | no | no | no | no |
A1P022l: Add the value in EUR if available [EUR] | |||||||
A1P022: Other | |||||||
A1P023: Economic Targets | |||||||
A1P023: Economic Targets |
|
|
|
|
| ||
A1P023: Other | Create affordable appartments for the citizens | World class sustainable living and research environments | Developing and demonstrating new solutions | ||||
A1P024: More comments: | |||||||
A1P024: More comments: | The project is a follow-up from the “Social Beautiful” concept which was developed in collaboration between Labyrint (Support in sheltered housing), Area (housing company), the municipality of Uden, and Hendriks Coppelmans (developer). The concept aims to provide an answer to changes in various policy areas and the changing demands of society. The Social Beautiful concept consists of the following elements: 1. Living, working, and community services are brought together in one location. A multifunctional residential and service centre is being realized at the location. 2. Housing is shaped by the realization of financially accessible homes suitable for the target group. The housing design is tailored to the target group. it may also include sheltered / protected living. 3. Work takes place at the location or from the same location. The work has a social function within the neighbourhood. Wage-related work must contribute to providing structure in the daily activities of the residents. 4. Neighbourhood management is organized from the location in the surrounding neighbourhood. A service package is provided from the residential and service centre that contributes to the ability of neighbourhood residents to live independently for longer, to strengthen the social network, and to improve the quality of life and safety in the neighbourhood. 5. The houses are suitable for use at all times for regular rental. Communal facilities must be realized within the contours of a regular apartment. The objective is to offer a suitable living and working situation to a group of vulnerable citizens. In this way they become a fully-fledged part of society. They not only make use of the facilities themselves, but also give substance to the level of facilities in the municipality. Due to the integrated approach, they experience a greater sense of well-being and security. | Owners are two local social housing companies. The complete district will consist 4 building blocks, from which only the first one with 4 building is ready built and occupied. At the end, it would be a district of ca. 1100 flats in 16 buildings with 78000 m2 | |||||
A1P025: Estimated PED case study / PED LAB costs | |||||||
A1P025: Estimated PED case study / PED LAB costs [mil. EUR] | 7804440 | 5 | |||||
Contact person for general enquiries | |||||||
A1P026: Name | Jasper Tonen, Elisabeth Koops | Tonje Healey Trulsrud | Judith Stiekema | Georgios Dermentzis | Stefano Nebiolo | Markus Paulsson | Samuli Rinne |
A1P027: Organization | Municipality of Groningen | Norwegian University of Science and Technology (NTNU) | OASC | University of Innsbruck | Findhorn Innovation Research and Education CIC | City of Lund | City of Oulu |
A1P028: Affiliation | Municipality / Public Bodies | Research Center / University | Other | Research Center / University | Research Center / University | Municipality / Public Bodies | Municipality / Public Bodies |
A1P028: Other | not for profit private organisation | ||||||
A1P029: Email | Jasper.tonen@groningen.nl | tonje.h.trulsrud@ntnu.no | judith@oascities.org | Georgios.Dermentzis@uibk.ac.at | stefanonebiolo@gmail.com | markus.paulsson@lund.se | samuli.rinne@ouka.fi |
Contact person for other special topics | |||||||
A1P030: Name | Eva Dalman | Samuli Rinne | |||||
A1P031: Email | eva.dalman@lund.se | samuli.rinne@ouka.fi | |||||
Pursuant to the General Data Protection Regulation | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
A2P001: Fields of application | |||||||
A2P001: Fields of application |
|
|
|
|
|
|
|
A2P001: Other | Walkability and biking | ||||||
A2P002: Tools/strategies/methods applied for each of the above-selected fields | |||||||
A2P002: Tools/strategies/methods applied for each of the above-selected fields | Energy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streams | Energy efficiency: Energy efficient envelope, with good insulation, triple glazing windows and airtight envelope. (EPC = 0) Energy Flexibility: MCP controls for the heat pump in the apartments. Energy production: PV panels on the roof, Ground source heat pumps Waste management: construction waste was kept to a minimum and sorted and collected separately as much as possible. Indoor air quality: Exhaust ventilation and opening of windows Construction materials: low carbon emission building materials | A suite of replicable modeling tools will enable stakeholders to analyze planning actions towards positive energy in a cost-effective fashion, aiding their evidence based decision-making process. The tools will be able to model the district’s energy production and demand, optimize for flexibility and simulate mobility and transport. By employing gamification and co-creation approaches, the project will enhance public awareness and engagement in energy efficiency. The project will culminate in the publication of practical guidelines, reusable models, algorithms, and training materials to aid other cities to replicate the digital twin for their districts, fostering widespread adoption of sustainable energy practices. | The buildings are designed based on Passive House standards and dynamic building and system simulations are performed to optimise the HVAC systems, that are a ground-water heat pump for space heating and district heating for domestic hot water preparation. Photovoltaic systems are installed in the available roof spaces, however, more renewable sources are required due to very large number of apartments (very high density) to reach PED, and thus, simulation studies are performed. | LundaMaTs methodology for traffic and city planning. LundaEko - Lund's programme for ecological sustainability. Municipally owned land is sold to property developers on environmental conditions. | Different kinds of waste heat streams are utilized by heat pumps. These are district heating return water (actually this is an indirect way to cool down the flue gas in the scrubber), ventilation exhaust air and sewage water. As a normal case, in ventilation also air-to-air heat exchanges are used. PV power is harvested also, in vertical and more horizontal panels. Buildings are well insulated to decrease the needed amount of heating energy in the first place. | |
A2P003: Application of ISO52000 | |||||||
A2P003: Application of ISO52000 | No | Yes | No | No | No | No | |
A2P004: Appliances included in the calculation of the energy balance | |||||||
A2P004: Appliances included in the calculation of the energy balance | No | No | Yes | Yes | Yes | No | |
A2P005: Mobility included in the calculation of the energy balance | |||||||
A2P005: Mobility included in the calculation of the energy balance | No | No | Yes | No | Yes | No | |
A2P006: Description of how mobility is included (or not included) in the calculation | |||||||
A2P006: Description of how mobility is included (or not included) in the calculation | Mobility, till now, is not included in the energy model. | not included | The university operates a fleet of 13 electric vehicles (EV) (61kW power each). There are 5 EV charging stations on campus. | Today electrically charged vehicles are included in the energy balance. In the future also other fuels should be included. | Not included. However, there is a charging place for a shared EV in one building. | ||
A2P007: Annual energy demand in buildings / Thermal demand | |||||||
A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum] | 2.3 | 0.148 | 8000 | 0.39 | 25 | 2.1 | |
A2P008: Annual energy demand in buildings / Electric Demand | |||||||
A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum] | 0.33 | 0.109 | 5000 | 0.655 | 1.2 | 30 | 0.2 |
A2P009: Annual energy demand for e-mobility | |||||||
A2P009: Annual energy demand for e-mobility [GWh/annum] | 0 | ||||||
A2P010: Annual energy demand for urban infrastructure | |||||||
A2P010: Annual energy demand for urban infrastructure [GWh/annum] | |||||||
A2P011: Annual renewable electricity production on-site during target year | |||||||
A2P011: PV | no | yes | no | yes | yes | yes | yes |
A2P011: PV - specify production in GWh/annum [GWh/annum] | 0.058 | 0.42 | 0.1 | ||||
A2P011: Wind | no | no | yes | no | yes | yes | no |
A2P011: Wind - specify production in GWh/annum [GWh/annum] | |||||||
A2P011: Hydro | no | no | no | no | no | no | no |
A2P011: Hydro - specify production in GWh/annum [GWh/annum] | |||||||
A2P011: Biomass_el | no | no | no | no | no | no | no |
A2P011: Biomass_el - specify production in GWh/annum [GWh/annum] | |||||||
A2P011: Biomass_peat_el | no | no | no | no | no | no | no |
A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum] | |||||||
A2P011: PVT_el | no | no | yes | no | no | no | no |
A2P011: PVT_el - specify production in GWh/annum [GWh/annum] | |||||||
A2P011: Other | no | no | no | no | no | no | no |
A2P011: Other - specify production in GWh/annum [GWh/annum] | |||||||
A2P012: Annual renewable thermal production on-site during target year | |||||||
A2P012: Geothermal | yes | yes | no | no | no | no | no |
A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum] | |||||||
A2P012: Solar Thermal | yes | no | no | no | yes | no | no |
A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum] | |||||||
A2P012: Biomass_heat | yes | no | yes | no | yes | no | no |
A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum] | 0.1 | ||||||
A2P012: Waste heat+HP | yes | no | no | no | yes | yes | yes |
A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum] | 200 | 2.2 | |||||
A2P012: Biomass_peat_heat | no | no | no | no | no | no | no |
A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum] | |||||||
A2P012: PVT_th | yes | no | no | no | no | no | no |
A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum] | |||||||
A2P012: Biomass_firewood_th | no | no | no | no | yes | no | no |
A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum] | |||||||
A2P012: Other | no | no | no | no | no | no | no |
A2P012 - Other: Please specify production in GWh/annum [GWh/annum] | |||||||
A2P013: Renewable resources on-site - Additional notes | |||||||
A2P013: Renewable resources on-site - Additional notes | Geothermal heatpump systems, Waste heat from data centers | *Annual energy use below is presentedin primary energy consumption | Conventional power generation: The university’s heat supply is designed as a local centralized heat supply system. Electrical power, generated in combined heat and power (CHP) units, is delivered to the distribution network and sold to energy traders as regulated by local legislation and norms. There are two natural gas burners acting as heat sources (3MW and 6MW capacity), and two CHP units (1.6MW and 0.45MW thermal capacity). All heating is supplied from the CHP plants. Renewable Energy Sources (RES): a wind turbine (3.6 kW) and PV panels (11.7 kW) are connected to the faculty microgrid. In the future it is planned to power the campus entirely from local RES. | 3x225 kW wind turbines + 100 kW PV | Heat is produced from DH return, refrigeration and exhaust air. The mentioned 2200 MWh/a includes HP el. consumption (about 1/6 of that) | ||
A2P014: Annual energy use | |||||||
A2P014: Annual energy use [GWh/annum] | 0.194 | 0.96 | 1.2 | 2.3 | |||
A2P015: Annual energy delivered | |||||||
A2P015: Annual energy delivered [GWh/annum] | 0.0368 | -2 | 1.2 | ||||
A2P016: Annual non-renewable electricity production on-site during target year | |||||||
A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum] | 0 | 0 | 0 | ||||
A2P017: Annual non-renewable thermal production on-site during target year | |||||||
A2P017: Gas | no | no | yes | no | no | no | no |
A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum] | |||||||
A2P017: Coal | no | no | no | no | no | no | no |
A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum] | |||||||
A2P017: Oil | no | no | no | no | no | no | no |
A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum] | |||||||
A2P017: Other | no | no | no | no | no | no | no |
A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum] | |||||||
A2P018: Annual renewable electricity imports from outside the boundary during target year | |||||||
A2P018: PV | no | no | no | no | no | yes | yes |
A2P018 - PV: specify production in GWh/annum if available [GWh/annum] | |||||||
A2P018: Wind | no | no | no | no | no | yes | yes |
A2P018 - Wind: specify production in GWh/annum if available [GWh/annum] | |||||||
A2P018: Hydro | no | no | no | no | no | yes | yes |
A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum] | |||||||
A2P018: Biomass_el | no | no | no | no | no | yes | yes |
A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum] | |||||||
A2P018: Biomass_peat_el | no | no | no | no | no | no | yes |
A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum] | |||||||
A2P018: PVT_el | no | no | no | no | no | no | no |
A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum] | |||||||
A2P018: Other | no | no | no | no | no | no | no |
A2P018 - Other: specify production in GWh/annum if available [GWh/annum] | |||||||
A2P019: Annual renewable thermal imports from outside the boundary during target year | |||||||
A2P019: Geothermal | no | no | no | no | no | no | no |
A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum] | |||||||
A2P019: Solar Thermal | no | no | no | no | no | no | no |
A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum] | |||||||
A2P019: Biomass_heat | no | no | no | no | no | no | yes |
A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum] | 0.7 | ||||||
A2P019: Waste heat+HP | no | no | no | no | no | no | no |
A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum] | |||||||
A2P019: Biomass_peat_heat | no | no | no | no | no | no | no |
A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum] | |||||||
A2P019: PVT_th | no | no | no | no | no | no | no |
A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum] | |||||||
A2P019: Biomass_firewood_th | no | no | no | no | no | no | no |
A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum] | |||||||
A2P019: Other | no | no | no | no | no | no | no |
A2P019 Other: Please specify imports in GWh/annum [GWh/annum] | |||||||
A2P020: Share of RES on-site / RES outside the boundary | |||||||
A2P020: Share of RES on-site / RES outside the boundary | 0 | 0 | 0 | 0 | 0 | 0 | 3.2857142857143 |
A2P021: GHG-balance calculated for the PED | |||||||
A2P021: GHG-balance calculated for the PED [tCO2/annum] | -0.00043 | 0 | |||||
A2P022: KPIs related to the PED case study / PED Lab | |||||||
A2P022: Safety & Security | Personal Safety | ||||||
A2P022: Health | Healthy community | indoor air quility (indoor CO2 concentration) - measured on the extract air of the mechanical ventilation system. Relative humidity to avoid mold. | Encouraging a healthy lifestyle | ||||
A2P022: Education | |||||||
A2P022: Mobility | Sustainable mobility | Maximum 1/3 transport with car | Modal Split, Fuel mix in mobility, Energy use for transportation, Access to public transport, Public infrastructure promoting low-carbon mobility, Number of public EV charging stations, Energy delivered for EV charging | ||||
A2P022: Energy | NOn-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/self-consumption, net energy/net power, peak delivered/peak expoted, total greenhouse gas emission | Space heating demand, thermal energy delivered by district heating, electricity of the heat pump, thermal losses of the pipes, and PV production. | Local energy production 150% of energy need | Final energy consumption, Primary energy consumption, Energy imported to PED, Energy exported from PED, RES production, PED energy balance, Energy savings in the PED, GHG emissions, Reduction of emissions, Final energy consumption per capita, Primary energy consumption per capita, Primary energy sources (shares), Buildings connected to DH-network or renewable energy grid, GHG emissions per capita, System flexibility for energy players, RES storage usage, Peak load reduction | |||
A2P022: Water | |||||||
A2P022: Economic development | capital costs, operational cots, overall economic performance (5 KPIs) | Total investments, Payback time, Economic value of savings | |||||
A2P022: Housing and Community | demographic composition, diverse community, social cohesion | 50% rental apartments and 50% owner apartments | Development of housing prices, Housing cost overburden rate, Citizen engagement/empowerment to climate conscious actions, Inhabitants in dense areas, Energy poverty | ||||
A2P022: Waste | Recycling rate | ||||||
A2P022: Other | Smartness and flecibility, Indoor Environmental Quality, Social performance - Equity (affordable housing, access to servicees and amenitioes, afforability of energy, living conditions, sustinable mobility, universal design) | Smart Cities strategies, Quality of open data | |||||
A2P023: Technological Solutions / Innovations - Energy Generation | |||||||
A2P023: Photovoltaics | yes | yes | no | yes | yes | yes | yes |
A2P023: Solar thermal collectors | yes | no | no | no | yes | yes | no |
A2P023: Wind Turbines | no | no | no | no | yes | yes | no |
A2P023: Geothermal energy system | yes | yes | no | no | no | yes | no |
A2P023: Waste heat recovery | yes | no | no | no | yes | yes | yes |
A2P023: Waste to energy | yes | no | no | no | no | no | no |
A2P023: Polygeneration | no | no | no | no | no | yes | no |
A2P023: Co-generation | no | no | no | no | no | no | yes |
A2P023: Heat Pump | yes | yes | no | yes | yes | yes | yes |
A2P023: Hydrogen | no | no | no | no | no | yes | no |
A2P023: Hydropower plant | no | no | no | no | no | no | no |
A2P023: Biomass | no | no | no | no | yes | no | yes |
A2P023: Biogas | no | no | no | no | no | no | no |
A2P023: Other | |||||||
A2P024: Technological Solutions / Innovations - Energy Flexibility | |||||||
A2P024: A2P024: Information and Communication Technologies (ICT) | yes | no | yes | no | no | yes | yes |
A2P024: Energy management system | yes | yes | yes | no | yes | yes | yes |
A2P024: Demand-side management | yes | yes | yes | no | no | yes | no |
A2P024: Smart electricity grid | no | no | yes | no | no | yes | no |
A2P024: Thermal Storage | yes | no | yes | yes | yes | yes | yes |
A2P024: Electric Storage | yes | no | yes | no | yes | yes | no |
A2P024: District Heating and Cooling | yes | no | yes | yes | yes | yes | yes |
A2P024: Smart metering and demand-responsive control systems | yes | yes | yes | no | no | yes | no |
A2P024: P2P – buildings | no | no | no | yes | no | no | no |
A2P024: Other | |||||||
A2P025: Technological Solutions / Innovations - Energy Efficiency | |||||||
A2P025: Deep Retrofitting | no | no | no | no | no | no | yes |
A2P025: Energy efficiency measures in historic buildings | yes | no | no | no | no | no | no |
A2P025: High-performance new buildings | yes | yes | no | yes | yes | yes | yes |
A2P025: Smart Public infrastructure (e.g. smart lighting) | yes | no | no | no | no | yes | no |
A2P025: Urban data platforms | yes | no | yes | no | no | yes | yes |
A2P025: Mobile applications for citizens | no | no | yes | no | no | no | no |
A2P025: Building services (HVAC & Lighting) | no | yes | yes | yes | no | yes | yes |
A2P025: Smart irrigation | no | no | no | no | no | no | no |
A2P025: Digital tracking for waste disposal | no | no | no | no | no | yes | no |
A2P025: Smart surveillance | no | no | no | no | no | no | no |
A2P025: Other | |||||||
A2P026: Technological Solutions / Innovations - Mobility | |||||||
A2P026: Efficiency of vehicles (public and/or private) | no | no | no | no | no | no | yes |
A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances) | no | no | no | no | no | yes | yes |
A2P026: e-Mobility | yes | no | no | no | yes | yes | yes |
A2P026: Soft mobility infrastructures and last mile solutions | no | no | no | no | no | yes | yes |
A2P026: Car-free area | no | no | no | no | no | yes | no |
A2P026: Other | |||||||
A2P027: Mobility strategies - Additional notes | |||||||
A2P027: Mobility strategies - Additional notes | Walkability | ||||||
A2P028: Energy efficiency certificates | |||||||
A2P028: Energy efficiency certificates | Yes | Yes | No | Yes | Yes | Yes | |
A2P028: If yes, please specify and/or enter notes | Energy Performance Certificate | EPC = 0, energy neutral building | Two buildings are certified "Passive House new build" | Miljöbyggnad silver/guld | The obligatory buildijng energy classification | ||
A2P029: Any other building / district certificates | |||||||
A2P029: Any other building / district certificates | No | No | No | No | No | ||
A2P029: If yes, please specify and/or enter notes | |||||||
A3P001: Relevant city /national strategy | |||||||
A3P001: Relevant city /national strategy |
|
|
|
|
| ||
A3P002: Quantitative targets included in the city / national strategy | |||||||
A3P002: Quantitative targets included in the city / national strategy | City strategy: Net climate neutrality 2030 | Carbon neutrality by 2035 | |||||
A3P003: Strategies towards decarbonization of the gas grid | |||||||
A3P003: Strategies towards decarbonization of the gas grid |
|
|
| ||||
A3P003: Other | District heating based mainly on heat pumps and renewable sources | No gas grid in Brunnshög | |||||
A3P004: Identification of needs and priorities | |||||||
A3P004: Identification of needs and priorities | The priority was to eliminate the CO2 emissions by optimizing the building envelope and the heating systems. | Local waste heat is utlized to a very large extent. More local electricity production is needed. Need to minimise the use of private cars. | Developing and demonstrating solutions for carbon neutrality | ||||
A3P005: Sustainable behaviour | |||||||
A3P005: Sustainable behaviour | In Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed. | Need to minimise the use of private cars. Need to provide efficient methods for sorce separated waste collection. | E. g. visualizing energy and water consumption | ||||
A3P006: Economic strategies | |||||||
A3P006: Economic strategies |
|
|
|
| |||
A3P006: Other | Attractivenes | ||||||
A3P007: Social models | |||||||
A3P007: Social models |
|
|
|
|
|
|
|
A3P007: Other | |||||||
A3P008: Integrated urban strategies | |||||||
A3P008: Integrated urban strategies |
|
|
|
| |||
A3P008: Other | |||||||
A3P009: Environmental strategies | |||||||
A3P009: Environmental strategies |
|
|
|
|
|
| |
A3P009: Other | |||||||
A3P010: Legal / Regulatory aspects | |||||||
A3P010: Legal / Regulatory aspects | At national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen: Lack of legal certainty and clarity with regard to the energy legislation. Lack of coherence between policy and legislation from different ministries. The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals. Lack of capacity on the distribution grid for electricity | The municipality cannot demand a specific energy solution to private property owners. It has to be voluntary and market based solutions. | |||||
B1P001: PED/PED relevant concept definition | |||||||
B1P001: PED/PED relevant concept definition | The demonstration projects is a new residential development, which consists of an apartment complex which includes 39 apartments spread over 3 floors. It is a sustainble plus energy neighbouhood, and has reached a plus energy balance on its first year in operation. It has MPC controls on the individual heat pumps to improve the energy flexibility of the apartments. It includes the "social beatiful" concepts with a strong emphasis on the social sustainability of the project. | ExPEDite aims at creating and deploying a novel digital twin, allowing for real-time monitoring, visualization and management of district-level energy flows. Cities consume 65% of the world’s energy supply and are responsible for 70% of the CO² emissions, hence sharing a lot of the responsibility for climate change. We are faced with the challenge of redesigning our existing cities to make them more sustainable, resilient, inclusive and safe. Developing Positive Energy Districts (PEDs), is a breakthrough way to deal with the issue of urban emissions and applying adaptation and mitigation strategies to climate change, while ensuring that these urban areas generate an annual surplus of renewable energy and net zero greenhouse gas emissions. PEDs must address environmental, economic and social issues, providing solutions to energy consumption, production, emissions, transport & mobility and livability. By constantly monitoring and evaluating parameters through existing and/or novel sensor systems (e.g., renewable energy production/supply, transport conditions, air quality, energy demand, meteorological conditions, etc.), unconventional techniques may be applied to provide more sustainable options for the district’s needs. | Extremely low building energy demand, the electric energy of the heat pump used for space heating is significantly lower compared to thermal energy for the domestic hot water preparation. | Vision: The city as a power plant. The ultimate goal is that more energy is produced within the distric boundaries than is being used (heating, electricity & mobility). Energy efficient buildings, efficient mobility, reuse of residual heat and solar electricity are the main methods. | The original idea is that the area produces at least as much it consumes. | ||
B1P002: Motivation behind PED/PED relevant project development | |||||||
B1P002: Motivation behind PED/PED relevant project development | The need for social housing and the ambition to create a great living environment with a high-performance apartment complex, supplied with renewable energy. It results in lower energy bills for the tenants and high-quality homes. | Expected outcome 1 Increased number of (tangible) city planning actions for positive clean energy districts using the (proto-)PED design, development and management digital twin tools (based on pre-market research learnings) using open-standards based components which can be reused elsewhere. 2 Increased integration of existing smaller scale management systems (e.g. Building management systems) with open-standards based operational city platforms using sectorial data (e.g. building data, mobility, urban planning, etc.). 3 Enhanced data gathering approaches with identification of relevant multidimensional data sets (e.g. meteorological, load profile, social, geo-spatial, etc.) high-resolution real-time data streams (e.g. renewable energy production, energy consumption), and relevant forecasting data, drawing also on the work of common European data spaces. 4 Increased number of city planning departments / approaches using common data and (replicable) elements and processes. 5 Consolidated city sensor network specifications, complemented by appropriate data gathering approaches for soft data. 6 Improved performance of AI based self-learning systems for optimization of positive clean energy districts and bottom-up complex models. 7 Enhanced innovation capacity of local/regional administrations and accelerated uptake of shared, smart and sustainable zero emission solutions. | Since it is an urban area, with high building and apartment density, the need for CO2 reduction is quite relevant and thus, in new built, the minimization of CO2 emissions is crucial. | The aim is to build a sustainable city with minimal climate impact and maximum quality of life. PED is an important step to acheive the aims of a very ambitious city development. | Developing systems towards carbon neutrality. Also urban renewal. | ||
B1P003: Environment of the case study area | |||||||
B2P003: Environment of the case study area | Suburban area | Urban area | Urban area | Rural | Urban area | Suburban area | |
B1P004: Type of district | |||||||
B2P004: Type of district |
|
|
|
|
| ||
B1P005: Case Study Context | |||||||
B1P005: Case Study Context |
|
|
|
|
| ||
B1P006: Year of construction | |||||||
B1P006: Year of construction | 2022 | ||||||
B1P007: District population before intervention - Residential | |||||||
B1P007: District population before intervention - Residential | 0 | 3500 | |||||
B1P008: District population after intervention - Residential | |||||||
B1P008: District population after intervention - Residential | 780 | 18000 | 3500 | ||||
B1P009: District population before intervention - Non-residential | |||||||
B1P009: District population before intervention - Non-residential | 2000 | ||||||
B1P010: District population after intervention - Non-residential | |||||||
B1P010: District population after intervention - Non-residential | 22000 | ||||||
B1P011: Population density before intervention | |||||||
B1P011: Population density before intervention | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
B1P012: Population density after intervention | |||||||
B1P012: Population density after intervention | 0 | 0 | 0 | 0.068716412650868 | 0 | 0.026666666666667 | 0.058333333333333 |
B1P013: Building and Land Use before intervention | |||||||
B1P013: Residential | no | no | no | no | no | no | yes |
B1P013 - Residential: Specify the sqm [m²] | |||||||
B1P013: Office | no | no | no | no | no | yes | no |
B1P013 - Office: Specify the sqm [m²] | 60000 | ||||||
B1P013: Industry and Utility | no | no | no | no | no | no | no |
B1P013 - Industry and Utility: Specify the sqm [m²] | |||||||
B1P013: Commercial | no | no | no | no | no | no | yes |
B1P013 - Commercial: Specify the sqm [m²] | |||||||
B1P013: Institutional | no | no | no | no | no | no | no |
B1P013 - Institutional: Specify the sqm [m²] | |||||||
B1P013: Natural areas | no | no | no | no | yes | yes | yes |
B1P013 - Natural areas: Specify the sqm [m²] | 2000000 | ||||||
B1P013: Recreational | no | no | no | no | no | no | yes |
B1P013 - Recreational: Specify the sqm [m²] | |||||||
B1P013: Dismissed areas | no | no | no | no | no | no | no |
B1P013 - Dismissed areas: Specify the sqm [m²] | |||||||
B1P013: Other | no | no | no | no | no | yes | no |
B1P013 - Other: Specify the sqm [m²] | Outdoor parking: 100000 | ||||||
B1P014: Building and Land Use after intervention | |||||||
B1P014: Residential | no | yes | no | yes | yes | yes | yes |
B1P014 - Residential: Specify the sqm [m²] | 2394 | 600000 | |||||
B1P014: Office | no | no | no | no | yes | yes | no |
B1P014 - Office: Specify the sqm [m²] | 650000 | ||||||
B1P014: Industry and Utility | no | no | no | no | no | no | no |
B1P014 - Industry and Utility: Specify the sqm [m²] | |||||||
B1P014: Commercial | no | no | no | yes | no | no | yes |
B1P014 - Commercial: Specify the sqm [m²] | |||||||
B1P014: Institutional | no | no | no | yes | no | yes | no |
B1P014 - Institutional: Specify the sqm [m²] | 50000 | ||||||
B1P014: Natural areas | no | no | no | no | yes | no | yes |
B1P014 - Natural areas: Specify the sqm [m²] | |||||||
B1P014: Recreational | no | no | no | yes | no | yes | yes |
B1P014 - Recreational: Specify the sqm [m²] | 400000 | ||||||
B1P014: Dismissed areas | no | no | no | no | no | no | no |
B1P014 - Dismissed areas: Specify the sqm [m²] | |||||||
B1P014: Other | no | no | no | no | no | no | no |
B1P014 - Other: Specify the sqm [m²] | |||||||
B2P001: PED Lab concept definition | |||||||
B2P001: PED Lab concept definition | Groningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city. | ||||||
B2P002: Installation life time | |||||||
B2P002: Installation life time | The MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact. | ||||||
B2P003: Scale of action | |||||||
B2P003: Scale | District | ||||||
B2P004: Operator of the installation | |||||||
B2P004: Operator of the installation | The Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties. | ||||||
B2P005: Replication framework: Applied strategy to reuse and recycling the materials | |||||||
B2P005: Replication framework: Applied strategy to reuse and recycling the materials | Groningen does not have a strategy to reuse and recyle materials | ||||||
B2P006: Circular Economy Approach | |||||||
B2P006: Do you apply any strategy to reuse and recycling the materials? | No | ||||||
B2P006: Other | |||||||
B2P007: Motivation for developing the PED Lab | |||||||
B2P007: Motivation for developing the PED Lab |
| ||||||
B2P007: Other | |||||||
B2P008: Lead partner that manages the PED Lab | |||||||
B2P008: Lead partner that manages the PED Lab | Municipality | ||||||
B2P008: Other | |||||||
B2P009: Collaborative partners that participate in the PED Lab | |||||||
B2P009: Collaborative partners that participate in the PED Lab |
| ||||||
B2P009: Other | research companies, monitoring company, ict company | ||||||
B2P010: Synergies between the fields of activities | |||||||
B2P010: Synergies between the fields of activities | |||||||
B2P011: Available facilities to test urban configurations in PED Lab | |||||||
B2P011: Available facilities to test urban configurations in PED Lab |
| ||||||
B2P011: Other | |||||||
B2P012: Incubation capacities of PED Lab | |||||||
B2P012: Incubation capacities of PED Lab |
| ||||||
B2P013: Availability of the facilities for external people | |||||||
B2P013: Availability of the facilities for external people | |||||||
B2P014: Monitoring measures | |||||||
B2P014: Monitoring measures |
| ||||||
B2P015: Key Performance indicators | |||||||
B2P015: Key Performance indicators |
| ||||||
B2P016: Execution of operations | |||||||
B2P016: Execution of operations | |||||||
B2P017: Capacities | |||||||
B2P017: Capacities | |||||||
B2P018: Relations with stakeholders | |||||||
B2P018: Relations with stakeholders | |||||||
B2P019: Available tools | |||||||
B2P019: Available tools |
| ||||||
B2P019: Available tools | |||||||
B2P020: External accessibility | |||||||
B2P020: External accessibility | |||||||
C1P001: Unlocking Factors | |||||||
C1P001: Recent technological improvements for on-site RES production | 3 - Moderately important | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 5 - Very important |
C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 2 - Slightly important | 1 - Unimportant | 5 - Very important | 2 - Slightly important |
C1P001: Energy Communities, P2P, Prosumers concepts | 4 - Important | 3 - Moderately important | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 2 - Slightly important |
C1P001: Storage systems and E-mobility market penetration | 4 - Important | 4 - Important | 4 - Important | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant |
C1P001: Decreasing costs of innovative materials | 5 - Very important | 4 - Important | 4 - Important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 3 - Moderately important |
C1P001: Financial mechanisms to reduce costs and maximize benefits | 5 - Very important | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important |
C1P001: The ability to predict Multiple Benefits | 3 - Moderately important | 3 - Moderately important | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 2 - Slightly important | 4 - Important |
C1P001: The ability to predict the distribution of benefits and impacts | 3 - Moderately important | 3 - Moderately important | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 2 - Slightly important |
C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up) | 5 - Very important | 3 - Moderately important | 5 - Very important | 2 - Slightly important | 1 - Unimportant | 4 - Important | 3 - Moderately important |
C1P001: Social acceptance (top-down) | 3 - Moderately important | 5 - Very important | 4 - Important | 4 - Important | 1 - Unimportant | 3 - Moderately important | 5 - Very important |
C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.) | 4 - Important | 4 - Important | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 2 - Slightly important |
C1P001: Presence of integrated urban strategies and plans | 3 - Moderately important | 3 - Moderately important | 4 - Important | 4 - Important | 1 - Unimportant | 3 - Moderately important | 4 - Important |
C1P001: Multidisciplinary approaches available for systemic integration | 2 - Slightly important | 5 - Very important | 5 - Very important | 4 - Important | 1 - Unimportant | 5 - Very important | 4 - Important |
C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 4 - Important | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important |
C1P001: Availability of RES on site (Local RES) | 4 - Important | 5 - Very important | 4 - Important | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 4 - Important |
C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders | 3 - Moderately important | 4 - Important | 4 - Important | 3 - Moderately important | 1 - Unimportant | 2 - Slightly important | 4 - Important |
C1P001: Any other UNLOCKING FACTORS | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important |
C1P001: Any other UNLOCKING FACTORS (if any) | |||||||
C1P002: Driving Factors | |||||||
C1P002: Climate Change adaptation need | 2 - Slightly important | 5 - Very important | 5 - Very important | 5 - Very important | 1 - Unimportant | 5 - Very important | 1 - Unimportant |
C1P002: Climate Change mitigation need (local RES production and efficiency) | 3 - Moderately important | 5 - Very important | 4 - Important | 4 - Important | 1 - Unimportant | 5 - Very important | 5 - Very important |
C1P002: Rapid urbanization trend and need of urban expansions | 1 - Unimportant | 5 - Very important | 4 - Important | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant |
C1P002: Urban re-development of existing built environment | 4 - Important | 4 - Important | 4 - Important | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 5 - Very important |
C1P002: Economic growth need | 2 - Slightly important | 1 - Unimportant | 4 - Important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 2 - Slightly important |
C1P002: Improved local environmental quality (air, noise, aesthetics, etc.) | 1 - Unimportant | 5 - Very important | 4 - Important | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 3 - Moderately important |
C1P002: Territorial and market attractiveness | 2 - Slightly important | 2 - Slightly important | 4 - Important | 4 - Important | 1 - Unimportant | 5 - Very important | 5 - Very important |
C1P002: Energy autonomy/independence | 2 - Slightly important | 1 - Unimportant | 4 - Important | 4 - Important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important |
C1P002: Any other DRIVING FACTOR | 4 - Important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P002: Any other DRIVING FACTOR (if any) | Earthquakes due to gas extraction | ||||||
C1P003: Administrative barriers | |||||||
C1P003: Difficulty in the coordination of high number of partners and authorities | 3 - Moderately important | 1 - Unimportant | 4 - Important | 2 - Slightly important | 1 - Unimportant | 5 - Very important | 2 - Slightly important |
C1P003: Lack of good cooperation and acceptance among partners | 3 - Moderately important | 1 - Unimportant | 4 - Important | 2 - Slightly important | 1 - Unimportant | 5 - Very important | 1 - Unimportant |
C1P003: Lack of public participation | 1 - Unimportant | 1 - Unimportant | 4 - Important | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant |
C1P003: Lack of institutions/mechanisms to disseminate information | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 2 - Slightly important |
C1P003:Long and complex procedures for authorization of project activities | 4 - Important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 3 - Moderately important |
C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy | 4 - Important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 5 - Very important |
C1P003: Complicated and non-comprehensive public procurement | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 2 - Slightly important |
C1P003: Fragmented and or complex ownership structure | 4 - Important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 2 - Slightly important |
C1P003: City administration & cross-sectoral attitude/approaches (silos) | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 2 - Slightly important |
C1P003: Lack of internal capacities to support energy transition | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important |
C1P003: Any other Administrative BARRIER | 1 - Unimportant | 4 - Important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P003: Any other Administrative BARRIER (if any) | Delay in the Environmental Dialogue processing in the municipality | ||||||
C1P004: Policy barriers | |||||||
C1P004: Lack of long-term and consistent energy plans and policies | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 2 - Slightly important |
C1P004: Lacking or fragmented local political commitment and support on the long term | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 3 - Moderately important |
C1P004: Lack of Cooperation & support between national-regional-local entities | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 3 - Moderately important |
C1P004: Any other Political BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P004: Any other Political BARRIER (if any) | |||||||
C1P005: Legal and Regulatory barriers | |||||||
C1P005: Inadequate regulations for new technologies | 4 - Important | 1 - Unimportant | 4 - Important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 3 - Moderately important |
C1P005: Regulatory instability | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 2 - Slightly important |
C1P005: Non-effective regulations | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 2 - Slightly important |
C1P005: Unfavorable local regulations for innovative technologies | 3 - Moderately important | 1 - Unimportant | 4 - Important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant |
C1P005: Building code and land-use planning hindering innovative technologies | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 2 - Slightly important |
C1P005: Insufficient or insecure financial incentives | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 2 - Slightly important |
C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 4 - Important |
C1P005: Shortage of proven and tested solutions and examples | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 2 - Slightly important |
C1P005: Any other Legal and Regulatory BARRIER | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P005: Any other Legal and Regulatory BARRIER (if any) | |||||||
C1P006: Environmental barriers | |||||||
C1P006: Environmental barriers | Urban area very high buildings (and apartment) density and thus, less available space for renewable sources. | ? | |||||
C1P007: Technical barriers | |||||||
C1P007: Lack of skilled and trained personnel | 4 - Important | 1 - Unimportant | 4 - Important | 2 - Slightly important | 1 - Unimportant | 5 - Very important | 2 - Slightly important |
C1P007: Deficient planning | 2 - Slightly important | 1 - Unimportant | 4 - Important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant |
C1P007: Retrofitting work in dwellings in occupied state | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P007: Lack of well-defined process | 3 - Moderately important | 1 - Unimportant | 4 - Important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 1 - Unimportant |
C1P007: Inaccuracy in energy modelling and simulation | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 3 - Moderately important |
C1P007: Lack/cost of computational scalability | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P007: Grid congestion, grid instability | 4 - Important | 1 - Unimportant | 4 - Important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 1 - Unimportant |
C1P007: Negative effects of project intervention on the natural environment | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 1 - Unimportant |
C1P007: Energy retrofitting work in dense and/or historical urban environment | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P007: Difficult definition of system boundaries | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 5 - Very important |
C1P007: Any other Thecnical BARRIER | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P007: Any other Thecnical BARRIER (if any) | |||||||
C1P008: Social and Cultural barriers | |||||||
C1P008: Inertia | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 2 - Slightly important |
C1P008: Lack of values and interest in energy optimization measurements | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 1 - Unimportant |
C1P008: Low acceptance of new projects and technologies | 2 - Slightly important | 1 - Unimportant | 4 - Important | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 2 - Slightly important |
C1P008: Difficulty of finding and engaging relevant actors | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 1 - Unimportant |
C1P008: Lack of trust beyond social network | 4 - Important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant |
C1P008: Rebound effect | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P008: Hostile or passive attitude towards environmentalism | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 2 - Slightly important |
C1P008: Exclusion of socially disadvantaged groups | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 1 - Unimportant |
C1P008: Non-energy issues are more important and urgent for actors | 4 - Important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important |
C1P008: Hostile or passive attitude towards energy collaboration | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 2 - Slightly important |
C1P008: Any other Social BARRIER | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P008: Any other Social BARRIER (if any) | |||||||
C1P009: Information and Awareness barriers | |||||||
C1P009: Insufficient information on the part of potential users and consumers | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 2 - Slightly important |
C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 2 - Slightly important |
C1P009: Lack of awareness among authorities | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant |
C1P009: Information asymmetry causing power asymmetry of established actors | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant |
C1P009: High costs of design, material, construction, and installation | 4 - Important | 1 - Unimportant | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 5 - Very important | 3 - Moderately important |
C1P009: Any other Information and Awareness BARRIER | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P009: Any other Information and Awareness BARRIER (if any) | |||||||
C1P010: Financial barriers | |||||||
C1P010: Hidden costs | 2 - Slightly important | 1 - Unimportant | 4 - Important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant |
C1P010: Insufficient external financial support and funding for project activities | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 2 - Slightly important |
C1P010: Economic crisis | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 4 - Important | 1 - Unimportant | 5 - Very important | 1 - Unimportant |
C1P010: Risk and uncertainty | 3 - Moderately important | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 3 - Moderately important |
C1P010: Lack of consolidated and tested business models | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 3 - Moderately important |
C1P010: Limited access to capital and cost disincentives | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 2 - Slightly important |
C1P010: Any other Financial BARRIER | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P010: Any other Financial BARRIER (if any) | |||||||
C1P011: Market barriers | |||||||
C1P011: Split incentives | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 2 - Slightly important |
C1P011: Energy price distortion | 4 - Important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 2 - Slightly important |
C1P011: Energy market concentration, gatekeeper actors (DSOs) | 4 - Important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant |
C1P011: Any other Market BARRIER | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P011: Any other Market BARRIER (if any) | |||||||
C1P012: Stakeholders involved | |||||||
C1P012: Government/Public Authorities |
|
|
|
|
|
| |
C1P012: Research & Innovation |
|
|
|
|
|
| |
C1P012: Financial/Funding |
|
|
|
|
| ||
C1P012: Analyst, ICT and Big Data |
|
|
|
|
| ||
C1P012: Business process management |
|
|
|
| |||
C1P012: Urban Services providers |
|
|
|
|
| ||
C1P012: Real Estate developers |
|
|
|
|
|
| |
C1P012: Design/Construction companies |
|
|
|
|
|
| |
C1P012: End‐users/Occupants/Energy Citizens |
|
|
|
|
|
| |
C1P012: Social/Civil Society/NGOs |
|
|
|
|
| ||
C1P012: Industry/SME/eCommerce |
|
|
|
|
| ||
C1P012: Other | |||||||
C1P012: Other (if any) | |||||||
Summary |
Authors (framework concept)
Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)
Contributors (to the content)
Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)
Implemented by
Boutik.pt: Filipe Martins, Jamal Khan
Marek Suchánek (Czech Technical University in Prague)