Filters:
NameProjectTypeCompare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Uncompare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Uncompare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Uncompare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleGroningen, PED North
Borlänge, Rymdgatan’s Residential Portfolio
Schönbühel-Aggsbach, Schönbühel an der Donau
Stor-Elvdal, Campus Evenstad
REPLICATE (pilot action in the Novoli-Cascine district on "le PIagge" buildings), Firenze
Umeå, Ålidhem district
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabGroningen, PED NorthBorlänge, Rymdgatan’s Residential PortfolioSchönbühel-Aggsbach, Schönbühel an der DonauStor-Elvdal, Campus EvenstadREPLICATE (pilot action in the Novoli-Cascine district on "le PIagge" buildings), FirenzeUmeå, Ålidhem district
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynononononoyes
PED relevant case studynoyesyesyesyesno
PED Lab.yesnonononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesyesyesyes
Annual energy surplusyesyesnoyesnono
Energy communityyesyesyesnonono
Circularityyesnonononono
Air quality and urban comfortnononononono
Electrificationnoyesnononono
Net-zero energy costnonoyesnonono
Net-zero emissionyesnonononono
Self-sufficiency (energy autonomous)nononononono
Maximise self-sufficiencynoyesyesnonono
Othernononoyesyesno
Other (A1P004)Energy-flexibilitySocial aspects/affordability; The technological choice about RES exploitation, has been made also taking into account the local air quality issue in the urban centre (no biomass, no CHP)
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabImplementation PhasePlanning PhaseImplementation PhaseIn operationCompletedPlanning Phase
A1P006: Start Date
A1P006: Start date12/1801/1301/1710/22
A1P007: End Date
A1P007: End date12/2312/2412/2109/25
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
  • Open data city platform – different dashboards
  • Monitoring data available within the districts
  • Monitoring data available within the districts,
  • Meteorological open data
  • Monitoring data available within the districts
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • TNO, Hanze, RUG,
  • Ped noord book
      • Umeå Energi
      A1P011: Geographic coordinates
      X Coordinate (longitude):6.53512115.39449515.396911.07877077353174611.23053920.2630
      Y Coordinate (latitude):53.23484660.48660948.275261.4260442039911243.79271163.8258
      A1P012: Country
      A1P012: CountryNetherlandsSwedenAustriaNorwayItalySweden
      A1P013: City
      A1P013: CityGroningenBorlängeSchönbühel an der DonauEvenstad, Stor-Elvdal municipalityFirenzeUmeå
      A1P014: Climate Zone (Köppen Geiger classification)
      A1P014: Climate Zone (Köppen Geiger classification).CfaDsbDfbDwcCfaDfb
      A1P015: District boundary
      A1P015: District boundaryFunctionalGeographicGeographicGeographicGeographic
      Other
      A1P016: Ownership of the case study/PED Lab
      A1P016: Ownership of the case study/PED Lab:MixedMixedPrivatePublicMixedPublic
      A1P017: Ownership of the land / physical infrastructure
      A1P017: Ownership of the land / physical infrastructure:Multiple OwnersSingle OwnerMultiple OwnersSingle OwnerMultiple OwnersSingle Owner
      A1P018: Number of buildings in PED
      A1P018: Number of buildings in PED710022
      A1P019: Conditioned space
      A1P019: Conditioned space [m²]1.0137004771000042000
      A1P020: Total ground area
      A1P020: Total ground area [m²]17.1329945245052000
      A1P021: Floor area ratio: Conditioned space / total ground area
      A1P021: Floor area ratio: Conditioned space / total ground area000001
      A1P022: Financial schemes
      A1P022a: Financing - PRIVATE - Real estateyesnoyesnonono
      A1P022a: Add the value in EUR if available [EUR]
      A1P022b: Financing - PRIVATE - ESCO schemenononononono
      A1P022b: Add the value in EUR if available [EUR]
      A1P022c: Financing - PRIVATE - Otheryesnonononono
      A1P022c: Add the value in EUR if available [EUR]
      A1P022d: Financing - PUBLIC - EU structural fundingnonononoyesno
      A1P022d: Add the value in EUR if available [EUR]
      A1P022e: Financing - PUBLIC - National fundingyesnoyesyesyesno
      A1P022e: Add the value in EUR if available [EUR]
      A1P022f: Financing - PUBLIC - Regional fundingnonoyesnonono
      A1P022f: Add the value in EUR if available [EUR]
      A1P022g: Financing - PUBLIC - Municipal fundingyesnononoyesno
      A1P022g: Add the value in EUR if available [EUR]
      A1P022h: Financing - PUBLIC - Othernononononono
      A1P022h: Add the value in EUR if available [EUR]
      A1P022i: Financing - RESEARCH FUNDING - EUyesnonononono
      A1P022i: Add the value in EUR if available [EUR]
      A1P022j: Financing - RESEARCH FUNDING - Nationalnononoyesnono
      A1P022j: Add the value in EUR if available [EUR]
      A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononono
      A1P022k: Add the value in EUR if available [EUR]
      A1P022l: Financing - RESEARCH FUNDING - Othernononononono
      A1P022l: Add the value in EUR if available [EUR]
      A1P022: Other
      A1P023: Economic Targets
      A1P023: Economic Targets
      • Boosting local businesses,
      • Boosting local and sustainable production
      • Positive externalities,
      • Boosting local businesses,
      • Boosting consumption of local and sustainable products
      • Boosting local businesses,
      • Boosting local and sustainable production
      A1P023: Other
      A1P024: More comments:
      A1P024: More comments:
      A1P025: Estimated PED case study / PED LAB costs
      A1P025: Estimated PED case study / PED LAB costs [mil. EUR]
      Contact person for general enquiries
      A1P026: NameJasper Tonen, Elisabeth KoopsJingchun ShenGhazal EtminanÅse Lekang SørensenChristoph GollnerGireesh Nair
      A1P027: OrganizationMunicipality of GroningenHögskolan DalarnaGhazal.Etminan@ait.ac.atSINTEF / The Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart CitiesFFGUmea Municipality
      A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversityResearch Center / UniversityOtherMunicipality / Public Bodies
      A1P028: Other
      A1P029: EmailJasper.tonen@groningen.nljih@du.seGhazal.Etminan@ait.ac.atase.sorensen@sintef.nochristoph.gollner@ffg.atgireesh.nair@umu.se
      Contact person for other special topics
      A1P030: NameXingxing Zhang
      A1P031: Emailxza@du.se
      Pursuant to the General Data Protection RegulationYesYesYesYesYesYes
      A2P001: Fields of application
      A2P001: Fields of application
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Waste management
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Construction materials
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies,
      • Construction materials
      • Energy production,
      • E-mobility,
      • Digital technologies
      • Energy efficiency,
      • Energy flexibility,
      • Energy production
      A2P001: Other
      A2P002: Tools/strategies/methods applied for each of the above-selected fields
      A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streamsLoad calculation and system optimisation: City Energy Analyst Identification of stranded assets for asset owners and investors to understand the carbon risks: CRREMEnergy modelingCampus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. The vision for Campus Evenstad is an energy-flexible Campus Evenstad in an emission-free Europe. The area consists of approx. 20 buildings managed and owned by Statsbygg; the Norwegian government’s building commissioner, property manager and developer. The oldest building is from the 1700-century and the newest is the administration centre (2017) which is a Zero Emission Building (ZEB) with the highest ambitions (ZEB-COM). Their concept has been to realize Campus Evenstad as an energy pilot, where innovative energy solutions are demonstrated, showing how local areas can become more self-sufficient in energy. The energy system at Evenstad consists of several innovative energy solutions that are new in a Norwegian and European context. They are combined in local infrastructure for electricity and heat, which has led to new knowledge and learning about how the solutions work together, and how the interaction is between the local and the national energy system. The solutions consist of solar cells (PV), solar collectors, combined heat and power plant (CHP) based on wood chips, biofuel boiler, electric boiler, grid connection, district heating, heat storage, stationary battery and bidirectional electric vehicle (EV) charging (V2G). Statsbygg has gained a lot of operational experience from Campus Evenstad - both from individual technologies and from the interaction between these, which benefits Statsbygg's 2,200 buildings and 3 million m2 around Norway. Sharing of experiences is central. Campus Evenstad is a pilot in the Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart Cities were several of the solutions has been developed and studied.Simulation tools: City Energy Analyst and Polysun
      A2P003: Application of ISO52000
      A2P003: Application of ISO52000NoNoNoNoNo
      A2P004: Appliances included in the calculation of the energy balance
      A2P004: Appliances included in the calculation of the energy balanceNoYesYesYesYes
      A2P005: Mobility included in the calculation of the energy balance
      A2P005: Mobility included in the calculation of the energy balanceNoNoNoYesNo
      A2P006: Description of how mobility is included (or not included) in the calculation
      A2P006: Description of how mobility is included (or not included) in the calculationMobility, till now, is not included in the energy model.At Campus Evenstad there is infrastructure for EV charging and bidirectional charging (V2G). EV charging is included in the energy balance.
      A2P007: Annual energy demand in buildings / Thermal demand
      A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]2.30.67770.0660.77
      A2P008: Annual energy demand in buildings / Electric Demand
      A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.330.036560.0120.760
      A2P009: Annual energy demand for e-mobility
      A2P009: Annual energy demand for e-mobility [GWh/annum]0
      A2P010: Annual energy demand for urban infrastructure
      A2P010: Annual energy demand for urban infrastructure [GWh/annum]0
      A2P011: Annual renewable electricity production on-site during target year
      A2P011: PVnonoyesyesnoyes
      A2P011: PV - specify production in GWh/annum [GWh/annum]0.0650.249
      A2P011: Windnononononono
      A2P011: Wind - specify production in GWh/annum [GWh/annum]
      A2P011: Hydronononononono
      A2P011: Hydro - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_elnononoyesnono
      A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]0.050
      A2P011: Biomass_peat_elnononononono
      A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
      A2P011: PVT_elnoyesnononono
      A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.01818
      A2P011: Othernononononono
      A2P011: Other - specify production in GWh/annum [GWh/annum]
      A2P012: Annual renewable thermal production on-site during target year
      A2P012: Geothermalyesnonononono
      A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Solar Thermalyesnonoyesnono
      A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.045
      A2P012: Biomass_heatyesnonoyesnono
      A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.10.35
      A2P012: Waste heat+HPyesnonononono
      A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_peat_heatnononononono
      A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: PVT_thyesyesnononono
      A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]0.0825
      A2P012: Biomass_firewood_thnononononono
      A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Othernononononono
      A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
      A2P013: Renewable resources on-site - Additional notes
      A2P013: Renewable resources on-site - Additional notesGeothermal heatpump systems, Waste heat from data centersListed values are measurements from 2018. Renewable energy share is increasing.
      A2P014: Annual energy use
      A2P014: Annual energy use [GWh/annum]0.3180.0791.5006.1
      A2P015: Annual energy delivered
      A2P015: Annual energy delivered [GWh/annum]0.20550.00111
      A2P016: Annual non-renewable electricity production on-site during target year
      A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]0
      A2P017: Annual non-renewable thermal production on-site during target year
      A2P017: Gasnononononono
      A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Coalnononononono
      A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Oilnononononono
      A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Othernoyesnononono
      A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]0
      A2P018: Annual renewable electricity imports from outside the boundary during target year
      A2P018: PVnonoyesnonono
      A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
      A2P018: Windnonoyesnonono
      A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
      A2P018: Hydrononoyesnonono
      A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_elnonoyesnonono
      A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_peat_elnononononono
      A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: PVT_elnononononono
      A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Othernoyesnononono
      A2P018 - Other: specify production in GWh/annum if available [GWh/annum]0.187
      A2P019: Annual renewable thermal imports from outside the boundary during target year
      A2P019: Geothermalnononononono
      A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Solar Thermalnononononono
      A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_heatnononononoyes
      A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Waste heat+HPnononononoyes
      A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_peat_heatnononononono
      A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: PVT_thnononononono
      A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_firewood_thnonoyesnonono
      A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Othernoyesnononono
      A2P019 Other: Please specify imports in GWh/annum [GWh/annum]0
      A2P020: Share of RES on-site / RES outside the boundary
      A2P020: Share of RES on-site / RES outside the boundary00.538395721925130000
      A2P021: GHG-balance calculated for the PED
      A2P021: GHG-balance calculated for the PED [tCO2/annum]6.934
      A2P022: KPIs related to the PED case study / PED Lab
      A2P022: Safety & Securitynone
      A2P022: Healththermal comfort diagram
      A2P022: Educationnone
      A2P022: Mobilitynone
      A2P022: Energynormalized CO2/GHG & Energy intensityEnergy
      A2P022: Water
      A2P022: Economic developmentcost of excess emissions
      A2P022: Housing and CommunitySpecify the associated KPIs
      A2P022: Waste
      A2P022: Other
      A2P023: Technological Solutions / Innovations - Energy Generation
      A2P023: Photovoltaicsyesyesyesyesyesyes
      A2P023: Solar thermal collectorsyesyesnoyesyesno
      A2P023: Wind Turbinesnononononono
      A2P023: Geothermal energy systemyesyesnononono
      A2P023: Waste heat recoveryyesyesnononono
      A2P023: Waste to energyyesnonononono
      A2P023: Polygenerationnononononono
      A2P023: Co-generationnononoyesnono
      A2P023: Heat Pumpyesyesyesnoyesno
      A2P023: Hydrogennononononono
      A2P023: Hydropower plantnononononono
      A2P023: Biomassnononoyesnono
      A2P023: Biogasnononononono
      A2P023: OtherThe Co-generation is biomass based.
      A2P024: Technological Solutions / Innovations - Energy Flexibility
      A2P024: A2P024: Information and Communication Technologies (ICT)yesyesnoyesyesyes
      A2P024: Energy management systemyesnoyesyesnono
      A2P024: Demand-side managementyesnonoyesnoyes
      A2P024: Smart electricity gridnonononoyesno
      A2P024: Thermal Storageyesyesnoyesnono
      A2P024: Electric Storageyesnonoyesnono
      A2P024: District Heating and Coolingyesyesnoyesnono
      A2P024: Smart metering and demand-responsive control systemsyesnonoyesyesno
      A2P024: P2P – buildingsnonoyesnonono
      A2P024: OtherBidirectional electric vehicle (EV) charging (V2G)District Heating
      A2P025: Technological Solutions / Innovations - Energy Efficiency
      A2P025: Deep Retrofittingnoyesyesnoyesyes
      A2P025: Energy efficiency measures in historic buildingsyesnoyesnonono
      A2P025: High-performance new buildingsyesnonoyesnono
      A2P025: Smart Public infrastructure (e.g. smart lighting)yesnononoyesno
      A2P025: Urban data platformsyesnonononono
      A2P025: Mobile applications for citizensnonononoyesno
      A2P025: Building services (HVAC & Lighting)noyesnononono
      A2P025: Smart irrigationnononononono
      A2P025: Digital tracking for waste disposalnononononono
      A2P025: Smart surveillancenononononono
      A2P025: Other
      A2P026: Technological Solutions / Innovations - Mobility
      A2P026: Efficiency of vehicles (public and/or private)nononononono
      A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nononononono
      A2P026: e-Mobilityyesnonoyesyesno
      A2P026: Soft mobility infrastructures and last mile solutionsnononononono
      A2P026: Car-free areanononononono
      A2P026: Other
      A2P027: Mobility strategies - Additional notes
      A2P027: Mobility strategies - Additional notes
      A2P028: Energy efficiency certificates
      A2P028: Energy efficiency certificatesYesNoYesYesYes
      A2P028: If yes, please specify and/or enter notesEnergy Performance CertificatePassive house (2 buildings, 4 200 m2, from 2015)
      A2P029: Any other building / district certificates
      A2P029: Any other building / district certificatesNoNoYes
      A2P029: If yes, please specify and/or enter notesZero Emission Building (ZEB) with the highest ambitions (ZEB-COM) (admin building, 1 141 m2, 2016)
      A3P001: Relevant city /national strategy
      A3P001: Relevant city /national strategy
      • Energy master planning (SECAP, etc.),
      • New development strategies,
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Promotion of energy communities (REC/CEC),
      • Climate change adaption plan/strategy (e.g. Climate City contract)
      • Promotion of energy communities (REC/CEC)
      • Promotion of energy communities (REC/CEC),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Smart cities strategies
      • Smart cities strategies,
      • Energy master planning (SECAP, etc.),
      • National / international city networks addressing sustainable urban development and climate neutrality
      A3P002: Quantitative targets included in the city / national strategy
      A3P002: Quantitative targets included in the city / national strategyThe study aligns closely with the decarbonisation and energy reduction pathways of residential multi family buildings with 1.5°C global warming target in Sweden. This study will also contribute to the achievement of the carbon neturality of whole Borlänge city by 2030.
      A3P003: Strategies towards decarbonization of the gas grid
      A3P003: Strategies towards decarbonization of the gas grid
      • Electrification of Heating System based on Heat Pumps,
      • Electrification of Cooking Methods,
      • Biogas
      A3P003: OtherNA
      A3P004: Identification of needs and priorities
      A3P004: Identification of needs and prioritiesIn our project, we carried out a comprehensive exploration of strategies to achieve positive energy districts in a Swedish residential portfolio. The focus on urban energy transitions necessitates a holistic approach that integrates building retrofit, solar technology exploration, and heating supply optimisation. Exploration of Local Solar Sources: The analysis reveals varying solar irradiance resources throughout the year, emphasizing the importance of strategic placement. Integration of combined photovoltaic and thermal panels into building envelopes demonstrates the potential to cover a significant portion of the energy demand even in Sweden. Heating Supply Optimisation with Solar Technologies: Despite the surplus energy production from on-site solar technology, challenges arise due to temporal energy asymmetry. The introduction of heat pumps emerges as a feasible solution to balance energy gaps, utilising both rejected and free heat. Optimisation scenarios, utilising a combination of geothermal heat pumps, water source heat pumps, and PVT, showcase remarkable reductions in emissions and primary energy consumption. Urban Form and Energy Infrastructure Design: We realised the importance of returning to urban form and energy infrastructure design to optimise future residential portfolio potential. Building layout design, influenced by zoning regulations and innovative typologies, plays a crucial role in achieving district level energy efficiency. Future challenges, including demographic shifts, e-mobility, and climate change, necessitate a more holistic approach to energy infrastructure design, addressing not only heating and electricity demands but also cooling requirements.
      A3P005: Sustainable behaviour
      A3P005: Sustainable behaviourIn Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.While our investigation primarily centres on technical optimisation within Positive Energy District (PED) development, it is essential to acknowledge the broader scope encompassing social and governance dimensions. Specifically, understanding stakeholders' willingness to embrace technical recommendations upon project completion is important. Several potential influencing factors merit exploration, including economic considerations, technical optimisation-associated embodied carbon balance, the general public's technical perceptions, and operational feasibility. Evaluating these aspects holistically not only enhances the efficacy of PED initiatives but also fosters greater acceptance and participation within the communities they serve.
      A3P006: Economic strategies
      A3P006: Economic strategies
      • Innovative business models,
      • Blockchain
      • Open data business models,
      • Life Cycle Cost,
      • Circular economy models,
      • Local trading
      • Local trading,
      • Existing incentives
      A3P006: Other
      A3P007: Social models
      A3P007: Social models
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Citizen Social Research,
      • Prevention of energy poverty,
      • Citizen/owner involvement in planning and maintenance
      • Strategies towards (local) community-building,
      • Behavioural Change / End-users engagement,
      • Social incentives,
      • Affordability,
      • Digital Inclusion
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Quality of Life,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Behavioural Change / End-users engagement,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour),
      • Other
      • Co-creation / Citizen engagement strategies
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement
      A3P007: OtherCampus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. Sharing knowledge is essential: Evenstad has regular visits from Politicians, decision-makers, researchers, environmental organizations, and energy- and building companies.
      A3P008: Integrated urban strategies
      A3P008: Integrated urban strategies
      • Strategic urban planning,
      • District Energy plans,
      • City Vision 2050,
      • SECAP Updates
      • Strategic urban planning,
      • Digital twinning and visual 3D models,
      • District Energy plans,
      • Building / district Certification
      • District Energy plans
      A3P008: Other“zero volumes” structural plan (2015), Covenant of Mayors Sustainable Energy Action Plan (2011)
      A3P009: Environmental strategies
      A3P009: Environmental strategies
      • Energy Neutral
      • Low Emission Zone,
      • Net zero carbon footprint,
      • Life Cycle approach,
      • Sustainable Urban drainage systems (SUDS)
      • Low Emission Zone,
      • Net zero carbon footprint,
      • Carbon-free
      • Low Emission Zone
      • Carbon-free
      A3P009: Other
      A3P010: Legal / Regulatory aspects
      A3P010: Legal / Regulatory aspectsAt national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricityCampus Evenstad became a prosumer in 2016, as the first with DSO Eidsiva. Evenstad is also one of the first three PV systems in Norway to receive green certificates.
      B1P001: PED/PED relevant concept definition
      B1P001: PED/PED relevant concept definitionThe Rymdgatan's Residential Portfolio in Sweden presents a compelling case study for its classification as a PED-related research, given its alignment with sustainable behaviours and overarching PED development principles as follows: Inclusivity and Social Equity: The residential portfolio situated in Rymdgatan caters primarily to a low-income community. By focusing on this demographic, the project addresses critical aspects of social equity within sustainable urban development. Ensuring access to energy-efficient housing and amenities for economically disadvantaged populations not only fosters social cohesion but also mitigates energy poverty, a pressing concern in many urban contexts. Multifamily Residential Building: The inclusion of multifamily residential buildings within the portfolio underscores a commitment to density and efficient land use, both essential components of sustainable urban design. Such developments promote resource optimisation by consolidating housing units, thereby reducing per capita energy consumption and infrastructure demands. Moreover, multifamily dwellings often facilitate community engagement and shared resource management, fostering a culture of sustainability among residents. Low Carbon Retrofitting and Transition: The overarching initiative to transition the entire Jakobsgårdarna district. The included Rymdgatan portfolio, towards low carbon retrofitting, represents a significant example of decarbonization and climate resilience. By integrating energy-efficient technologies and renewable energy solutions into existing infrastructure, the project not only reduces carbon emissions but also serves as a blueprint for revitalising old urban environments sustainably. This holistic approach to retrofitting demonstrates a systemic commitment to environmental stewardship and long-term sustainability. Climate Adaptation and Renewable Energy Integration: Despite Sweden's climatic challenges, including lower solar resources during winter months, the Rymdgatan project leverages its geographical context to optimize renewable energy utilization. Sweden's greater solar resource availability during summer and geothermal potentials complement the design's emphasis on seasonal energy planning, where surplus energy generated during peak periods can be stored or redistributed efficiently. By embracing climate-responsive design strategies, the project demonstrates resilience in the face of climate variability while harnessing renewable energy potential effectively.The biggest impact is the demonstration of several new energy solutions for local communities. Statsbygg/Campus Evenstad contributes to the development of innovations, pushing technological development through purchasing and demonstration of the solutions. This is a benefit for both end users, energy service providers and society at large. Evenstad also contribute to developing the local business community. For example, local biomass chip production for CHP, development of V2G-software etc. Several key solutions have been important when aiming to achieve the goals of reduced emissions, increased self-sufficiency in energy, and an energy-flexible campus. Example Vehicle-to-grid (V2G): We realized bidirectional EV charging at Campus Evenstad in 2019, demonstrating V2G for the first time in Norway. The experiences from Evenstad provide increased knowledge and practical experience from purchasing, installing and operating the V2G solution, and can contribute to creating new solutions within the energy system. With the equipment installed, the batteries in EVs can supply power back to buildings or the power grid. Example solar cells (PV): We installed PV in 2013 when there were only a few grid-connected PV systems in Norway. The PV system was an important piece in changing the view on solar energy in Norway, where businesses, the public sector and private individuals started seeing the potential for solar energy also this far north. In 2022, the PV system was expanded with PV cells on the facade of the energy center. Example Solar collector system: Covers 100m2 of the roof surface of dormitories and supplies supplies 117 dormitories with all the hot water they need (4000m2 floor area. The solar collector system is connected to the district heating system, where the main heat source is bioenergy. Solar energy and bioenergy complement each other at different times of the year. Example battery bank: Among the 5 largest electrical batteries in Norway connected to the grid. Example CHP: First of its kind in Norway, generating heat and electricity from biomass. Already in 2010, fossil fuels were phased out by converting from oil to wood-chip heating.
      B1P002: Motivation behind PED/PED relevant project development
      B1P002: Motivation behind PED/PED relevant project developmentBorlänge city has committed to become the carbon-neutral city by 2030.In line with the EU's vision of "local energy communities", Campus Evenstad demonstrates energy actions that contribute to the clean energy transition. The campus has been developed over several years, demonstrating several innovative and sustainable technologies and energy solutions in a microgrid, e.g. vehicle to grid (V2G), biomass-based combined heat and power (CHP), solar energy, energy storage and zero emission buildings. It shows how to use new technology to enable zero emissions areas. Dedicated professionals, both Statsbygg's operating staff and researchers from FME ZEN have been central to the realization, together with dedicated management at the University campus, who have shown a great willingness to implement new solutions.
      B1P003: Environment of the case study area
      B2P003: Environment of the case study areaUrban areaRurbanRuralUrban areaUrban area
      B1P004: Type of district
      B2P004: Type of district
      • Renovation
      • Renovation
      • New construction,
      • Renovation
      • Renovation
      • Renovation
      B1P005: Case Study Context
      B1P005: Case Study Context
      • Re-use / Transformation Area,
      • Retrofitting Area
      • Retrofitting Area,
      • Preservation Area
      • Retrofitting Area
      • Retrofitting Area
      • Retrofitting Area
      B1P006: Year of construction
      B1P006: Year of construction1990
      B1P007: District population before intervention - Residential
      B1P007: District population before intervention - Residential100
      B1P008: District population after intervention - Residential
      B1P008: District population after intervention - Residential100
      B1P009: District population before intervention - Non-residential
      B1P009: District population before intervention - Non-residential6
      B1P010: District population after intervention - Non-residential
      B1P010: District population after intervention - Non-residential6
      B1P011: Population density before intervention
      B1P011: Population density before intervention000000
      B1P012: Population density after intervention
      B1P012: Population density after intervention00.0106586224233280000
      B1P013: Building and Land Use before intervention
      B1P013: Residentialnoyesyesnoyesyes
      B1P013 - Residential: Specify the sqm [m²]436020200
      B1P013: Officenonoyesnonono
      B1P013 - Office: Specify the sqm [m²]
      B1P013: Industry and Utilitynononononono
      B1P013 - Industry and Utility: Specify the sqm [m²]
      B1P013: Commercialnononononono
      B1P013 - Commercial: Specify the sqm [m²]
      B1P013: Institutionalnononononono
      B1P013 - Institutional: Specify the sqm [m²]
      B1P013: Natural areasnononononono
      B1P013 - Natural areas: Specify the sqm [m²]
      B1P013: Recreationalnononononono
      B1P013 - Recreational: Specify the sqm [m²]
      B1P013: Dismissed areasnononononono
      B1P013 - Dismissed areas: Specify the sqm [m²]
      B1P013: Othernoyesnononono
      B1P013 - Other: Specify the sqm [m²]706
      B1P014: Building and Land Use after intervention
      B1P014: Residentialnoyesyesnoyesyes
      B1P014 - Residential: Specify the sqm [m²]436020200
      B1P014: Officenonoyesnonono
      B1P014 - Office: Specify the sqm [m²]
      B1P014: Industry and Utilitynononononono
      B1P014 - Industry and Utility: Specify the sqm [m²]
      B1P014: Commercialnononononono
      B1P014 - Commercial: Specify the sqm [m²]
      B1P014: Institutionalnononononono
      B1P014 - Institutional: Specify the sqm [m²]
      B1P014: Natural areasnononononono
      B1P014 - Natural areas: Specify the sqm [m²]
      B1P014: Recreationalnononononono
      B1P014 - Recreational: Specify the sqm [m²]
      B1P014: Dismissed areasnononononono
      B1P014 - Dismissed areas: Specify the sqm [m²]
      B1P014: Othernoyesnononono
      B1P014 - Other: Specify the sqm [m²]706
      B2P001: PED Lab concept definition
      B2P001: PED Lab concept definitionGroningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.
      B2P002: Installation life time
      B2P002: Installation life timeThe MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.
      B2P003: Scale of action
      B2P003: ScaleDistrictDistrict
      B2P004: Operator of the installation
      B2P004: Operator of the installationThe Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P005: Replication framework: Applied strategy to reuse and recycling the materialsGroningen does not have a strategy to reuse and recyle materials
      B2P006: Circular Economy Approach
      B2P006: Do you apply any strategy to reuse and recycling the materials?No
      B2P006: Other
      B2P007: Motivation for developing the PED Lab
      B2P007: Motivation for developing the PED Lab
      • Civic
      B2P007: Other
      B2P008: Lead partner that manages the PED Lab
      B2P008: Lead partner that manages the PED LabMunicipality
      B2P008: Other
      B2P009: Collaborative partners that participate in the PED Lab
      B2P009: Collaborative partners that participate in the PED Lab
      • Academia,
      • Private,
      • Industrial,
      • Other
      B2P009: Otherresearch companies, monitoring company, ict company
      B2P010: Synergies between the fields of activities
      B2P010: Synergies between the fields of activities
      B2P011: Available facilities to test urban configurations in PED Lab
      B2P011: Available facilities to test urban configurations in PED Lab
      • Buildings,
      • Demand-side management,
      • Energy storage,
      • Energy networks,
      • Waste management,
      • Lighting,
      • E-mobility,
      • Information and Communication Technologies (ICT),
      • Social interactions,
      • Business models
      B2P011: Other
      B2P012: Incubation capacities of PED Lab
      B2P012: Incubation capacities of PED Lab
      • Tools for prototyping and modelling
      B2P013: Availability of the facilities for external people
      B2P013: Availability of the facilities for external people
      B2P014: Monitoring measures
      B2P014: Monitoring measures
      • Execution plan,
      • Available data,
      • Type of measured data,
      • Equipment,
      • Level of access
      B2P015: Key Performance indicators
      B2P015: Key Performance indicators
      • Energy,
      • Social,
      • Economical / Financial
      B2P016: Execution of operations
      B2P016: Execution of operations
      B2P017: Capacities
      B2P017: Capacities
      B2P018: Relations with stakeholders
      B2P018: Relations with stakeholders
      B2P019: Available tools
      B2P019: Available tools
      • Energy modelling,
      • Social models,
      • Business and financial models
      B2P019: Available tools
      B2P020: External accessibility
      B2P020: External accessibility
      C1P001: Unlocking Factors
      C1P001: Recent technological improvements for on-site RES production3 - Moderately important4 - Important4 - Important5 - Very important1 - Unimportant1 - Unimportant
      C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock3 - Moderately important5 - Very important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant
      C1P001: Energy Communities, P2P, Prosumers concepts4 - Important3 - Moderately important5 - Very important5 - Very important1 - Unimportant1 - Unimportant
      C1P001: Storage systems and E-mobility market penetration4 - Important3 - Moderately important4 - Important5 - Very important1 - Unimportant1 - Unimportant
      C1P001: Decreasing costs of innovative materials5 - Very important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
      C1P001: Financial mechanisms to reduce costs and maximize benefits5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P001: The ability to predict Multiple Benefits3 - Moderately important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important5 - Very important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
      C1P001: Social acceptance (top-down)3 - Moderately important5 - Very important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
      C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)4 - Important4 - Important5 - Very important4 - Important1 - Unimportant1 - Unimportant
      C1P001: Presence of integrated urban strategies and plans3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P001: Multidisciplinary approaches available for systemic integration2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P001: Availability of RES on site (Local RES)4 - Important5 - Very important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders3 - Moderately important2 - Slightly important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
      C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P001: Any other UNLOCKING FACTORS (if any)
      C1P002: Driving Factors
      C1P002: Climate Change adaptation need2 - Slightly important5 - Very important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant
      C1P002: Climate Change mitigation need (local RES production and efficiency)3 - Moderately important5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant
      C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P002: Urban re-development of existing built environment4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P002: Economic growth need2 - Slightly important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P002: Territorial and market attractiveness2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P002: Energy autonomy/independence2 - Slightly important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
      C1P002: Any other DRIVING FACTOR4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P002: Any other DRIVING FACTOR (if any)Earthquakes due to gas extraction
      C1P003: Administrative barriers
      C1P003: Difficulty in the coordination of high number of partners and authorities3 - Moderately important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P003: Lack of public participation1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P003: Lack of institutions/mechanisms to disseminate information2 - Slightly important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P003:Long and complex procedures for authorization of project activities4 - Important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
      C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
      C1P003: Complicated and non-comprehensive public procurement3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
      C1P003: Fragmented and or complex ownership structure4 - Important4 - Important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant
      C1P003: City administration & cross-sectoral attitude/approaches (silos)5 - Very important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P003: Lack of internal capacities to support energy transition1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P003: Any other Administrative BARRIER (if any)
      C1P004: Policy barriers
      C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
      C1P004: Lacking or fragmented local political commitment and support on the long term1 - Unimportant5 - Very important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
      C1P004: Lack of Cooperation & support between national-regional-local entities2 - Slightly important4 - Important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
      C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P004: Any other Political BARRIER (if any)
      C1P005: Legal and Regulatory barriers
      C1P005: Inadequate regulations for new technologies4 - Important4 - Important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant
      C1P005: Regulatory instability3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
      C1P005: Non-effective regulations3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
      C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important4 - Important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant
      C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P005: Insufficient or insecure financial incentives3 - Moderately important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
      C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P005: Shortage of proven and tested solutions and examples2 - Slightly important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
      C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P005: Any other Legal and Regulatory BARRIER (if any)
      C1P006: Environmental barriers
      C1P006: Environmental barriers2 - Slightly important
      C1P007: Technical barriers
      C1P007: Lack of skilled and trained personnel4 - Important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
      C1P007: Deficient planning2 - Slightly important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P007: Retrofitting work in dwellings in occupied state2 - Slightly important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
      C1P007: Lack of well-defined process3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
      C1P007: Inaccuracy in energy modelling and simulation4 - Important2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant
      C1P007: Lack/cost of computational scalability1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P007: Grid congestion, grid instability4 - Important5 - Very important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant
      C1P007: Negative effects of project intervention on the natural environment1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P007: Energy retrofitting work in dense and/or historical urban environment3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P007: Difficult definition of system boundaries1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P007: Any other Thecnical BARRIER (if any)Energy management systems of different new technologies does not "talk together" (e.g. solar inverter, V2G inverter). This creates challenges.
      C1P008: Social and Cultural barriers
      C1P008: Inertia2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important5 - Very important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant
      C1P008: Low acceptance of new projects and technologies2 - Slightly important5 - Very important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant
      C1P008: Difficulty of finding and engaging relevant actors2 - Slightly important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P008: Lack of trust beyond social network4 - Important5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P008: Rebound effect2 - Slightly important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P008: Exclusion of socially disadvantaged groups5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P008: Non-energy issues are more important and urgent for actors4 - Important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
      C1P008: Hostile or passive attitude towards energy collaboration2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P008: Any other Social BARRIER (if any)
      C1P009: Information and Awareness barriers
      C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
      C1P009: Lack of awareness among authorities2 - Slightly important5 - Very important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
      C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P009: High costs of design, material, construction, and installation4 - Important5 - Very important4 - Important5 - Very important1 - Unimportant1 - Unimportant
      C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P009: Any other Information and Awareness BARRIER (if any)Different interests - Grid/energy stakeholders and building stakeholders
      C1P010: Financial barriers
      C1P010: Hidden costs2 - Slightly important5 - Very important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant
      C1P010: Insufficient external financial support and funding for project activities3 - Moderately important5 - Very important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant
      C1P010: Economic crisis1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P010: Risk and uncertainty3 - Moderately important5 - Very important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant
      C1P010: Lack of consolidated and tested business models3 - Moderately important5 - Very important4 - Important5 - Very important1 - Unimportant1 - Unimportant
      C1P010: Limited access to capital and cost disincentives2 - Slightly important5 - Very important4 - Important4 - Important1 - Unimportant1 - Unimportant
      C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P010: Any other Financial BARRIER (if any)
      C1P011: Market barriers
      C1P011: Split incentives5 - Very important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P011: Energy price distortion4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P011: Energy market concentration, gatekeeper actors (DSOs)4 - Important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P011: Any other Market BARRIER (if any)
      C1P012: Stakeholders involved
      C1P012: Government/Public Authorities
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • Monitoring/operation/management
      • Planning/leading
      C1P012: Research & Innovation
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Planning/leading
      • Design/demand aggregation
      • Monitoring/operation/management
      C1P012: Financial/Funding
      • Design/demand aggregation,
      • Construction/implementation
      • None
      • Planning/leading
      • Construction/implementation
      C1P012: Analyst, ICT and Big Data
      • Design/demand aggregation,
      • Monitoring/operation/management
      • None
      • Planning/leading
      • Monitoring/operation/management
      C1P012: Business process management
      • Planning/leading
      • None
      • Planning/leading
      • Planning/leading
      C1P012: Urban Services providers
      • Design/demand aggregation,
      • Monitoring/operation/management
      • None
      • Planning/leading
      C1P012: Real Estate developers
      • Construction/implementation
      • Design/demand aggregation
      • Planning/leading
      • Planning/leading,
      • Monitoring/operation/management
      C1P012: Design/Construction companies
      • Construction/implementation
      • None
      • Planning/leading
      • Construction/implementation
      C1P012: End‐users/Occupants/Energy Citizens
      • None
      • Monitoring/operation/management
      • Monitoring/operation/management
      • Monitoring/operation/management
      C1P012: Social/Civil Society/NGOs
      • Planning/leading,
      • Design/demand aggregation
      • Monitoring/operation/management
      • Construction/implementation
      • None
      C1P012: Industry/SME/eCommerce
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • None
      • Design/demand aggregation
      • Construction/implementation
      C1P012: Other
      C1P012: Other (if any)
      Summary

      Authors (framework concept)

      Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

      Contributors (to the content)

      Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

      Implemented by

      Boutik.pt: Filipe Martins, Jamal Khan
      Marek Suchánek (Czech Technical University in Prague)