Filters:
NameProjectTypeCompare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Compare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Compare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Compare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr, Geothermal District Heating Project PED Relevant Case Study Compare
Drammen, Jacobs Borchs Gate PED Relevant Case Study Compare
Freiburg im Breisgau, Dietenbach PED Relevant Case Study Compare
Lecce, SmartEnCity SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
Trento, STARDUST STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Malmö, Klimatkontrakt Hyllie PED Relevant Case Study Compare
Kaiserslautern, EnStadt:Pfaff PED Relevant Case Study / PED Lab Uncompare
Helsinki, mySMARTlife PED Relevant Case Study Compare
Firenze, Novoli-Cascine district on “le PIagge” buildings PED Relevant Case Study Compare
Bolzano, Sinfonia PED Relevant Case Study Compare
Zürich, Hunziker Areal PED Relevant Case Study Compare
Hammarby Sjöstad, Hammarby Sjöstad 2.0 PED Relevant Case Study Compare
Milano, Sharing Cities PED Relevant Case Study Compare
Mieres, District Heating Pozo Barredo PED Relevant Case Study Compare
Lund, Cityfied (demo Linero) PED Relevant Case Study Compare
Espoo, Smart Otaniemi PED Relevant Case Study / PED Lab Compare
Vienna, Zukunftsquartier PED Case Study Compare
Trento, Santa Chiara Open Lab PED Case Study Compare
Paterna, Barrio La Pinada PED Case Study / PED Lab Compare
Bergen, Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru, +CityxChange PED Case Study Compare
Trondheim, NTNU Campus within the Knowledge Axis ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Oslo, Furuset project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Măgurele, Laser Valley – Land of Lights PED Case Study Compare
Elverum, Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bodø, Airport, NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bærum, Fornebu ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Carquefou, Fleuraye west PED Case Study Compare
Åland, Smart Energy PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Uncompare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Uncompare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Uncompare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleGroningen, PED North
Izmir, District of Karşıyaka
Zaragoza, Actur
Borlänge, Rymdgatan’s Residential Portfolio
Kaiserslautern, EnStadt:Pfaff
Leipzig, Baumwollspinnerei district
Luxembourg, Betzdorf
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabGroningen, PED NorthIzmir, District of KarşıyakaZaragoza, ActurBorlänge, Rymdgatan’s Residential PortfolioKaiserslautern, EnStadt:PfaffLeipzig, Baumwollspinnerei districtLuxembourg, Betzdorf
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesnononoyesno
PED relevant case studynonoyesyesyesnoyes
PED Lab.yesnononoyesnono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesyesyesyesyes
Annual energy surplusyesyesyesyesnonoyes
Energy communityyesnonoyesnonoyes
Circularityyesnononononoyes
Air quality and urban comfortnoyesnononoyesyes
Electrificationnonoyesyesnoyesyes
Net-zero energy costnoyesnonononono
Net-zero emissionyesnoyesnononono
Self-sufficiency (energy autonomous)nonononononono
Maximise self-sufficiencynoyesnoyesnonono
Othernononononoyesno
Other (A1P004)Net-zero emission; Annual energy surplus
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabImplementation PhasePlanning PhasePlanning PhasePlanning PhaseIn operationImplementation PhaseImplementation Phase
A1P006: Start Date
A1P006: Start date12/1810/2201/2310/1706/23
A1P007: End Date
A1P007: End date12/2310/2504/26
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
  • Monitoring data available within the districts
  • Open data city platform – different dashboards
A1P009: OtherOther
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • TNO, Hanze, RUG,
  • Ped noord book
      A1P011: Geographic coordinates
      X Coordinate (longitude):6.53512127.110049-0.889115.3944957.75168412.3184586.361602
      Y Coordinate (latitude):53.23484638.49605441.648860.48660949.43606251.32649249.682774
      A1P012: Country
      A1P012: CountryNetherlandsTurkeySpainSwedenGermanyGermanyLuxembourg
      A1P013: City
      A1P013: CityGroningenİzmirZaragozaBorlängeKaiserslauternLeipzigBetzdorf
      A1P014: Climate Zone (Köppen Geiger classification)
      A1P014: Climate Zone (Köppen Geiger classification).CfaCsaBSkDsbCfbDfbCfb
      A1P015: District boundary
      A1P015: District boundaryFunctionalGeographicGeographicGeographicFunctionalGeographic
      OtherGeographic
      A1P016: Ownership of the case study/PED Lab
      A1P016: Ownership of the case study/PED Lab:MixedPrivatePublicMixedPublicPublic
      A1P017: Ownership of the land / physical infrastructure
      A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersMultiple OwnersSingle OwnerMultiple OwnersSingle Owner
      A1P018: Number of buildings in PED
      A1P018: Number of buildings in PED721610224
      A1P019: Conditioned space
      A1P019: Conditioned space [m²]1.01102795370017000173.8
      A1P020: Total ground area
      A1P020: Total ground area [m²]17.13232600994530000
      A1P021: Floor area ratio: Conditioned space / total ground area
      A1P021: Floor area ratio: Conditioned space / total ground area0300010
      A1P022: Financial schemes
      A1P022a: Financing - PRIVATE - Real estateyesnononononono
      A1P022a: Add the value in EUR if available [EUR]
      A1P022b: Financing - PRIVATE - ESCO schemenonononononono
      A1P022b: Add the value in EUR if available [EUR]
      A1P022c: Financing - PRIVATE - Otheryesnononononono
      A1P022c: Add the value in EUR if available [EUR]
      A1P022d: Financing - PUBLIC - EU structural fundingnonononononono
      A1P022d: Add the value in EUR if available [EUR]
      A1P022e: Financing - PUBLIC - National fundingyesnononononono
      A1P022e: Add the value in EUR if available [EUR]
      A1P022f: Financing - PUBLIC - Regional fundingnonononoyesnono
      A1P022f: Add the value in EUR if available [EUR]
      A1P022g: Financing - PUBLIC - Municipal fundingyesnononoyesnono
      A1P022g: Add the value in EUR if available [EUR]
      A1P022h: Financing - PUBLIC - Othernonononononoyes
      A1P022h: Add the value in EUR if available [EUR]
      A1P022i: Financing - RESEARCH FUNDING - EUyesyesnonononono
      A1P022i: Add the value in EUR if available [EUR]1193355
      A1P022j: Financing - RESEARCH FUNDING - Nationalnoyesnonononono
      A1P022j: Add the value in EUR if available [EUR]
      A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononono
      A1P022k: Add the value in EUR if available [EUR]
      A1P022l: Financing - RESEARCH FUNDING - Othernonononoyesnono
      A1P022l: Add the value in EUR if available [EUR]
      A1P022: Other
      A1P023: Economic Targets
      A1P023: Economic Targets
      • Boosting local businesses,
      • Boosting local and sustainable production
      • Positive externalities,
      • Boosting local and sustainable production
      • Positive externalities,
      • Boosting local businesses,
      • Boosting consumption of local and sustainable products
      • Other
      A1P023: OtherSustainable and replicable business models regarding renewable energy systems
      A1P024: More comments:
      A1P024: More comments:
      A1P025: Estimated PED case study / PED LAB costs
      A1P025: Estimated PED case study / PED LAB costs [mil. EUR]
      Contact person for general enquiries
      A1P026: NameJasper Tonen, Elisabeth KoopsOzlem SenyolClara LorenteJingchun ShenChristoph GollnerSimon BaumJulien Bertucci
      A1P027: OrganizationMunicipality of GroningenKarsiyaka MunicipalityCIRCEHögskolan DalarnaFFGCENERO Energy GmbHSNHBM
      A1P028: AffiliationMunicipality / Public BodiesMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversityOtherOtherMunicipality / Public Bodies
      A1P028: OtherCENERO Energy GmbH
      A1P029: EmailJasper.tonen@groningen.nlozlemkocaer2@gmail.comCLORENTEM@FCIRCE.COMjih@du.sechristoph.gollner@ffg.atsib@cenero.dejulien.bertucci@snhbm.lu
      Contact person for other special topics
      A1P030: NameHasan Burak CavkaXingxing ZhangSimon Baum
      A1P031: Emailhasancavka@iyte.edu.trxza@du.sesib@cenero.de
      Pursuant to the General Data Protection RegulationYesYesYesYesYesYes
      A2P001: Fields of application
      A2P001: Fields of application
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Waste management
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • Urban comfort (pollution, heat island, noise level etc.)
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Construction materials
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Construction materials
      • Energy efficiency,
      • Energy production
      • Energy efficiency,
      • Energy flexibility,
      • Energy production
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies,
      • Water use,
      • Indoor air quality,
      • Construction materials
      A2P001: Other
      A2P002: Tools/strategies/methods applied for each of the above-selected fields
      A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streamsMethods involve studying the feasibility of digital PED references for the case cities about their energy, environmental, and economic performance by EnergyPlus tool. In case of insufficient energy data and the need of high resolution data, ‘Gaussian mixture model and expectation-maximization algorithm’ and ‘time-series decomposition-recombination’ method will be used to supplement data to EnergyPlus. The feasibility results will be returned to stakeholders for iterative discussion, and the iterative results will be used to update digital references. Replication plans are developed based on such a cooperation process for strategies to implement PEDs. If a PED is demonstrated during the project period, the measured data will be used to verify the feasibility model to optimize previous results (WP7– R3 & R4). In the MAKING-CITY project, the overall PED design method is developed, which will be further optimised in this project. In addition, PED-ACT will use the methods and knowledge, including how to choose a suitable PED in a city, energy balance calculation, and technologies available for PED. The RUGGEDISED project outputs the governance model into the replication plan in PED-ACT. Its ‘smart city open-data decision platform’ will illustrate an excellent example for the database in PED-ACT. The IEA EBC Annex 83 and Cost Action 19126 create the basis for data collection, developing existing PED databases, characterization of PED, and review of regulations of PED, as well as development of simulation tools. The UBEM project further enables a detailed high-resolution energy balance calculation of PED.Load calculation and system optimisation: City Energy Analyst Identification of stranded assets for asset owners and investors to understand the carbon risks: CRREM
      A2P003: Application of ISO52000
      A2P003: Application of ISO52000NoYesNo
      A2P004: Appliances included in the calculation of the energy balance
      A2P004: Appliances included in the calculation of the energy balanceNoYesYesNo
      A2P005: Mobility included in the calculation of the energy balance
      A2P005: Mobility included in the calculation of the energy balanceNoNoNoNo
      A2P006: Description of how mobility is included (or not included) in the calculation
      A2P006: Description of how mobility is included (or not included) in the calculationMobility, till now, is not included in the energy model.Mobility is not included in the calculations.
      A2P007: Annual energy demand in buildings / Thermal demand
      A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]2.33.8620.67771.65
      A2P008: Annual energy demand in buildings / Electric Demand
      A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.331.2260.03656
      A2P009: Annual energy demand for e-mobility
      A2P009: Annual energy demand for e-mobility [GWh/annum]00
      A2P010: Annual energy demand for urban infrastructure
      A2P010: Annual energy demand for urban infrastructure [GWh/annum]0
      A2P011: Annual renewable electricity production on-site during target year
      A2P011: PVnoyesnononoyesno
      A2P011: PV - specify production in GWh/annum [GWh/annum]1.028
      A2P011: Windnonononononono
      A2P011: Wind - specify production in GWh/annum [GWh/annum]
      A2P011: Hydrononononononono
      A2P011: Hydro - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_elnonononononono
      A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_peat_elnonononononono
      A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
      A2P011: PVT_elnononoyesnonono
      A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.01818
      A2P011: Othernonononononono
      A2P011: Other - specify production in GWh/annum [GWh/annum]
      A2P012: Annual renewable thermal production on-site during target year
      A2P012: Geothermalyesnononononono
      A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Solar Thermalyesnononononono
      A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_heatyesnononononono
      A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.1
      A2P012: Waste heat+HPyesnononononono
      A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_peat_heatnonononononono
      A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: PVT_thyesnonoyesnonono
      A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]0.0825
      A2P012: Biomass_firewood_thnonononononono
      A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Othernonononononono
      A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
      A2P013: Renewable resources on-site - Additional notes
      A2P013: Renewable resources on-site - Additional notesGeothermal heatpump systems, Waste heat from data centers
      A2P014: Annual energy use
      A2P014: Annual energy use [GWh/annum]5.0880.3182.421
      A2P015: Annual energy delivered
      A2P015: Annual energy delivered [GWh/annum]0.2055
      A2P016: Annual non-renewable electricity production on-site during target year
      A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]0
      A2P017: Annual non-renewable thermal production on-site during target year
      A2P017: Gasnoyesnonononono
      A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Coalnonononononono
      A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Oilnonononononono
      A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Othernononoyesnonono
      A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]0
      A2P018: Annual renewable electricity imports from outside the boundary during target year
      A2P018: PVnoyesnonononono
      A2P018 - PV: specify production in GWh/annum if available [GWh/annum]0.707
      A2P018: Windnonononononono
      A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
      A2P018: Hydrononononononono
      A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_elnonononononono
      A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_peat_elnonononononono
      A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: PVT_elnonononononono
      A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Othernononoyesnonono
      A2P018 - Other: specify production in GWh/annum if available [GWh/annum]0.187
      A2P019: Annual renewable thermal imports from outside the boundary during target year
      A2P019: Geothermalnonononononono
      A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Solar Thermalnonononononono
      A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_heatnonononononono
      A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Waste heat+HPnonononononono
      A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_peat_heatnonononononono
      A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: PVT_thnonononononono
      A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_firewood_thnonononononono
      A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Othernononoyesnonono
      A2P019 Other: Please specify imports in GWh/annum [GWh/annum]0
      A2P020: Share of RES on-site / RES outside the boundary
      A2P020: Share of RES on-site / RES outside the boundary01.454031117397500.53839572192513000
      A2P021: GHG-balance calculated for the PED
      A2P021: GHG-balance calculated for the PED [tCO2/annum]6.93
      A2P022: KPIs related to the PED case study / PED Lab
      A2P022: Safety & Securitynone
      A2P022: Healththermal comfort diagram
      A2P022: Educationnone
      A2P022: Mobilitynone
      A2P022: Energynormalized CO2/GHG & Energy intensityapply
      A2P022: Water
      A2P022: Economic developmentcost of excess emissions
      A2P022: Housing and Community
      A2P022: Waste
      A2P022: Other
      A2P023: Technological Solutions / Innovations - Energy Generation
      A2P023: Photovoltaicsyesyesyesyesyesnono
      A2P023: Solar thermal collectorsyesnonoyesnoyesno
      A2P023: Wind Turbinesnonononononono
      A2P023: Geothermal energy systemyesnoyesyesnonono
      A2P023: Waste heat recoveryyesnonoyesyesnono
      A2P023: Waste to energyyesnononononono
      A2P023: Polygenerationnonononononono
      A2P023: Co-generationnonononononono
      A2P023: Heat Pumpyesyesyesyesyesyesno
      A2P023: Hydrogennonononononono
      A2P023: Hydropower plantnonononononono
      A2P023: Biomassnonononononono
      A2P023: Biogasnonononononono
      A2P023: Other
      A2P024: Technological Solutions / Innovations - Energy Flexibility
      A2P024: A2P024: Information and Communication Technologies (ICT)yesnonoyesnonoyes
      A2P024: Energy management systemyesnoyesnononoyes
      A2P024: Demand-side managementyesnononononono
      A2P024: Smart electricity gridnonononononono
      A2P024: Thermal Storageyesnonoyesnonono
      A2P024: Electric Storageyesnononononoyes
      A2P024: District Heating and Coolingyesnonoyesnonono
      A2P024: Smart metering and demand-responsive control systemsyesnononononono
      A2P024: P2P – buildingsnonononononono
      A2P024: Other
      A2P025: Technological Solutions / Innovations - Energy Efficiency
      A2P025: Deep Retrofittingnoyesnoyesyesnono
      A2P025: Energy efficiency measures in historic buildingsyesnononononono
      A2P025: High-performance new buildingsyesnononononoyes
      A2P025: Smart Public infrastructure (e.g. smart lighting)yesnononononono
      A2P025: Urban data platformsyesnononononono
      A2P025: Mobile applications for citizensnonononononono
      A2P025: Building services (HVAC & Lighting)noyesnoyesnonoyes
      A2P025: Smart irrigationnonononononono
      A2P025: Digital tracking for waste disposalnonononononono
      A2P025: Smart surveillancenononononoyesno
      A2P025: Other
      A2P026: Technological Solutions / Innovations - Mobility
      A2P026: Efficiency of vehicles (public and/or private)nonononononono
      A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nononononoyesno
      A2P026: e-Mobilityyesnoyesnonoyesyes
      A2P026: Soft mobility infrastructures and last mile solutionsnonononononono
      A2P026: Car-free areanonononononono
      A2P026: Other
      A2P027: Mobility strategies - Additional notes
      A2P027: Mobility strategies - Additional notesTest-Concept for bidirectional charging.
      A2P028: Energy efficiency certificates
      A2P028: Energy efficiency certificatesYesNoYesNoYes
      A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate
      A2P029: Any other building / district certificates
      A2P029: Any other building / district certificatesNoNoYes
      A2P029: If yes, please specify and/or enter notes
      A3P001: Relevant city /national strategy
      A3P001: Relevant city /national strategy
      • Energy master planning (SECAP, etc.),
      • New development strategies,
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Energy master planning (SECAP, etc.),
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Climate change adaption plan/strategy (e.g. Climate City contract)
      • Promotion of energy communities (REC/CEC),
      • Climate change adaption plan/strategy (e.g. Climate City contract)
      • Energy master planning (SECAP, etc.)
      A3P002: Quantitative targets included in the city / national strategy
      A3P002: Quantitative targets included in the city / national strategyKarşıyaka Municipality is the first local government in Turkey to sign the Covenant of Mayors in 2011. During this period, the greenhouse gas inventory of the district was carried out three times and reduction targets were set for 2020 and 2030. In the 2021 Sustainable Energy and Climate Action Plan prepared as of the end of 2021, Karşıyaka Municipality has targeted a 40% reduction in its emissions for 2030 compared to the base year 2018. In the 2021 Sustainable Energy and Climate Action Plan, Karşıyaka Municipality aims to reduce its greenhouse gas emissions from 3.96 tCO2e / person in 2018 to 2.37 tCO2e / person in 2030. System solutions such as the use of renewable energy sources, air, ground or water source heat pump, cogeneration and microcogeneration are analysed by designers in order to fully or partially meet the energy requirements for heating, cooling, ventilation, hot water, electricity and lighting for all buildings with a floor area of less than 20,000 square metres. If at least 50% of the building's total energy consumption costs are covered by one or more of these applications, the points are taken in the assessment table in the Building and housing estate business certification guide of 2023.The study aligns closely with the decarbonisation and energy reduction pathways of residential multi family buildings with 1.5°C global warming target in Sweden. This study will also contribute to the achievement of the carbon neturality of whole Borlänge city by 2030.
      A3P003: Strategies towards decarbonization of the gas grid
      A3P003: Strategies towards decarbonization of the gas grid
      • Electrification of Heating System based on Heat Pumps,
      • Electrification of Cooking Methods,
      • Biogas
      • Electrification of Heating System based on Heat Pumps
      • Electrification of Heating System based on Heat Pumps
      • Biogas
      • Electrification of Heating System based on Heat Pumps
      A3P003: Other
      A3P004: Identification of needs and priorities
      A3P004: Identification of needs and prioritiesAccording to the model developed for the district, the electrification of heating and cooling is necessary.Therefore, there needs to be the implementation of a heat pump. The building-integrated photovoltaic panelsshould follow. Through net-metering practices, the district is expected to reach energy positivity throughthis scenario.In our project, we carried out a comprehensive exploration of strategies to achieve positive energy districts in a Swedish residential portfolio. The focus on urban energy transitions necessitates a holistic approach that integrates building retrofit, solar technology exploration, and heating supply optimisation. Exploration of Local Solar Sources: The analysis reveals varying solar irradiance resources throughout the year, emphasizing the importance of strategic placement. Integration of combined photovoltaic and thermal panels into building envelopes demonstrates the potential to cover a significant portion of the energy demand even in Sweden. Heating Supply Optimisation with Solar Technologies: Despite the surplus energy production from on-site solar technology, challenges arise due to temporal energy asymmetry. The introduction of heat pumps emerges as a feasible solution to balance energy gaps, utilising both rejected and free heat. Optimisation scenarios, utilising a combination of geothermal heat pumps, water source heat pumps, and PVT, showcase remarkable reductions in emissions and primary energy consumption. Urban Form and Energy Infrastructure Design: We realised the importance of returning to urban form and energy infrastructure design to optimise future residential portfolio potential. Building layout design, influenced by zoning regulations and innovative typologies, plays a crucial role in achieving district level energy efficiency. Future challenges, including demographic shifts, e-mobility, and climate change, necessitate a more holistic approach to energy infrastructure design, addressing not only heating and electricity demands but also cooling requirements.
      A3P005: Sustainable behaviour
      A3P005: Sustainable behaviourIn Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.While our investigation primarily centres on technical optimisation within Positive Energy District (PED) development, it is essential to acknowledge the broader scope encompassing social and governance dimensions. Specifically, understanding stakeholders' willingness to embrace technical recommendations upon project completion is important. Several potential influencing factors merit exploration, including economic considerations, technical optimisation-associated embodied carbon balance, the general public's technical perceptions, and operational feasibility. Evaluating these aspects holistically not only enhances the efficacy of PED initiatives but also fosters greater acceptance and participation within the communities they serve.
      A3P006: Economic strategies
      A3P006: Economic strategies
      • Innovative business models,
      • Blockchain
      • Open data business models,
      • Life Cycle Cost,
      • Circular economy models,
      • Local trading
      • Innovative business models,
      • Other
      A3P006: Otheroperational savings through efficiency measures
      A3P007: Social models
      A3P007: Social models
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Citizen Social Research,
      • Prevention of energy poverty,
      • Citizen/owner involvement in planning and maintenance
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Affordability
      • Strategies towards (local) community-building,
      • Behavioural Change / End-users engagement,
      • Social incentives,
      • Affordability,
      • Digital Inclusion
      • Behavioural Change / End-users engagement
      • Affordability
      A3P007: Other
      A3P008: Integrated urban strategies
      A3P008: Integrated urban strategies
      • Strategic urban planning,
      • District Energy plans,
      • City Vision 2050,
      • SECAP Updates
      • Digital twinning and visual 3D models,
      • District Energy plans,
      • SECAP Updates
      • Strategic urban planning,
      • Digital twinning and visual 3D models,
      • District Energy plans,
      • Building / district Certification
      • Building / district Certification
      A3P008: Other
      A3P009: Environmental strategies
      A3P009: Environmental strategies
      • Energy Neutral
      • Energy Neutral,
      • Low Emission Zone,
      • Pollutants Reduction
      • Low Emission Zone,
      • Net zero carbon footprint,
      • Life Cycle approach,
      • Sustainable Urban drainage systems (SUDS)
      • Energy Neutral,
      • Carbon-free
      • Other
      A3P009: OtherPositive Energy Balance for the demo site
      A3P010: Legal / Regulatory aspects
      A3P010: Legal / Regulatory aspectsAt national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricity
      B1P001: PED/PED relevant concept definition
      B1P001: PED/PED relevant concept definitionThe pilot area was selected on the basis of several criteria: its location within areas prioritised by Karşıyaka Municipality for combating climate change, compliance with the building regulations set out in the Green Building-Site-Operation (2023) guide, which are in line with Municipality's energy policy, the presence of open spaces that allow various applications for renewable energy, proximity to public facilities such as schools and municipal services, the availability of data on energy consumption (e.g. electricity and natural gas bills) and architectural features, the potential for community building, the suitability for solar energy systems, considering orientation and roof structure, and the potential for future building renovations. The aim of the initiative is to explore the feasibility of transforming the district into a Positive Energy District (PED).The Rymdgatan's Residential Portfolio in Sweden presents a compelling case study for its classification as a PED-related research, given its alignment with sustainable behaviours and overarching PED development principles as follows: Inclusivity and Social Equity: The residential portfolio situated in Rymdgatan caters primarily to a low-income community. By focusing on this demographic, the project addresses critical aspects of social equity within sustainable urban development. Ensuring access to energy-efficient housing and amenities for economically disadvantaged populations not only fosters social cohesion but also mitigates energy poverty, a pressing concern in many urban contexts. Multifamily Residential Building: The inclusion of multifamily residential buildings within the portfolio underscores a commitment to density and efficient land use, both essential components of sustainable urban design. Such developments promote resource optimisation by consolidating housing units, thereby reducing per capita energy consumption and infrastructure demands. Moreover, multifamily dwellings often facilitate community engagement and shared resource management, fostering a culture of sustainability among residents. Low Carbon Retrofitting and Transition: The overarching initiative to transition the entire Jakobsgårdarna district. The included Rymdgatan portfolio, towards low carbon retrofitting, represents a significant example of decarbonization and climate resilience. By integrating energy-efficient technologies and renewable energy solutions into existing infrastructure, the project not only reduces carbon emissions but also serves as a blueprint for revitalising old urban environments sustainably. This holistic approach to retrofitting demonstrates a systemic commitment to environmental stewardship and long-term sustainability. Climate Adaptation and Renewable Energy Integration: Despite Sweden's climatic challenges, including lower solar resources during winter months, the Rymdgatan project leverages its geographical context to optimize renewable energy utilization. Sweden's greater solar resource availability during summer and geothermal potentials complement the design's emphasis on seasonal energy planning, where surplus energy generated during peak periods can be stored or redistributed efficiently. By embracing climate-responsive design strategies, the project demonstrates resilience in the face of climate variability while harnessing renewable energy potential effectively.
      B1P002: Motivation behind PED/PED relevant project development
      B1P002: Motivation behind PED/PED relevant project developmentBorlänge city has committed to become the carbon-neutral city by 2030.
      B1P003: Environment of the case study area
      B2P003: Environment of the case study areaUrban areaUrban areaUrban areaRural
      B1P004: Type of district
      B2P004: Type of district
      • Renovation
      • Renovation
      • Renovation
      • New construction,
      • Renovation
      • New construction,
      • Renovation
      B1P005: Case Study Context
      B1P005: Case Study Context
      • Retrofitting Area
      • Retrofitting Area
      • Re-use / Transformation Area,
      • Retrofitting Area
      • Re-use / Transformation Area,
      • New Development,
      • Retrofitting Area
      • Preservation Area
      • New Development
      B1P006: Year of construction
      B1P006: Year of construction20051990
      B1P007: District population before intervention - Residential
      B1P007: District population before intervention - Residential100
      B1P008: District population after intervention - Residential
      B1P008: District population after intervention - Residential100
      B1P009: District population before intervention - Non-residential
      B1P009: District population before intervention - Non-residential6
      B1P010: District population after intervention - Non-residential
      B1P010: District population after intervention - Non-residential6
      B1P011: Population density before intervention
      B1P011: Population density before intervention0000000
      B1P012: Population density after intervention
      B1P012: Population density after intervention0000.010658622423328000
      B1P013: Building and Land Use before intervention
      B1P013: Residentialnoyesnoyesnonono
      B1P013 - Residential: Specify the sqm [m²]1027954360
      B1P013: Officenonononononono
      B1P013 - Office: Specify the sqm [m²]
      B1P013: Industry and Utilitynonononoyesnono
      B1P013 - Industry and Utility: Specify the sqm [m²]
      B1P013: Commercialnonononononono
      B1P013 - Commercial: Specify the sqm [m²]
      B1P013: Institutionalnonononononono
      B1P013 - Institutional: Specify the sqm [m²]
      B1P013: Natural areasnonononononono
      B1P013 - Natural areas: Specify the sqm [m²]
      B1P013: Recreationalnonononononono
      B1P013 - Recreational: Specify the sqm [m²]
      B1P013: Dismissed areasnonononononono
      B1P013 - Dismissed areas: Specify the sqm [m²]
      B1P013: Othernononoyesnonono
      B1P013 - Other: Specify the sqm [m²]706
      B1P014: Building and Land Use after intervention
      B1P014: Residentialnoyesnoyesyesnono
      B1P014 - Residential: Specify the sqm [m²]1027954360
      B1P014: Officenonononoyesnono
      B1P014 - Office: Specify the sqm [m²]
      B1P014: Industry and Utilitynonononoyesnono
      B1P014 - Industry and Utility: Specify the sqm [m²]
      B1P014: Commercialnonononononono
      B1P014 - Commercial: Specify the sqm [m²]
      B1P014: Institutionalnonononononono
      B1P014 - Institutional: Specify the sqm [m²]
      B1P014: Natural areasnonononononono
      B1P014 - Natural areas: Specify the sqm [m²]
      B1P014: Recreationalnonononoyesnono
      B1P014 - Recreational: Specify the sqm [m²]
      B1P014: Dismissed areasnonononononono
      B1P014 - Dismissed areas: Specify the sqm [m²]
      B1P014: Othernononoyesyesnono
      B1P014 - Other: Specify the sqm [m²]706
      B2P001: PED Lab concept definition
      B2P001: PED Lab concept definitionGroningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.
      B2P002: Installation life time
      B2P002: Installation life timeThe MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.
      B2P003: Scale of action
      B2P003: ScaleDistrict
      B2P004: Operator of the installation
      B2P004: Operator of the installationThe Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P005: Replication framework: Applied strategy to reuse and recycling the materialsGroningen does not have a strategy to reuse and recyle materials
      B2P006: Circular Economy Approach
      B2P006: Do you apply any strategy to reuse and recycling the materials?No
      B2P006: Other
      B2P007: Motivation for developing the PED Lab
      B2P007: Motivation for developing the PED Lab
      • Civic
      B2P007: Other
      B2P008: Lead partner that manages the PED Lab
      B2P008: Lead partner that manages the PED LabMunicipality
      B2P008: Other
      B2P009: Collaborative partners that participate in the PED Lab
      B2P009: Collaborative partners that participate in the PED Lab
      • Academia,
      • Private,
      • Industrial,
      • Other
      B2P009: Otherresearch companies, monitoring company, ict company
      B2P010: Synergies between the fields of activities
      B2P010: Synergies between the fields of activities
      B2P011: Available facilities to test urban configurations in PED Lab
      B2P011: Available facilities to test urban configurations in PED Lab
      • Buildings,
      • Demand-side management,
      • Energy storage,
      • Energy networks,
      • Waste management,
      • Lighting,
      • E-mobility,
      • Information and Communication Technologies (ICT),
      • Social interactions,
      • Business models
      B2P011: Other
      B2P012: Incubation capacities of PED Lab
      B2P012: Incubation capacities of PED Lab
      • Tools for prototyping and modelling
      B2P013: Availability of the facilities for external people
      B2P013: Availability of the facilities for external people
      B2P014: Monitoring measures
      B2P014: Monitoring measures
      • Execution plan,
      • Available data,
      • Type of measured data,
      • Equipment,
      • Level of access
      B2P015: Key Performance indicators
      B2P015: Key Performance indicators
      • Energy,
      • Social,
      • Economical / Financial
      B2P016: Execution of operations
      B2P016: Execution of operations
      B2P017: Capacities
      B2P017: Capacities
      B2P018: Relations with stakeholders
      B2P018: Relations with stakeholdersStakeholder participation supported by socio-economic research
      B2P019: Available tools
      B2P019: Available tools
      • Energy modelling,
      • Social models,
      • Business and financial models
      B2P019: Available tools
      B2P020: External accessibility
      B2P020: External accessibility
      C1P001: Unlocking Factors
      C1P001: Recent technological improvements for on-site RES production3 - Moderately important5 - Very important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
      C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock3 - Moderately important4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P001: Energy Communities, P2P, Prosumers concepts4 - Important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant
      C1P001: Storage systems and E-mobility market penetration4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
      C1P001: Decreasing costs of innovative materials5 - Very important5 - Very important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant
      C1P001: Financial mechanisms to reduce costs and maximize benefits5 - Very important4 - Important4 - Important5 - Very important1 - Unimportant1 - Unimportant
      C1P001: The ability to predict Multiple Benefits3 - Moderately important4 - Important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
      C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important4 - Important5 - Very important4 - Important1 - Unimportant1 - Unimportant
      C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important2 - Slightly important4 - Important5 - Very important1 - Unimportant1 - Unimportant
      C1P001: Social acceptance (top-down)3 - Moderately important5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant
      C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)4 - Important5 - Very important4 - Important4 - Important1 - Unimportant1 - Unimportant
      C1P001: Presence of integrated urban strategies and plans3 - Moderately important5 - Very important4 - Important5 - Very important1 - Unimportant1 - Unimportant
      C1P001: Multidisciplinary approaches available for systemic integration2 - Slightly important4 - Important4 - Important5 - Very important1 - Unimportant1 - Unimportant
      C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects3 - Moderately important5 - Very important4 - Important4 - Important1 - Unimportant1 - Unimportant
      C1P001: Availability of RES on site (Local RES)4 - Important5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant
      C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders3 - Moderately important5 - Very important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant
      C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P001: Any other UNLOCKING FACTORS (if any)
      C1P002: Driving Factors
      C1P002: Climate Change adaptation need2 - Slightly important5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant
      C1P002: Climate Change mitigation need (local RES production and efficiency)3 - Moderately important5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant
      C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
      C1P002: Urban re-development of existing built environment4 - Important3 - Moderately important4 - Important4 - Important1 - Unimportant1 - Unimportant
      C1P002: Economic growth need2 - Slightly important4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
      C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P002: Territorial and market attractiveness2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P002: Energy autonomy/independence2 - Slightly important5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
      C1P002: Any other DRIVING FACTOR4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P002: Any other DRIVING FACTOR (if any)Earthquakes due to gas extraction
      C1P003: Administrative barriers
      C1P003: Difficulty in the coordination of high number of partners and authorities3 - Moderately important4 - Important5 - Very important4 - Important1 - Unimportant1 - Unimportant
      C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important3 - Moderately important4 - Important4 - Important1 - Unimportant1 - Unimportant
      C1P003: Lack of public participation1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
      C1P003: Lack of institutions/mechanisms to disseminate information2 - Slightly important4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
      C1P003:Long and complex procedures for authorization of project activities4 - Important3 - Moderately important4 - Important5 - Very important1 - Unimportant1 - Unimportant
      C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
      C1P003: Complicated and non-comprehensive public procurement3 - Moderately important5 - Very important4 - Important5 - Very important1 - Unimportant1 - Unimportant
      C1P003: Fragmented and or complex ownership structure4 - Important5 - Very important5 - Very important4 - Important1 - Unimportant1 - Unimportant
      C1P003: City administration & cross-sectoral attitude/approaches (silos)5 - Very important5 - Very important4 - Important5 - Very important1 - Unimportant1 - Unimportant
      C1P003: Lack of internal capacities to support energy transition1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P003: Any other Administrative BARRIER (if any)
      C1P004: Policy barriers
      C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant
      C1P004: Lacking or fragmented local political commitment and support on the long term1 - Unimportant4 - Important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant
      C1P004: Lack of Cooperation & support between national-regional-local entities2 - Slightly important5 - Very important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
      C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P004: Any other Political BARRIER (if any)
      C1P005: Legal and Regulatory barriers
      C1P005: Inadequate regulations for new technologies4 - Important5 - Very important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant
      C1P005: Regulatory instability3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
      C1P005: Non-effective regulations3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
      C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
      C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
      C1P005: Insufficient or insecure financial incentives3 - Moderately important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
      C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
      C1P005: Shortage of proven and tested solutions and examples2 - Slightly important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
      C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P005: Any other Legal and Regulatory BARRIER (if any)
      C1P006: Environmental barriers
      C1P006: Environmental barriers- Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Air and Water Pollution: 2 - Natural Disasters: 1 - Water Scarcity: 12 - Slightly important
      C1P007: Technical barriers
      C1P007: Lack of skilled and trained personnel4 - Important5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
      C1P007: Deficient planning2 - Slightly important4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
      C1P007: Retrofitting work in dwellings in occupied state2 - Slightly important5 - Very important4 - Important4 - Important1 - Unimportant1 - Unimportant
      C1P007: Lack of well-defined process3 - Moderately important4 - Important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant
      C1P007: Inaccuracy in energy modelling and simulation4 - Important5 - Very important2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant
      C1P007: Lack/cost of computational scalability1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
      C1P007: Grid congestion, grid instability4 - Important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P007: Negative effects of project intervention on the natural environment1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
      C1P007: Energy retrofitting work in dense and/or historical urban environment3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P007: Difficult definition of system boundaries1 - Unimportant4 - Important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P007: Any other Thecnical BARRIER (if any)
      C1P008: Social and Cultural barriers
      C1P008: Inertia2 - Slightly important5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
      C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P008: Low acceptance of new projects and technologies2 - Slightly important5 - Very important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P008: Difficulty of finding and engaging relevant actors2 - Slightly important4 - Important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant
      C1P008: Lack of trust beyond social network4 - Important5 - Very important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant
      C1P008: Rebound effect2 - Slightly important5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
      C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
      C1P008: Exclusion of socially disadvantaged groups5 - Very important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
      C1P008: Non-energy issues are more important and urgent for actors4 - Important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
      C1P008: Hostile or passive attitude towards energy collaboration2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
      C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P008: Any other Social BARRIER (if any)
      C1P009: Information and Awareness barriers
      C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
      C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
      C1P009: Lack of awareness among authorities2 - Slightly important4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P009: High costs of design, material, construction, and installation4 - Important5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant
      C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P009: Any other Information and Awareness BARRIER (if any)
      C1P010: Financial barriers
      C1P010: Hidden costs2 - Slightly important4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P010: Insufficient external financial support and funding for project activities3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P010: Economic crisis1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P010: Risk and uncertainty3 - Moderately important4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P010: Lack of consolidated and tested business models3 - Moderately important4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P010: Limited access to capital and cost disincentives2 - Slightly important5 - Very important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P010: Any other Financial BARRIER (if any)
      C1P011: Market barriers
      C1P011: Split incentives5 - Very important5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
      C1P011: Energy price distortion4 - Important5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
      C1P011: Energy market concentration, gatekeeper actors (DSOs)4 - Important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
      C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P011: Any other Market BARRIER (if any)
      C1P012: Stakeholders involved
      C1P012: Government/Public Authorities
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • Monitoring/operation/management
      C1P012: Research & Innovation
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Planning/leading
      C1P012: Financial/Funding
      • Design/demand aggregation,
      • Construction/implementation
      • None
      C1P012: Analyst, ICT and Big Data
      • Design/demand aggregation,
      • Monitoring/operation/management
      • None
      C1P012: Business process management
      • Planning/leading
      • None
      C1P012: Urban Services providers
      • Design/demand aggregation,
      • Monitoring/operation/management
      • None
      C1P012: Real Estate developers
      • Construction/implementation
      • Design/demand aggregation
      C1P012: Design/Construction companies
      • Construction/implementation
      • None
      C1P012: End‐users/Occupants/Energy Citizens
      • None
      • Monitoring/operation/management
      C1P012: Social/Civil Society/NGOs
      • Planning/leading,
      • Design/demand aggregation
      • Monitoring/operation/management
      C1P012: Industry/SME/eCommerce
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • None
      C1P012: Other
      C1P012: Other (if any)
      Summary

      Authors (framework concept)

      Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

      Contributors (to the content)

      Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

      Implemented by

      Boutik.pt: Filipe Martins, Jamal Khan
      Marek Suchánek (Czech Technical University in Prague)