Filters:
NameProjectTypeCompare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Uncompare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Uncompare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Uncompare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Uncompare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleGroningen, PED North
Istanbul, Ozyegin University Campus
Borlänge, Rymdgatan’s Residential Portfolio
Lublin
Findhorn, the Park
Maia, Sobreiro Social Housing
Istanbul, Kadikoy district, Caferaga
Oulu, Kaukovainio
Salzburg, Gneis district
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabGroningen, PED NorthIstanbul, Ozyegin University CampusBorlänge, Rymdgatan’s Residential PortfolioLublinFindhorn, the ParkMaia, Sobreiro Social HousingIstanbul, Kadikoy district, CaferagaOulu, KaukovainioSalzburg, Gneis district
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynononoyesyesnoyesyesyes
PED relevant case studynoyesyesnononononono
PED Lab.yesnonononoyesnonono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesyesyesyesyesyesyes
Annual energy surplusyesnoyesyesyesnononoyes
Energy communityyesnoyesyesyesnoyesnoyes
Circularityyesnonoyesyesnonoyesno
Air quality and urban comfortnoyesnoyesnonononoyes
Electrificationnoyesyesnoyesnonoyesno
Net-zero energy costnononoyesnonononono
Net-zero emissionyesnonoyesyesnononono
Self-sufficiency (energy autonomous)nononoyesnonononono
Maximise self-sufficiencynonoyesyesyesyesnonono
Othernoyesnonononononono
Other (A1P004)almost nZEB district
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabImplementation PhaseImplementation PhasePlanning PhasePlanning PhaseIn operationPlanning PhasePlanning PhaseIn operationCompleted
A1P006: Start Date
A1P006: Start date12/1810/2401/6210/2101/2001/20
A1P007: End Date
A1P007: End date12/2310/2810/2412/2201/24
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
  • General statistical datasets
  • Open data city platform – different dashboards
  • General statistical datasets,
  • GIS open datasets,
  • Vehicle registration datasets
  • Monitoring data available within the districts,
  • Meteorological open data
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • TNO, Hanze, RUG,
  • Ped noord book
          • Alpagut, B., Lopez Romo, A., Hernández, P., Tabanoğlu, O., & Hermoso Martinez, N. (2021). A GIS-Based Multicriteria Assessment for Identification of Positive Energy Districts Boundary in Cities. Energies, 14(22), 7517.
          A1P011: Geographic coordinates
          X Coordinate (longitude):6.53512129.25830015.39449522.5684-3.6099-8.37355729.0263195268751725.51759508409350713.041216
          Y Coordinate (latitude):53.23484641.03060060.48660951.246557.653041.13580440.9884139524746164.9928809817313247.771019
          A1P012: Country
          A1P012: CountryNetherlandsTurkeySwedenPolandUnited KingdomPortugalTurkeyFinlandAustria
          A1P013: City
          A1P013: CityGroningenIstanbulBorlängeLublinFindhornMaiaIstanbulOuluSalzburg
          A1P014: Climate Zone (Köppen Geiger classification)
          A1P014: Climate Zone (Köppen Geiger classification).CfaCfaDsbCfbDwcCsbCsbDfcDfb
          A1P015: District boundary
          A1P015: District boundaryFunctionalGeographicGeographicGeographicGeographicVirtualGeographicGeographic
          OtherRegional (close to virtual)
          A1P016: Ownership of the case study/PED Lab
          A1P016: Ownership of the case study/PED Lab:MixedPrivateMixedPrivateMixedPublicMixedMixedMixed
          A1P017: Ownership of the land / physical infrastructure
          A1P017: Ownership of the land / physical infrastructure:Multiple OwnersSingle OwnerSingle OwnerMultiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersSingle OwnerSingle Owner
          A1P018: Number of buildings in PED
          A1P018: Number of buildings in PED7151051602213617
          A1P019: Conditioned space
          A1P019: Conditioned space [m²]1.01370021664.7311605219700199762
          A1P020: Total ground area
          A1P020: Total ground area [m²]17.132285.400994572833.47180000115172760000
          A1P021: Floor area ratio: Conditioned space / total ground area
          A1P021: Floor area ratio: Conditioned space / total ground area000000000
          A1P022: Financial schemes
          A1P022a: Financing - PRIVATE - Real estateyesyesnonoyesnonoyesno
          A1P022a: Add the value in EUR if available [EUR]
          A1P022b: Financing - PRIVATE - ESCO schemenonononononononono
          A1P022b: Add the value in EUR if available [EUR]
          A1P022c: Financing - PRIVATE - Otheryesnonononoyesnonono
          A1P022c: Add the value in EUR if available [EUR]
          A1P022d: Financing - PUBLIC - EU structural fundingnonononononononono
          A1P022d: Add the value in EUR if available [EUR]
          A1P022e: Financing - PUBLIC - National fundingyesnononoyesyesnonono
          A1P022e: Add the value in EUR if available [EUR]
          A1P022f: Financing - PUBLIC - Regional fundingnononononoyesnonono
          A1P022f: Add the value in EUR if available [EUR]
          A1P022g: Financing - PUBLIC - Municipal fundingyesnonononononoyesno
          A1P022g: Add the value in EUR if available [EUR]
          A1P022h: Financing - PUBLIC - Othernonononononononono
          A1P022h: Add the value in EUR if available [EUR]
          A1P022i: Financing - RESEARCH FUNDING - EUyesyesnonoyesyesyesyesyes
          A1P022i: Add the value in EUR if available [EUR]
          A1P022j: Financing - RESEARCH FUNDING - Nationalnonononononononono
          A1P022j: Add the value in EUR if available [EUR]
          A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononononono
          A1P022k: Add the value in EUR if available [EUR]
          A1P022l: Financing - RESEARCH FUNDING - Othernonononononononono
          A1P022l: Add the value in EUR if available [EUR]
          A1P022: Other
          A1P023: Economic Targets
          A1P023: Economic Targets
          • Boosting local businesses,
          • Boosting local and sustainable production
          • Positive externalities,
          • Boosting local and sustainable production,
          • Boosting consumption of local and sustainable products
          • Positive externalities,
          • Boosting local businesses,
          • Boosting consumption of local and sustainable products
          • Job creation,
          • Positive externalities,
          • Boosting local businesses,
          • Boosting local and sustainable production,
          • Boosting consumption of local and sustainable products
          • Positive externalities,
          • Boosting local and sustainable production
          • Job creation,
          • Positive externalities,
          • Other
          • Positive externalities,
          • Boosting local and sustainable production
          • Positive externalities,
          • Other
          A1P023: OtherBoosting new investors to the area, - Increasing the touristic value of area and urban mobility at the area, - Increasing the regional value (housing price, etc.), - Providing economic advantages by switching to positive energy productionDeveloping and demonstrating new solutionsBoosting social cooperation and social aid
          A1P024: More comments:
          A1P024: More comments:In addition to having the most energy efficient academic building in Turkey, the university campus also has 3 buildings with LEED NC Campus certificate and LEED BD+C Gold certificate. In addition, it aims to continuously improve the energy efficiency objectives on campus in an innovative way. For this purpose, energy management and storage systems are being installed in the Dormitory 6 building, which is used as the demo area of the LEGOFIT project, for the purpose of turning it into a PED project.Lublin PED Area is geographically bounded and the ambition is to reach Self-Sufficiency. There is a shopping centre with a large rooftop area for solar generation and there are also an empty lot (just on the east side of the building) and a carpark area (on the north side) next to the commercial centre. These areas can also be evaluated for on-site (on the ground – or canopies for cars) energy generation. There are also new built (mainly in 2012) residential blocks with high efficiency and this district is so-called an “eco-district”. Thanks to the District Heating Grid (DHN), all buildings are connected to each other the network has potential for sharing mechanisms in the PED Area. Another opportunity for renewable energy is that these buildings are connected to more or less the end point of DHN and for this reason, a waste heat potential from the return pipe may also be considered. There are also small size residentials, that are not connected to the DHN, around the PED area and this enlightened the technical team for exporting energy from PED to these areas with a new infrastructure.
          A1P025: Estimated PED case study / PED LAB costs
          A1P025: Estimated PED case study / PED LAB costs [mil. EUR]15
          Contact person for general enquiries
          A1P026: NameJasper Tonen, Elisabeth KoopsCem KeskinJingchun ShenDorota Wolińska-PietrzakStefano NebioloAdelina RodriguesMr. Dogan UNERISamuli RinneAbel Magyari
          A1P027: OrganizationMunicipality of GroningenCenter for Energy, Environment and Economy, Ozyegin UniversityHögskolan DalarnaLublin MunicipalityFindhorn Innovation Research and Education CICMaia Municipality (CM Maia) – Energy and Mobility divisionMunicipality of KadikoyCity of OuluABUD
          A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversityMunicipality / Public BodiesResearch Center / UniversityMunicipality / Public BodiesMunicipality / Public BodiesMunicipality / Public BodiesResearch Center / University
          A1P028: Other
          A1P029: EmailJasper.tonen@groningen.nlcem.keskin@ozyegin.edu.trjih@du.sedwolinska@lublin.eustefanonebiolo@gmail.comdscm.adelina@cm-maia.ptdogan.uneri@kadikoy.bel.trsamuli.rinne@ouka.fimagyari.abel@abud.hu
          Contact person for other special topics
          A1P030: NameM. Pınar MengüçXingxing ZhangCarolina Gonçalves (AdEPorto)Mrs. Damla MUHCU YILMAZSamuli RinneStrassl Ingeborg
          A1P031: Emailpinar.menguc@ozyegin.edu.trxza@du.secarolinagoncalves@adeporto.eudamla.muhcu@kadikoy.bel.trsamuli.rinne@ouka.fiinge.strassl@salzburg.gv.at
          Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYesYes
          A2P001: Fields of application
          A2P001: Fields of application
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Urban comfort (pollution, heat island, noise level etc.),
          • Waste management
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies,
          • Waste management,
          • Indoor air quality,
          • Construction materials
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Construction materials
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Urban comfort (pollution, heat island, noise level etc.),
          • Digital technologies,
          • Indoor air quality
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Waste management
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Urban comfort (pollution, heat island, noise level etc.),
          • Digital technologies
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Urban comfort (pollution, heat island, noise level etc.),
          • Digital technologies
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies,
          • Water use,
          • Indoor air quality
          • Energy efficiency,
          • Energy flexibility,
          • Energy production
          A2P001: Other
          A2P002: Tools/strategies/methods applied for each of the above-selected fields
          A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streamsLEED NC Campus + LEGOFIT Project Energy Efficiency: Tri- generation, Compliance with ISO 50001, ASHRAE 90.1, energy efficient appliances, HVAC and lighting Energy flexibility: Energy demand management Energy production: Solar PVs Onsite + (to be installed more) E-mobility: EV Charging stations Indoor Air Quality: Energy Management System, Compliance with ASHRAE 62.1, ASHRAE 55 Construction materials: Passive systems, LEED certified buildings, innovative materials such as PCM Waste Management: Zero waste documentLoad calculation and system optimisation: City Energy Analyst Identification of stranded assets for asset owners and investors to understand the carbon risks: CRREMSEE: D4.1 - Methodology and Guidelines for PED design https://makingcity.eu/results/#1551708358627-aefa76ef-66b2Energy production: - installation of photovoltaic systems for renewable on-site energy production; - installation of a BIPV demonstrator for the City Hall building. Energy flexibility: - implementation of an energy community through an active citizens involvement process. Digital technologies: - smart-meters installation in some dwellings in order to monitor consumption and suggest more sustainable energy behaviours. [PCP] Through https://balcaodigital.e-redes.pt/consumptions/history “Espaço Municipal” (https://www.espacomunicipal.pt/pt/) might access history of consumption up to midnight of the previous day. E-mobility: - Installation of new charging stations for electric vehicles; Urban comfort and air quality: - Monitoring units for air pollutants concentration (PM2.5, PM10, NO2) [PCP] Currently we are monitoring CO, O3, NO2, SO2, noise, PM2.5 and PM10 at a point 267 m east from the four buildings southeast of Sobreiro area:Different kinds of waste heat streams are utilized by heat pumps. These are district heating return water (actually this is an indirect way to cool down the flue gas in the scrubber), ventilation exhaust air and sewage water. As a normal case, in ventilation also air-to-air heat exchanges are used. PV power is harvested also, in vertical and more horizontal panels. Buildings are well insulated to decrease the needed amount of heating energy in the first place.- Dynamic district, and building scale energy modelling - Microclimate modelling - Klimaaktiv certification system - Energy community - Flexibility with shared heating and electricity systems
          A2P003: Application of ISO52000
          A2P003: Application of ISO52000NoYesNoNoNoYesNoYes
          A2P004: Appliances included in the calculation of the energy balance
          A2P004: Appliances included in the calculation of the energy balanceNoYesYesYesYesNoNoNo
          A2P005: Mobility included in the calculation of the energy balance
          A2P005: Mobility included in the calculation of the energy balanceNoNoNoNoNoNoNo
          A2P006: Description of how mobility is included (or not included) in the calculation
          A2P006: Description of how mobility is included (or not included) in the calculationMobility, till now, is not included in the energy model.Not included, the campus is a non car area except emergenciesNot included. However, there is a charging place for a shared EV in one building.
          A2P007: Annual energy demand in buildings / Thermal demand
          A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]2.30.67770.942.1
          A2P008: Annual energy demand in buildings / Electric Demand
          A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.330.036561.20.100.2
          A2P009: Annual energy demand for e-mobility
          A2P009: Annual energy demand for e-mobility [GWh/annum]0
          A2P010: Annual energy demand for urban infrastructure
          A2P010: Annual energy demand for urban infrastructure [GWh/annum]0
          A2P011: Annual renewable electricity production on-site during target year
          A2P011: PVnoyesnonoyesyesyesyesyes
          A2P011: PV - specify production in GWh/annum [GWh/annum]0.510.10.7770664
          A2P011: Windnonononoyesnononono
          A2P011: Wind - specify production in GWh/annum [GWh/annum]
          A2P011: Hydrononononononononono
          A2P011: Hydro - specify production in GWh/annum [GWh/annum]
          A2P011: Biomass_elnonononononononono
          A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
          A2P011: Biomass_peat_elnonononononononono
          A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
          A2P011: PVT_elnonoyesnononononono
          A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.01818
          A2P011: Othernonononononononono
          A2P011: Other - specify production in GWh/annum [GWh/annum]
          A2P012: Annual renewable thermal production on-site during target year
          A2P012: Geothermalyesnononononononoyes
          A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
          A2P012: Solar Thermalyesnononoyesyesyesnono
          A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.08
          A2P012: Biomass_heatyesnononoyesnononono
          A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.1
          A2P012: Waste heat+HPyesnononoyesnonoyesno
          A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]2.2
          A2P012: Biomass_peat_heatnonononononononono
          A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
          A2P012: PVT_thyesnoyesnononononono
          A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]0.0825
          A2P012: Biomass_firewood_thnonononoyesnononono
          A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
          A2P012: Othernonononononononono
          A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
          A2P013: Renewable resources on-site - Additional notes
          A2P013: Renewable resources on-site - Additional notesGeothermal heatpump systems, Waste heat from data centers3x225 kW wind turbines + 100 kW PVTwo scenarios are conducted regarding Kadikoy PED energy generation. For the second scenario, just 0.53GWh/annum PV production is proposed.Heat is produced from DH return, refrigeration and exhaust air. The mentioned 2200 MWh/a includes HP el. consumption (about 1/6 of that)
          A2P014: Annual energy use
          A2P014: Annual energy use [GWh/annum]3.50.3181.20.742.30.819016
          A2P015: Annual energy delivered
          A2P015: Annual energy delivered [GWh/annum]0.20551.20.49
          A2P016: Annual non-renewable electricity production on-site during target year
          A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]00000-1
          A2P017: Annual non-renewable thermal production on-site during target year
          A2P017: Gasnonononononononono
          A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Coalnonononononononono
          A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Oilnonononononononono
          A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Othernonoyesnononononono
          A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]0
          A2P018: Annual renewable electricity imports from outside the boundary during target year
          A2P018: PVnoyesnonononoyesyesno
          A2P018 - PV: specify production in GWh/annum if available [GWh/annum]0.00045547-0.26
          A2P018: Windnononononononoyesno
          A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
          A2P018: Hydronononononononoyesno
          A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_elnononononononoyesno
          A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_peat_elnononononononoyesno
          A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: PVT_elnonononononononono
          A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Othernonoyesnononononono
          A2P018 - Other: specify production in GWh/annum if available [GWh/annum]0.187
          A2P019: Annual renewable thermal imports from outside the boundary during target year
          A2P019: Geothermalnonononononononono
          A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Solar Thermalnonononononononono
          A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_heatnononononononoyesno
          A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]0.7
          A2P019: Waste heat+HPnonononononononono
          A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_peat_heatnonononononononono
          A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
          A2P019: PVT_thnonononononononono
          A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_firewood_thnonononononononono
          A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Othernonoyesnononononono
          A2P019 Other: Please specify imports in GWh/annum [GWh/annum]0
          A2P020: Share of RES on-site / RES outside the boundary
          A2P020: Share of RES on-site / RES outside the boundary000.53839572192513000-2.26923076923083.28571428571430
          A2P021: GHG-balance calculated for the PED
          A2P021: GHG-balance calculated for the PED [tCO2/annum]6.930
          A2P022: KPIs related to the PED case study / PED Lab
          A2P022: Safety & Securitynone
          A2P022: Healththermal comfort diagramEncouraging a healthy lifestyleCO2) levels, Predicted Mean Vote,Predicted Percentage of Dissatisfied, Temperature, Relative Humidity, Illuminance, Daylight factor, Sound pressure levels
          A2P022: Educationnone
          A2P022: MobilitynoneModal Split, Fuel mix in mobility, Energy use for transportation, Access to public transport, Public infrastructure promoting low-carbon mobility, Number of public EV charging stations, Energy delivered for EV charging
          A2P022: Energynormalized CO2/GHG & Energy intensityFinal energy consumption, Primary energy consumption, Energy imported to PED, Energy exported from PED, RES production, PED energy balance, Energy savings in the PED, GHG emissions, Reduction of emissions, Final energy consumption per capita, Primary energy consumption per capita, Primary energy sources (shares), Buildings connected to DH-network or renewable energy grid, GHG emissions per capita, System flexibility for energy players, RES storage usage, Peak load reductionNon-renewable primary energy balance, Renewable energy ratio, Grid Purchase factor, Load cover factor/Self-generation, Supply cover factor/Self-consumption, Net energy/Net power, Peak delivered/exported power, Connection capacity credit, Total greenhouse gas emissions
          A2P022: Water
          A2P022: Economic developmentcost of excess emissionsTotal investments, Payback time, Economic value of savingsInvestment costs, Share of investments covered by grants, Maintenance-related costs, Requirement-related costs, Operation-related costs, Other costs, Net Present Value, Internal Rate of Return, Economic Value Added, Payback Period, nZEB Cost Comparison
          A2P022: Housing and CommunityDevelopment of housing prices, Housing cost overburden rate, Citizen engagement/empowerment to climate conscious actions, Inhabitants in dense areas, Energy povertyAccess to services, Affordability of energy, Affordability of housing, Democratic legitimacy, Living conditions, Social cohesion, Personal safety, Energy consciousness
          A2P022: WasteRecycling rate
          A2P022: OtherSmart Cities strategies, Quality of open data
          A2P023: Technological Solutions / Innovations - Energy Generation
          A2P023: Photovoltaicsyesyesyesyesyesyesyesyesyes
          A2P023: Solar thermal collectorsyesnoyesnoyesyesyesnono
          A2P023: Wind Turbinesnoyesnonoyesnononono
          A2P023: Geothermal energy systemyesnoyesnononononoyes
          A2P023: Waste heat recoveryyesnoyesnoyesnonoyesno
          A2P023: Waste to energyyesnononononononono
          A2P023: Polygenerationnonononononononono
          A2P023: Co-generationnoyesnononononoyesno
          A2P023: Heat Pumpyesyesyesyesyesyesyesyesno
          A2P023: Hydrogennononoyesnonononono
          A2P023: Hydropower plantnonononononononono
          A2P023: Biomassnonononoyesnonoyesno
          A2P023: Biogasnonononononononono
          A2P023: Other
          A2P024: Technological Solutions / Innovations - Energy Flexibility
          A2P024: A2P024: Information and Communication Technologies (ICT)yesyesyesyesnoyesnoyesno
          A2P024: Energy management systemyesyesnoyesyesyesnoyesyes
          A2P024: Demand-side managementyesyesnoyesnonononoyes
          A2P024: Smart electricity gridnononoyesnonononoyes
          A2P024: Thermal Storageyesnoyesyesyesnonoyesno
          A2P024: Electric Storageyesyesnoyesyesyesnonono
          A2P024: District Heating and Coolingyesyesyesyesyesnonoyesno
          A2P024: Smart metering and demand-responsive control systemsyesyesnoyesnoyesnonono
          A2P024: P2P – buildingsnonononononononoyes
          A2P024: Other
          A2P025: Technological Solutions / Innovations - Energy Efficiency
          A2P025: Deep Retrofittingnonoyesyesnoyesnoyesno
          A2P025: Energy efficiency measures in historic buildingsyesnonoyesnonononono
          A2P025: High-performance new buildingsyesyesnoyesyesnonoyesyes
          A2P025: Smart Public infrastructure (e.g. smart lighting)yesnonoyesnoyesnonono
          A2P025: Urban data platformsyesnonoyesnononoyesno
          A2P025: Mobile applications for citizensnononoyesnonononono
          A2P025: Building services (HVAC & Lighting)noyesyesyesnoyesnoyesyes
          A2P025: Smart irrigationnoyesnonononononono
          A2P025: Digital tracking for waste disposalnononononoyesnonono
          A2P025: Smart surveillancenoyesnonononononono
          A2P025: Other
          A2P026: Technological Solutions / Innovations - Mobility
          A2P026: Efficiency of vehicles (public and/or private)nononoyesnoyesnoyesno
          A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nononoyesnononoyesyes
          A2P026: e-Mobilityyesyesnoyesyesyesnoyesyes
          A2P026: Soft mobility infrastructures and last mile solutionsnoyesnononononoyesno
          A2P026: Car-free areanoyesnonononononono
          A2P026: Other
          A2P027: Mobility strategies - Additional notes
          A2P027: Mobility strategies - Additional notesShared mobility: a mobility point will be implemented and ensure the flexible use of different mobility services.
          A2P028: Energy efficiency certificates
          A2P028: Energy efficiency certificatesYesYesNoNoYesNoYesYes
          A2P028: If yes, please specify and/or enter notesEnergy Performance CertificateThe Municipal Buildings have an energy certificate, according to the Portuguese legislation.The obligatory buildijng energy classificationEnergy Performance Certificate
          A2P029: Any other building / district certificates
          A2P029: Any other building / district certificatesYesNoNoNoNoNoYes
          A2P029: If yes, please specify and/or enter notesLEED BD+C, LEED NC CAMPUSKlimaaktiv certificate, Greenpass certificate
          A3P001: Relevant city /national strategy
          A3P001: Relevant city /national strategy
          • Energy master planning (SECAP, etc.),
          • New development strategies,
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Smart cities strategies,
          • Energy master planning (SECAP, etc.),
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Promotion of energy communities (REC/CEC),
          • Climate change adaption plan/strategy (e.g. Climate City contract)
          • Smart cities strategies,
          • Urban Renewal Strategies,
          • Energy master planning (SECAP, etc.),
          • New development strategies,
          • Promotion of energy communities (REC/CEC),
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Urban Renewal Strategies,
          • Energy master planning (SECAP, etc.),
          • Promotion of energy communities (REC/CEC),
          • Climate change adaption plan/strategy (e.g. Climate City contract)
          • Urban Renewal Strategies,
          • Energy master planning (SECAP, etc.),
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Smart cities strategies,
          • Urban Renewal Strategies,
          • Energy master planning (SECAP, etc.),
          • New development strategies,
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          A3P002: Quantitative targets included in the city / national strategy
          A3P002: Quantitative targets included in the city / national strategyThe study aligns closely with the decarbonisation and energy reduction pathways of residential multi family buildings with 1.5°C global warming target in Sweden. This study will also contribute to the achievement of the carbon neturality of whole Borlänge city by 2030.Carbon neutrality by 2035
          A3P003: Strategies towards decarbonization of the gas grid
          A3P003: Strategies towards decarbonization of the gas grid
          • Electrification of Heating System based on Heat Pumps,
          • Electrification of Cooking Methods,
          • Biogas
          • Electrification of Heating System based on Heat Pumps,
          • Electrification of Cooking Methods
          • Electrification of Heating System based on Heat Pumps,
          • Other
          • Electrification of Heating System based on Heat Pumps
          • Other
          • Electrification of Heating System based on Heat Pumps,
          • Electrification of Cooking Methods
          • Electrification of Heating System based on Heat Pumps
          A3P003: OtherBoiler Automation, Energy Management System, Electric Battery Storage, Demand Management and Flexible PricingHeating GridAt a national level there are some studies regarding the decarbonization of the gas grid, but no concrete strategies so far.
          A3P004: Identification of needs and priorities
          A3P004: Identification of needs and prioritiesCarbon and Energy NeutralityIn our project, we carried out a comprehensive exploration of strategies to achieve positive energy districts in a Swedish residential portfolio. The focus on urban energy transitions necessitates a holistic approach that integrates building retrofit, solar technology exploration, and heating supply optimisation. Exploration of Local Solar Sources: The analysis reveals varying solar irradiance resources throughout the year, emphasizing the importance of strategic placement. Integration of combined photovoltaic and thermal panels into building envelopes demonstrates the potential to cover a significant portion of the energy demand even in Sweden. Heating Supply Optimisation with Solar Technologies: Despite the surplus energy production from on-site solar technology, challenges arise due to temporal energy asymmetry. The introduction of heat pumps emerges as a feasible solution to balance energy gaps, utilising both rejected and free heat. Optimisation scenarios, utilising a combination of geothermal heat pumps, water source heat pumps, and PVT, showcase remarkable reductions in emissions and primary energy consumption. Urban Form and Energy Infrastructure Design: We realised the importance of returning to urban form and energy infrastructure design to optimise future residential portfolio potential. Building layout design, influenced by zoning regulations and innovative typologies, plays a crucial role in achieving district level energy efficiency. Future challenges, including demographic shifts, e-mobility, and climate change, necessitate a more holistic approach to energy infrastructure design, addressing not only heating and electricity demands but also cooling requirements.Developing and demonstrating solutions for carbon neutrality
          A3P005: Sustainable behaviour
          A3P005: Sustainable behaviourIn Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.Under LEGOFIT project, promoting sustainable behavior for better occupant experience is a targeted aim under a work package.While our investigation primarily centres on technical optimisation within Positive Energy District (PED) development, it is essential to acknowledge the broader scope encompassing social and governance dimensions. Specifically, understanding stakeholders' willingness to embrace technical recommendations upon project completion is important. Several potential influencing factors merit exploration, including economic considerations, technical optimisation-associated embodied carbon balance, the general public's technical perceptions, and operational feasibility. Evaluating these aspects holistically not only enhances the efficacy of PED initiatives but also fosters greater acceptance and participation within the communities they serve.E. g. visualizing energy and water consumption
          A3P006: Economic strategies
          A3P006: Economic strategies
          • Innovative business models,
          • Blockchain
          • Open data business models,
          • Life Cycle Cost,
          • Circular economy models,
          • Local trading
          • Innovative business models,
          • PPP models,
          • Existing incentives
          • Innovative business models,
          • PPP models,
          • Circular economy models,
          • Demand management Living Lab,
          • Local trading
          • Open data business models,
          • Innovative business models,
          • PPP models,
          • Life Cycle Cost,
          • Circular economy models
          • Innovative business models,
          • Local trading
          A3P006: Other
          A3P007: Social models
          A3P007: Social models
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Citizen Social Research,
          • Prevention of energy poverty,
          • Citizen/owner involvement in planning and maintenance
          • Strategies towards (local) community-building,
          • Behavioural Change / End-users engagement,
          • Social incentives,
          • Affordability,
          • Digital Inclusion
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Quality of Life
          • Co-creation / Citizen engagement strategies,
          • Prevention of energy poverty,
          • Digital Inclusion,
          • Citizen/owner involvement in planning and maintenance,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Behavioural Change / End-users engagement,
          • Citizen Social Research,
          • Prevention of energy poverty,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Co-creation / Citizen engagement strategies,
          • Behavioural Change / End-users engagement,
          • Citizen Social Research,
          • Policy Forums,
          • Quality of Life,
          • Strategies towards social mix,
          • Affordability,
          • Prevention of energy poverty,
          • Citizen/owner involvement in planning and maintenance,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Strategies towards (local) community-building,
          • Behavioural Change / End-users engagement,
          • Social incentives,
          • Quality of Life,
          • Strategies towards social mix,
          • Affordability,
          • Citizen/owner involvement in planning and maintenance
          A3P007: Other
          A3P008: Integrated urban strategies
          A3P008: Integrated urban strategies
          • Strategic urban planning,
          • District Energy plans,
          • City Vision 2050,
          • SECAP Updates
          • City Vision 2050,
          • SECAP Updates,
          • Building / district Certification
          • Strategic urban planning,
          • Digital twinning and visual 3D models,
          • District Energy plans,
          • Building / district Certification
          • City Vision 2050,
          • SECAP Updates
          • City Vision 2050,
          • SECAP Updates,
          • Building / district Certification
          • Strategic urban planning,
          • Digital twinning and visual 3D models,
          • District Energy plans,
          • City Vision 2050,
          • SECAP Updates
          • Strategic urban planning,
          • District Energy plans,
          • City Vision 2050,
          • SECAP Updates
          • Building / district Certification
          A3P008: Other
          A3P009: Environmental strategies
          A3P009: Environmental strategies
          • Energy Neutral
          • Energy Neutral,
          • Low Emission Zone,
          • Net zero carbon footprint,
          • Greening strategies,
          • Cool Materials
          • Low Emission Zone,
          • Net zero carbon footprint,
          • Life Cycle approach,
          • Sustainable Urban drainage systems (SUDS)
          • Energy Neutral,
          • Low Emission Zone,
          • Net zero carbon footprint,
          • Carbon-free,
          • Life Cycle approach,
          • Greening strategies,
          • Nature Based Solutions (NBS)
          • Energy Neutral,
          • Net zero carbon footprint
          • Energy Neutral,
          • Net zero carbon footprint,
          • Pollutants Reduction
          • Energy Neutral,
          • Low Emission Zone,
          • Net zero carbon footprint
          • Energy Neutral,
          • Net zero carbon footprint
          • Energy Neutral,
          • Low Emission Zone
          A3P009: Other
          A3P010: Legal / Regulatory aspects
          A3P010: Legal / Regulatory aspectsAt national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricityISO 45001, ISO 14001, ISO 50001, Zero Waste Policy
          B1P001: PED/PED relevant concept definition
          B1P001: PED/PED relevant concept definitionThe campus should be considered a PED case study due to its exemplary commitment to sustainability and energy efficiency, as evidenced by several of its buildings achieving LEED certification. This certification underscores the campus's adherence to rigorous environmental standards and its proactive steps towards reducing carbon footprints. Also, the integration of sustainable practices across the campus aligns with the PED framework, which aims to create urban areas that produce more energy than they consume. Therefore, this campus serves as a model of how educational institutions can lead the way in fostering sustainable communities and advancing the goals of PED.The Rymdgatan's Residential Portfolio in Sweden presents a compelling case study for its classification as a PED-related research, given its alignment with sustainable behaviours and overarching PED development principles as follows: Inclusivity and Social Equity: The residential portfolio situated in Rymdgatan caters primarily to a low-income community. By focusing on this demographic, the project addresses critical aspects of social equity within sustainable urban development. Ensuring access to energy-efficient housing and amenities for economically disadvantaged populations not only fosters social cohesion but also mitigates energy poverty, a pressing concern in many urban contexts. Multifamily Residential Building: The inclusion of multifamily residential buildings within the portfolio underscores a commitment to density and efficient land use, both essential components of sustainable urban design. Such developments promote resource optimisation by consolidating housing units, thereby reducing per capita energy consumption and infrastructure demands. Moreover, multifamily dwellings often facilitate community engagement and shared resource management, fostering a culture of sustainability among residents. Low Carbon Retrofitting and Transition: The overarching initiative to transition the entire Jakobsgårdarna district. The included Rymdgatan portfolio, towards low carbon retrofitting, represents a significant example of decarbonization and climate resilience. By integrating energy-efficient technologies and renewable energy solutions into existing infrastructure, the project not only reduces carbon emissions but also serves as a blueprint for revitalising old urban environments sustainably. This holistic approach to retrofitting demonstrates a systemic commitment to environmental stewardship and long-term sustainability. Climate Adaptation and Renewable Energy Integration: Despite Sweden's climatic challenges, including lower solar resources during winter months, the Rymdgatan project leverages its geographical context to optimize renewable energy utilization. Sweden's greater solar resource availability during summer and geothermal potentials complement the design's emphasis on seasonal energy planning, where surplus energy generated during peak periods can be stored or redistributed efficiently. By embracing climate-responsive design strategies, the project demonstrates resilience in the face of climate variability while harnessing renewable energy potential effectively.The original idea is that the area produces at least as much it consumes.
          B1P002: Motivation behind PED/PED relevant project development
          B1P002: Motivation behind PED/PED relevant project developmentThe purpose of implementing the PED project on this sustainable campus, where several buildings have LEED certification, is to further enhance its energy efficiency and environmental stewardship by creating a district that generates more energy than it consumes. The initiator was motivated by the need to address climate change, reduce greenhouse gas emissions, and promote renewable energy sources. Additionally, the campus's existing commitment to sustainability and the success of its LEED-certified buildings provided a strong foundation for demonstrating the feasibility and benefits of PED development, serving as a model for sustainable urban living and energy self-sufficiency.Borlänge city has committed to become the carbon-neutral city by 2030.Developing systems towards carbon neutrality. Also urban renewal.
          B1P003: Environment of the case study area
          B2P003: Environment of the case study areaSuburban areaUrban areaRuralUrban areaSuburban areaSuburban area
          B1P004: Type of district
          B2P004: Type of district
          • Renovation
          • Renovation
          • New construction
          • Renovation
          • New construction,
          • Renovation
          • New construction
          B1P005: Case Study Context
          B1P005: Case Study Context
          • Retrofitting Area
          • Re-use / Transformation Area,
          • Retrofitting Area
          • New Development
          • Re-use / Transformation Area,
          • Retrofitting Area
          • New Development,
          • Retrofitting Area
          • New Development
          B1P006: Year of construction
          B1P006: Year of construction202419902024
          B1P007: District population before intervention - Residential
          B1P007: District population before intervention - Residential10023.3793500
          B1P008: District population after intervention - Residential
          B1P008: District population after intervention - Residential1003500
          B1P009: District population before intervention - Non-residential
          B1P009: District population before intervention - Non-residential98006
          B1P010: District population after intervention - Non-residential
          B1P010: District population after intervention - Non-residential98006
          B1P011: Population density before intervention
          B1P011: Population density before intervention0340000000
          B1P012: Population density after intervention
          B1P012: Population density after intervention034.3377715487040.01065862242332800000.0583333333333330
          B1P013: Building and Land Use before intervention
          B1P013: Residentialnonoyesnononoyesyesno
          B1P013 - Residential: Specify the sqm [m²]4360
          B1P013: Officenonononononoyesnono
          B1P013 - Office: Specify the sqm [m²]
          B1P013: Industry and Utilitynonononononononono
          B1P013 - Industry and Utility: Specify the sqm [m²]
          B1P013: Commercialnonononononoyesyesno
          B1P013 - Commercial: Specify the sqm [m²]
          B1P013: Institutionalnoyesnonononononono
          B1P013 - Institutional: Specify the sqm [m²]285.400
          B1P013: Natural areasnonononoyesnonoyesyes
          B1P013 - Natural areas: Specify the sqm [m²]
          B1P013: Recreationalnononononononoyesno
          B1P013 - Recreational: Specify the sqm [m²]
          B1P013: Dismissed areasnonononononononono
          B1P013 - Dismissed areas: Specify the sqm [m²]
          B1P013: Othernonoyesnononoyesnono
          B1P013 - Other: Specify the sqm [m²]706Cultural Center, Sports Center / Total building and land use data of neigborhood 13,878 residential, 4,441 commercial using before intervention. For project area & 49 building area m2
          B1P014: Building and Land Use after intervention
          B1P014: Residentialnonoyesnoyesnoyesyesyes
          B1P014 - Residential: Specify the sqm [m²]4360
          B1P014: Officenonononoyesnoyesnono
          B1P014 - Office: Specify the sqm [m²]
          B1P014: Industry and Utilitynonononononononono
          B1P014 - Industry and Utility: Specify the sqm [m²]
          B1P014: Commercialnonononononoyesyesno
          B1P014 - Commercial: Specify the sqm [m²]
          B1P014: Institutionalnoyesnonononononono
          B1P014 - Institutional: Specify the sqm [m²]280000
          B1P014: Natural areasnonononoyesnonoyesyes
          B1P014 - Natural areas: Specify the sqm [m²]
          B1P014: Recreationalnononononononoyesno
          B1P014 - Recreational: Specify the sqm [m²]
          B1P014: Dismissed areasnonononononononono
          B1P014 - Dismissed areas: Specify the sqm [m²]
          B1P014: Othernonoyesnononoyesnono
          B1P014 - Other: Specify the sqm [m²]706
          B2P001: PED Lab concept definition
          B2P001: PED Lab concept definitionGroningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.
          B2P002: Installation life time
          B2P002: Installation life timeThe MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.Permanent installation
          B2P003: Scale of action
          B2P003: ScaleDistrictDistrictVirtual
          B2P004: Operator of the installation
          B2P004: Operator of the installationThe Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.CM Maia, IPMAIA, NEW, AdEP.
          B2P005: Replication framework: Applied strategy to reuse and recycling the materials
          B2P005: Replication framework: Applied strategy to reuse and recycling the materialsGroningen does not have a strategy to reuse and recyle materials
          B2P006: Circular Economy Approach
          B2P006: Do you apply any strategy to reuse and recycling the materials?NoYesNo
          B2P006: Other
          B2P007: Motivation for developing the PED Lab
          B2P007: Motivation for developing the PED Lab
          • Civic
          • Strategic
          • Strategic
          B2P007: Other
          B2P008: Lead partner that manages the PED Lab
          B2P008: Lead partner that manages the PED LabMunicipalityMunicipalityMunicipality
          B2P008: Other
          B2P009: Collaborative partners that participate in the PED Lab
          B2P009: Collaborative partners that participate in the PED Lab
          • Academia,
          • Private,
          • Industrial,
          • Other
          • Academia,
          • Private,
          • Industrial,
          • Citizens, public, NGO
          • Academia,
          • Private,
          • Industrial,
          • Citizens, public, NGO,
          • Other
          B2P009: Otherresearch companies, monitoring company, ict companyEnergy Agency
          B2P010: Synergies between the fields of activities
          B2P010: Synergies between the fields of activities
          B2P011: Available facilities to test urban configurations in PED Lab
          B2P011: Available facilities to test urban configurations in PED Lab
          • Buildings,
          • Demand-side management,
          • Energy storage,
          • Energy networks,
          • Waste management,
          • Lighting,
          • E-mobility,
          • Information and Communication Technologies (ICT),
          • Social interactions,
          • Business models
          • Buildings,
          • Demand-side management,
          • Prosumers,
          • Renewable generation,
          • Efficiency measures,
          • Waste management,
          • Water treatment,
          • Lighting,
          • E-mobility,
          • Green areas,
          • Circular economy models
          • Buildings,
          • Demand-side management,
          • Prosumers,
          • Renewable generation,
          • Energy storage,
          • Efficiency measures,
          • Lighting,
          • E-mobility,
          • Information and Communication Technologies (ICT),
          • Ambient measures,
          • Social interactions
          B2P011: Other
          B2P012: Incubation capacities of PED Lab
          B2P012: Incubation capacities of PED Lab
          • Tools for prototyping and modelling
          • Monitoring and evaluation infrastructure
          • Monitoring and evaluation infrastructure,
          • Tools, spaces, events for testing and validation
          B2P013: Availability of the facilities for external people
          B2P013: Availability of the facilities for external peopleDepends on the building: _Tecmaia is open to the public but the buildings are for the exclusive use of companies allocated at the industrial site; _The municipal buildings have public access; _The residential buildings have an exclusive use for the residents.
          B2P014: Monitoring measures
          B2P014: Monitoring measures
          • Execution plan,
          • Available data,
          • Type of measured data,
          • Equipment,
          • Level of access
          • Available data
          • Execution plan,
          • Available data,
          • Type of measured data
          B2P015: Key Performance indicators
          B2P015: Key Performance indicators
          • Energy,
          • Social,
          • Economical / Financial
          • Energy
          • Energy,
          • Environmental,
          • Social,
          • Economical / Financial
          B2P016: Execution of operations
          B2P016: Execution of operationsCurrent PED status (WP5 SPARCS): Conceptualization and methodology definition of the (virtual) PED for Maia Municipality with real monitoring and assessment in order to replicate and scale up to a city-level PED. The financial investments were already targeted.
          B2P017: Capacities
          B2P017: Capacities_Energy production and storage, _Monitoring; _Digitization.
          B2P018: Relations with stakeholders
          B2P018: Relations with stakeholdersThe relationship with stakeholders (municipal companies, industry, citizens, etc) has been fundamental for the definition of the PED. In this sense, some sessions were organized to gather different points of view in order to trace the best path for the PED. Also, the participation of Maia Municipality in EU projects, as EHHUR and OMEGA-X, makes possible the share of knowledge between different partners.
          B2P019: Available tools
          B2P019: Available tools
          • Energy modelling,
          • Social models,
          • Business and financial models
          • Energy modelling,
          • Social models,
          • Business and financial models,
          • Fundraising and accessing resources,
          • Matching actors
          B2P019: Available tools
          B2P020: External accessibility
          B2P020: External accessibility
          C1P001: Unlocking Factors
          C1P001: Recent technological improvements for on-site RES production3 - Moderately important5 - Very important4 - Important5 - Very important1 - Unimportant4 - Important4 - Important5 - Very important1 - Unimportant
          C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock3 - Moderately important5 - Very important5 - Very important5 - Very important1 - Unimportant4 - Important4 - Important2 - Slightly important1 - Unimportant
          C1P001: Energy Communities, P2P, Prosumers concepts4 - Important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important5 - Very important2 - Slightly important1 - Unimportant
          C1P001: Storage systems and E-mobility market penetration4 - Important4 - Important3 - Moderately important5 - Very important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
          C1P001: Decreasing costs of innovative materials5 - Very important4 - Important4 - Important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant
          C1P001: Financial mechanisms to reduce costs and maximize benefits5 - Very important5 - Very important5 - Very important5 - Very important1 - Unimportant4 - Important5 - Very important3 - Moderately important1 - Unimportant
          C1P001: The ability to predict Multiple Benefits3 - Moderately important4 - Important4 - Important5 - Very important1 - Unimportant4 - Important4 - Important4 - Important1 - Unimportant
          C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important4 - Important4 - Important5 - Very important1 - Unimportant4 - Important4 - Important2 - Slightly important1 - Unimportant
          C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important5 - Very important5 - Very important5 - Very important1 - Unimportant4 - Important5 - Very important3 - Moderately important1 - Unimportant
          C1P001: Social acceptance (top-down)3 - Moderately important4 - Important5 - Very important5 - Very important1 - Unimportant4 - Important3 - Moderately important5 - Very important1 - Unimportant
          C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)4 - Important5 - Very important4 - Important5 - Very important1 - Unimportant4 - Important4 - Important2 - Slightly important1 - Unimportant
          C1P001: Presence of integrated urban strategies and plans3 - Moderately important4 - Important5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important4 - Important1 - Unimportant
          C1P001: Multidisciplinary approaches available for systemic integration2 - Slightly important4 - Important5 - Very important5 - Very important1 - Unimportant4 - Important4 - Important4 - Important1 - Unimportant
          C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects3 - Moderately important4 - Important4 - Important5 - Very important1 - Unimportant4 - Important4 - Important3 - Moderately important1 - Unimportant
          C1P001: Availability of RES on site (Local RES)4 - Important5 - Very important5 - Very important5 - Very important1 - Unimportant4 - Important4 - Important4 - Important1 - Unimportant
          C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders3 - Moderately important4 - Important2 - Slightly important5 - Very important1 - Unimportant4 - Important3 - Moderately important4 - Important1 - Unimportant
          C1P001: Any other UNLOCKING FACTORS1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
          C1P001: Any other UNLOCKING FACTORS (if any)
          C1P002: Driving Factors
          C1P002: Climate Change adaptation need2 - Slightly important5 - Very important5 - Very important5 - Very important1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant
          C1P002: Climate Change mitigation need (local RES production and efficiency)3 - Moderately important5 - Very important5 - Very important5 - Very important1 - Unimportant4 - Important5 - Very important5 - Very important1 - Unimportant
          C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P002: Urban re-development of existing built environment4 - Important4 - Important4 - Important5 - Very important1 - Unimportant4 - Important5 - Very important5 - Very important1 - Unimportant
          C1P002: Economic growth need2 - Slightly important4 - Important4 - Important5 - Very important1 - Unimportant4 - Important3 - Moderately important2 - Slightly important1 - Unimportant
          C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant4 - Important4 - Important3 - Moderately important1 - Unimportant
          C1P002: Territorial and market attractiveness2 - Slightly important4 - Important1 - Unimportant5 - Very important1 - Unimportant4 - Important3 - Moderately important5 - Very important1 - Unimportant
          C1P002: Energy autonomy/independence2 - Slightly important5 - Very important2 - Slightly important5 - Very important1 - Unimportant4 - Important4 - Important3 - Moderately important1 - Unimportant
          C1P002: Any other DRIVING FACTOR4 - Important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P002: Any other DRIVING FACTOR (if any)Earthquakes due to gas extraction
          C1P003: Administrative barriers
          C1P003: Difficulty in the coordination of high number of partners and authorities3 - Moderately important5 - Very important4 - Important5 - Very important1 - Unimportant5 - Very important4 - Important2 - Slightly important1 - Unimportant
          C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important5 - Very important4 - Important5 - Very important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant1 - Unimportant
          C1P003: Lack of public participation1 - Unimportant4 - Important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P003: Lack of institutions/mechanisms to disseminate information2 - Slightly important4 - Important4 - Important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant
          C1P003:Long and complex procedures for authorization of project activities4 - Important5 - Very important5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important3 - Moderately important1 - Unimportant
          C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important3 - Moderately important4 - Important5 - Very important1 - Unimportant4 - Important4 - Important5 - Very important1 - Unimportant
          C1P003: Complicated and non-comprehensive public procurement3 - Moderately important4 - Important5 - Very important5 - Very important1 - Unimportant4 - Important4 - Important2 - Slightly important1 - Unimportant
          C1P003: Fragmented and or complex ownership structure4 - Important4 - Important4 - Important5 - Very important1 - Unimportant5 - Very important5 - Very important2 - Slightly important1 - Unimportant
          C1P003: City administration & cross-sectoral attitude/approaches (silos)5 - Very important5 - Very important5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important2 - Slightly important1 - Unimportant
          C1P003: Lack of internal capacities to support energy transition1 - Unimportant5 - Very important5 - Very important5 - Very important1 - Unimportant4 - Important4 - Important2 - Slightly important1 - Unimportant
          C1P003: Any other Administrative BARRIER1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P003: Any other Administrative BARRIER (if any)
          C1P004: Policy barriers
          C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant5 - Very important5 - Very important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant
          C1P004: Lacking or fragmented local political commitment and support on the long term1 - Unimportant5 - Very important5 - Very important5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant
          C1P004: Lack of Cooperation & support between national-regional-local entities2 - Slightly important5 - Very important4 - Important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant
          C1P004: Any other Political BARRIER1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P004: Any other Political BARRIER (if any)
          C1P005: Legal and Regulatory barriers
          C1P005: Inadequate regulations for new technologies4 - Important5 - Very important4 - Important5 - Very important1 - Unimportant4 - Important4 - Important3 - Moderately important1 - Unimportant
          C1P005: Regulatory instability3 - Moderately important5 - Very important2 - Slightly important5 - Very important1 - Unimportant4 - Important3 - Moderately important2 - Slightly important1 - Unimportant
          C1P005: Non-effective regulations3 - Moderately important4 - Important2 - Slightly important5 - Very important1 - Unimportant4 - Important4 - Important2 - Slightly important1 - Unimportant
          C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important4 - Important4 - Important5 - Very important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant1 - Unimportant
          C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant4 - Important2 - Slightly important5 - Very important1 - Unimportant4 - Important2 - Slightly important2 - Slightly important1 - Unimportant
          C1P005: Insufficient or insecure financial incentives3 - Moderately important5 - Very important3 - Moderately important5 - Very important1 - Unimportant4 - Important3 - Moderately important2 - Slightly important1 - Unimportant
          C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation2 - Slightly important3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant4 - Important4 - Important4 - Important1 - Unimportant
          C1P005: Shortage of proven and tested solutions and examples2 - Slightly important4 - Important4 - Important5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important2 - Slightly important1 - Unimportant
          C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P005: Any other Legal and Regulatory BARRIER (if any)
          C1P006: Environmental barriers
          C1P006: Environmental barriersAir Quality Management Importance Level: 5 (Very Important) Energy Efficiency Importance Level: 5 (Very Important) Water Conservation Importance Level: 5 (Very Important) Waste Management Importance Level: 4 (Important) Material Selection Importance Level: 4 (Important) Renewable Energy Integration Importance Level: 5 (Very Important) Heat Island Effect Mitigation Importance Level: 4 (Important) Noise Pollution Control Importance Level: 3 (Moderately Important)2 - Slightly important
          C1P007: Technical barriers
          C1P007: Lack of skilled and trained personnel4 - Important5 - Very important4 - Important5 - Very important1 - Unimportant4 - Important4 - Important2 - Slightly important1 - Unimportant
          C1P007: Deficient planning2 - Slightly important5 - Very important4 - Important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P007: Retrofitting work in dwellings in occupied state2 - Slightly important3 - Moderately important4 - Important5 - Very important1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant
          C1P007: Lack of well-defined process3 - Moderately important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant
          C1P007: Inaccuracy in energy modelling and simulation4 - Important5 - Very important2 - Slightly important5 - Very important1 - Unimportant4 - Important4 - Important3 - Moderately important1 - Unimportant
          C1P007: Lack/cost of computational scalability1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant
          C1P007: Grid congestion, grid instability4 - Important5 - Very important5 - Very important5 - Very important1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant
          C1P007: Negative effects of project intervention on the natural environment1 - Unimportant5 - Very important2 - Slightly important5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant
          C1P007: Energy retrofitting work in dense and/or historical urban environment3 - Moderately important4 - Important1 - Unimportant5 - Very important1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant
          C1P007: Difficult definition of system boundaries1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant4 - Important5 - Very important5 - Very important1 - Unimportant
          C1P007: Any other Thecnical BARRIER1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P007: Any other Thecnical BARRIER (if any)
          C1P008: Social and Cultural barriers
          C1P008: Inertia2 - Slightly important4 - Important2 - Slightly important5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important2 - Slightly important1 - Unimportant
          C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important5 - Very important5 - Very important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
          C1P008: Low acceptance of new projects and technologies2 - Slightly important5 - Very important5 - Very important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant
          C1P008: Difficulty of finding and engaging relevant actors2 - Slightly important4 - Important4 - Important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P008: Lack of trust beyond social network4 - Important4 - Important5 - Very important5 - Very important1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant
          C1P008: Rebound effect2 - Slightly important3 - Moderately important4 - Important5 - Very important1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant
          C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant5 - Very important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important2 - Slightly important1 - Unimportant
          C1P008: Exclusion of socially disadvantaged groups5 - Very important5 - Very important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant
          C1P008: Non-energy issues are more important and urgent for actors4 - Important4 - Important3 - Moderately important5 - Very important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important1 - Unimportant
          C1P008: Hostile or passive attitude towards energy collaboration2 - Slightly important5 - Very important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant
          C1P008: Any other Social BARRIER1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P008: Any other Social BARRIER (if any)
          C1P009: Information and Awareness barriers
          C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important5 - Very important3 - Moderately important5 - Very important1 - Unimportant4 - Important3 - Moderately important2 - Slightly important1 - Unimportant
          C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important5 - Very important3 - Moderately important5 - Very important1 - Unimportant4 - Important2 - Slightly important2 - Slightly important1 - Unimportant
          C1P009: Lack of awareness among authorities2 - Slightly important5 - Very important5 - Very important5 - Very important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
          C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important4 - Important5 - Very important5 - Very important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
          C1P009: High costs of design, material, construction, and installation4 - Important4 - Important5 - Very important5 - Very important1 - Unimportant4 - Important4 - Important3 - Moderately important1 - Unimportant
          C1P009: Any other Information and Awareness BARRIER1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P009: Any other Information and Awareness BARRIER (if any)
          C1P010: Financial barriers
          C1P010: Hidden costs2 - Slightly important4 - Important5 - Very important5 - Very important1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant
          C1P010: Insufficient external financial support and funding for project activities3 - Moderately important5 - Very important5 - Very important5 - Very important1 - Unimportant4 - Important3 - Moderately important2 - Slightly important1 - Unimportant
          C1P010: Economic crisis1 - Unimportant4 - Important5 - Very important5 - Very important1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant
          C1P010: Risk and uncertainty3 - Moderately important5 - Very important5 - Very important5 - Very important1 - Unimportant4 - Important5 - Very important3 - Moderately important1 - Unimportant
          C1P010: Lack of consolidated and tested business models3 - Moderately important4 - Important5 - Very important5 - Very important1 - Unimportant4 - Important5 - Very important3 - Moderately important1 - Unimportant
          C1P010: Limited access to capital and cost disincentives2 - Slightly important5 - Very important5 - Very important5 - Very important1 - Unimportant4 - Important3 - Moderately important2 - Slightly important1 - Unimportant
          C1P010: Any other Financial BARRIER1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P010: Any other Financial BARRIER (if any)
          C1P011: Market barriers
          C1P011: Split incentives5 - Very important5 - Very important4 - Important5 - Very important1 - Unimportant5 - Very important5 - Very important2 - Slightly important1 - Unimportant
          C1P011: Energy price distortion4 - Important5 - Very important4 - Important5 - Very important1 - Unimportant4 - Important5 - Very important2 - Slightly important1 - Unimportant
          C1P011: Energy market concentration, gatekeeper actors (DSOs)4 - Important4 - Important3 - Moderately important5 - Very important1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant
          C1P011: Any other Market BARRIER1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P011: Any other Market BARRIER (if any)
          C1P012: Stakeholders involved
          C1P012: Government/Public Authorities
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Monitoring/operation/management
          • Planning/leading
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          • Planning/leading,
          • Design/demand aggregation,
          • Monitoring/operation/management
          C1P012: Research & Innovation
          • Planning/leading,
          • Design/demand aggregation,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Planning/leading
          • Design/demand aggregation
          • Planning/leading,
          • Design/demand aggregation
          • Planning/leading,
          • Design/demand aggregation,
          • Monitoring/operation/management
          C1P012: Financial/Funding
          • Design/demand aggregation,
          • Construction/implementation
          • Planning/leading,
          • Construction/implementation,
          • Monitoring/operation/management
          • None
          • None
          • Design/demand aggregation,
          • Construction/implementation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Analyst, ICT and Big Data
          • Design/demand aggregation,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • None
          • None
          • Planning/leading,
          • Design/demand aggregation,
          • Monitoring/operation/management
          • Monitoring/operation/management
          C1P012: Business process management
          • Planning/leading
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • None
          • None
          • None
          • Planning/leading,
          • Monitoring/operation/management
          C1P012: Urban Services providers
          • Design/demand aggregation,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • None
          • None
          • Planning/leading,
          • Design/demand aggregation
          • Planning/leading
          C1P012: Real Estate developers
          • Construction/implementation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Design/demand aggregation
          • None
          • None
          • Design/demand aggregation,
          • Construction/implementation
          C1P012: Design/Construction companies
          • Construction/implementation
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • None
          • None
          • Construction/implementation
          • Design/demand aggregation
          C1P012: End‐users/Occupants/Energy Citizens
          • None
          • Monitoring/operation/management
          • Monitoring/operation/management
          • None
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Monitoring/operation/management
          C1P012: Social/Civil Society/NGOs
          • Planning/leading,
          • Design/demand aggregation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Monitoring/operation/management
          • None
          • Planning/leading,
          • Design/demand aggregation
          • Monitoring/operation/management
          C1P012: Industry/SME/eCommerce
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • None
          • None
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Other
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • None
          C1P012: Other (if any)
          Summary

          Authors (framework concept)

          Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

          Contributors (to the content)

          Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

          Implemented by

          Boutik.pt: Filipe Martins, Jamal Khan
          Marek Suchánek (Czech Technical University in Prague)