Filters:
NameProjectTypeCompare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Uncompare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED Relevant Case Study Uncompare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Uncompare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Uncompare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Uncompare
TitleGroningen, PED North
Borlänge, Rymdgatan’s Residential Portfolio
Kladno, Sletiště (Sport Area), PED Winter Stadium
Vidin, Himik and Bononia
Findhorn, the Park
Leipzig, Baumwollspinnerei district
Kifissia, Energy community
Schönbühel-Aggsbach, Schönbühel an der Donau
Luxembourg, Betzdorf
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabGroningen, PED NorthBorlänge, Rymdgatan’s Residential PortfolioKladno, Sletiště (Sport Area), PED Winter StadiumVidin, Himik and BononiaFindhorn, the ParkLeipzig, Baumwollspinnerei districtKifissia, Energy communitySchönbühel-Aggsbach, Schönbühel an der DonauLuxembourg, Betzdorf
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynononoyesyesyesnonono
PED relevant case studynoyesyesnononoyesyesyes
PED Lab.yesnononononononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesyesyesyesnoyesyes
Annual energy surplusyesyesyesyesyesnononoyes
Energy communityyesyesyesnoyesnoyesyesyes
Circularityyesnononoyesnononoyes
Air quality and urban comfortnononononoyesyesnoyes
Electrificationnoyesyesnoyesyesyesnoyes
Net-zero energy costnononononononoyesno
Net-zero emissionyesnononoyesnononono
Self-sufficiency (energy autonomous)nonononononononono
Maximise self-sufficiencynoyesnonoyesnonoyesno
Othernononononoyesnonono
Other (A1P004)Net-zero emission; Annual energy surplus
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabImplementation PhasePlanning PhasePlanning PhasePlanning PhaseIn operationImplementation PhasePlanning PhaseImplementation PhaseImplementation Phase
A1P006: Start Date
A1P006: Start date12/18202212/1801/6206/23
A1P007: End Date
A1P007: End date12/2312/3004/26
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
  • Open data city platform – different dashboards
  • Open data city platform – different dashboards,
  • General statistical datasets
  • Monitoring data available within the districts,
  • Meteorological open data
  • Monitoring data available within the districts
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • TNO, Hanze, RUG,
  • Ped noord book
              A1P011: Geographic coordinates
              X Coordinate (longitude):6.53512115.39449514.0929622.8826-3.609912.31845823.81458815.39696.361602
              Y Coordinate (latitude):53.23484660.48660950.1371543.993657.653051.32649238.07734948.275249.682774
              A1P012: Country
              A1P012: CountryNetherlandsSwedenCzech RepublicBulgariaUnited KingdomGermanyGreeceAustriaLuxembourg
              A1P013: City
              A1P013: CityGroningenBorlängeKladnoVidinFindhornLeipzigMunicipality of KifissiaSchönbühel an der DonauBetzdorf
              A1P014: Climate Zone (Köppen Geiger classification)
              A1P014: Climate Zone (Köppen Geiger classification).CfaDsbCfbCfaDwcDfbCsaDfbCfb
              A1P015: District boundary
              A1P015: District boundaryFunctionalGeographicGeographicGeographicGeographicFunctionalVirtualGeographicGeographic
              OtherV1* (ca 8 buildings)GeographicThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhood
              A1P016: Ownership of the case study/PED Lab
              A1P016: Ownership of the case study/PED Lab:MixedMixedMixedMixedMixedPrivatePublic
              A1P017: Ownership of the land / physical infrastructure
              A1P017: Ownership of the land / physical infrastructure:Multiple OwnersSingle OwnerMultiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersSingle Owner
              A1P018: Number of buildings in PED
              A1P018: Number of buildings in PED7108741602024
              A1P019: Conditioned space
              A1P019: Conditioned space [m²]1.01370098759.5317000477173.8
              A1P020: Total ground area
              A1P020: Total ground area [m²]17.1329945195234.80180000300002450
              A1P021: Floor area ratio: Conditioned space / total ground area
              A1P021: Floor area ratio: Conditioned space / total ground area000101000
              A1P022: Financial schemes
              A1P022a: Financing - PRIVATE - Real estateyesnoyesnoyesnonoyesno
              A1P022a: Add the value in EUR if available [EUR]
              A1P022b: Financing - PRIVATE - ESCO schemenonoyesnononononono
              A1P022b: Add the value in EUR if available [EUR]
              A1P022c: Financing - PRIVATE - Otheryesnononononononono
              A1P022c: Add the value in EUR if available [EUR]
              A1P022d: Financing - PUBLIC - EU structural fundingnonoyesnononononono
              A1P022d: Add the value in EUR if available [EUR]
              A1P022e: Financing - PUBLIC - National fundingyesnonoyesyesnonoyesno
              A1P022e: Add the value in EUR if available [EUR]
              A1P022f: Financing - PUBLIC - Regional fundingnononononononoyesno
              A1P022f: Add the value in EUR if available [EUR]
              A1P022g: Financing - PUBLIC - Municipal fundingyesnoyesnononononono
              A1P022g: Add the value in EUR if available [EUR]
              A1P022h: Financing - PUBLIC - Othernonononononononoyes
              A1P022h: Add the value in EUR if available [EUR]
              A1P022i: Financing - RESEARCH FUNDING - EUyesnoyesnoyesnononono
              A1P022i: Add the value in EUR if available [EUR]
              A1P022j: Financing - RESEARCH FUNDING - Nationalnonoyesnononononono
              A1P022j: Add the value in EUR if available [EUR]
              A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononononono
              A1P022k: Add the value in EUR if available [EUR]
              A1P022l: Financing - RESEARCH FUNDING - Othernonononononononono
              A1P022l: Add the value in EUR if available [EUR]
              A1P022: Other
              A1P023: Economic Targets
              A1P023: Economic Targets
              • Boosting local businesses,
              • Boosting local and sustainable production
              • Positive externalities,
              • Boosting local businesses,
              • Boosting consumption of local and sustainable products
              • Job creation,
              • Positive externalities
              • Other
              A1P023: OtherSustainable and replicable business models regarding renewable energy systems
              A1P024: More comments:
              A1P024: More comments:
              A1P025: Estimated PED case study / PED LAB costs
              A1P025: Estimated PED case study / PED LAB costs [mil. EUR]
              Contact person for general enquiries
              A1P026: NameJasper Tonen, Elisabeth KoopsJingchun ShenDavid ŠkorňaDaniela KostovaStefano NebioloSimon BaumArtemis Giavasoglou, Kleopatra KalampokaGhazal EtminanJulien Bertucci
              A1P027: OrganizationMunicipality of GroningenHögskolan DalarnaMěsto KladnoGreen Synergy ClusterFindhorn Innovation Research and Education CICCENERO Energy GmbHMunicipality of Kifissia – SPARCS local teamGhazal.Etminan@ait.ac.atSNHBM
              A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityMunicipality / Public BodiesOtherResearch Center / UniversityOtherMunicipality / Public BodiesResearch Center / UniversityMunicipality / Public Bodies
              A1P028: OtherClusterCENERO Energy GmbH
              A1P029: EmailJasper.tonen@groningen.nljih@du.sedavid.skorna@mestokladno.czdaniela@greensynergycluster.eustefanonebiolo@gmail.comsib@cenero.degiavasoglou@kifissia.grGhazal.Etminan@ait.ac.atjulien.bertucci@snhbm.lu
              Contact person for other special topics
              A1P030: NameXingxing ZhangMichal KuzmičSimon BaumStavros Zapantis - vice mayor
              A1P031: Emailxza@du.semichal.kuzmic@cvut.czsib@cenero.destavros.zapantis@gmail.com
              Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYes
              A2P001: Fields of application
              A2P001: Fields of application
              • Energy efficiency,
              • Energy flexibility,
              • Energy production,
              • E-mobility,
              • Urban comfort (pollution, heat island, noise level etc.),
              • Waste management
              • Energy efficiency,
              • Energy flexibility,
              • Energy production,
              • E-mobility,
              • Construction materials
              • Energy efficiency,
              • Energy flexibility,
              • Energy production,
              • E-mobility,
              • Digital technologies,
              • Indoor air quality
              • Energy efficiency,
              • Energy production
              • Energy efficiency,
              • Energy flexibility,
              • Energy production,
              • E-mobility,
              • Waste management
              • Energy efficiency,
              • Energy flexibility,
              • Energy production
              • Energy production
              • Energy efficiency,
              • Energy flexibility,
              • Energy production,
              • E-mobility
              • Energy efficiency,
              • Energy flexibility,
              • Energy production,
              • E-mobility,
              • Urban comfort (pollution, heat island, noise level etc.),
              • Digital technologies,
              • Water use,
              • Indoor air quality,
              • Construction materials
              A2P001: Other
              A2P002: Tools/strategies/methods applied for each of the above-selected fields
              A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streamsLoad calculation and system optimisation: City Energy Analyst Identification of stranded assets for asset owners and investors to understand the carbon risks: CRREMTrnsys, PV modelling tools, CADEnergy modeling
              A2P003: Application of ISO52000
              A2P003: Application of ISO52000NoNoNoNoNo
              A2P004: Appliances included in the calculation of the energy balance
              A2P004: Appliances included in the calculation of the energy balanceNoYesYesNoYesNo
              A2P005: Mobility included in the calculation of the energy balance
              A2P005: Mobility included in the calculation of the energy balanceNoNoNoYesNoNo
              A2P006: Description of how mobility is included (or not included) in the calculation
              A2P006: Description of how mobility is included (or not included) in the calculationMobility, till now, is not included in the energy model.Not yet included.
              A2P007: Annual energy demand in buildings / Thermal demand
              A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]2.30.67771.41.650.066
              A2P008: Annual energy demand in buildings / Electric Demand
              A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.330.036560.31.20.012
              A2P009: Annual energy demand for e-mobility
              A2P009: Annual energy demand for e-mobility [GWh/annum]00
              A2P010: Annual energy demand for urban infrastructure
              A2P010: Annual energy demand for urban infrastructure [GWh/annum]0
              A2P011: Annual renewable electricity production on-site during target year
              A2P011: PVnonoyesnoyesyesyesyesno
              A2P011: PV - specify production in GWh/annum [GWh/annum]1.1
              A2P011: Windnonononoyesnononono
              A2P011: Wind - specify production in GWh/annum [GWh/annum]
              A2P011: Hydrononononononononono
              A2P011: Hydro - specify production in GWh/annum [GWh/annum]
              A2P011: Biomass_elnonononononononono
              A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
              A2P011: Biomass_peat_elnonononononononono
              A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
              A2P011: PVT_elnoyesnonononononono
              A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.01818
              A2P011: Othernonononononononono
              A2P011: Other - specify production in GWh/annum [GWh/annum]
              A2P012: Annual renewable thermal production on-site during target year
              A2P012: Geothermalyesnononononononono
              A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
              A2P012: Solar Thermalyesnononoyesnononono
              A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
              A2P012: Biomass_heatyesnononoyesnononono
              A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.1
              A2P012: Waste heat+HPyesnoyesnoyesnononono
              A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]1.7
              A2P012: Biomass_peat_heatnonononononononono
              A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
              A2P012: PVT_thyesyesnonononononono
              A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]0.0825
              A2P012: Biomass_firewood_thnonononoyesnononono
              A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
              A2P012: Othernonononononononono
              A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
              A2P013: Renewable resources on-site - Additional notes
              A2P013: Renewable resources on-site - Additional notesGeothermal heatpump systems, Waste heat from data centersWaste heat from cooling the ice rink.3x225 kW wind turbines + 100 kW PV
              A2P014: Annual energy use
              A2P014: Annual energy use [GWh/annum]0.3182.11.22.4210.079
              A2P015: Annual energy delivered
              A2P015: Annual energy delivered [GWh/annum]0.20551.20.0011
              A2P016: Annual non-renewable electricity production on-site during target year
              A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]00
              A2P017: Annual non-renewable thermal production on-site during target year
              A2P017: Gasnonononononononono
              A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
              A2P017: Coalnonononononononono
              A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
              A2P017: Oilnonononononononono
              A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
              A2P017: Othernoyesnonononononono
              A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]0
              A2P018: Annual renewable electricity imports from outside the boundary during target year
              A2P018: PVnononononononoyesno
              A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
              A2P018: Windnononononononoyesno
              A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
              A2P018: Hydronononononononoyesno
              A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
              A2P018: Biomass_elnononononononoyesno
              A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
              A2P018: Biomass_peat_elnonononononononono
              A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
              A2P018: PVT_elnonononononononono
              A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
              A2P018: Othernoyesnonononononono
              A2P018 - Other: specify production in GWh/annum if available [GWh/annum]0.187
              A2P019: Annual renewable thermal imports from outside the boundary during target year
              A2P019: Geothermalnonononononononono
              A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
              A2P019: Solar Thermalnonononononononono
              A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
              A2P019: Biomass_heatnonononononononono
              A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
              A2P019: Waste heat+HPnonononononononono
              A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
              A2P019: Biomass_peat_heatnonononononononono
              A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
              A2P019: PVT_thnonononononononono
              A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
              A2P019: Biomass_firewood_thnononononononoyesno
              A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
              A2P019: Othernoyesnonononononono
              A2P019 Other: Please specify imports in GWh/annum [GWh/annum]0
              A2P020: Share of RES on-site / RES outside the boundary
              A2P020: Share of RES on-site / RES outside the boundary00.538395721925130000000
              A2P021: GHG-balance calculated for the PED
              A2P021: GHG-balance calculated for the PED [tCO2/annum]6.93-1044
              A2P022: KPIs related to the PED case study / PED Lab
              A2P022: Safety & Securitynone
              A2P022: Healththermal comfort diagram
              A2P022: Educationnone
              A2P022: Mobilitynone
              A2P022: Energynormalized CO2/GHG & Energy intensityEnergy demand (heating and hot water), Energy demand (cooling), Cooling demand, Distributin losses, PV production, RES production, OER, Primafry Non-renewable energy balance, AMR, HMR, CO2 balanceapply
              A2P022: Water
              A2P022: Economic developmentcost of excess emissionsInvestment cost, Caputal cost, Operation cost, payback period, NPV, cummulated cash flow, savings, Life cycle, ROI, SROI
              A2P022: Housing and CommunitySpecify the associated KPIs
              A2P022: Waste
              A2P022: Other
              A2P023: Technological Solutions / Innovations - Energy Generation
              A2P023: Photovoltaicsyesyesyesyesyesnonoyesno
              A2P023: Solar thermal collectorsyesyesnonoyesnononono
              A2P023: Wind Turbinesnonononoyesnononono
              A2P023: Geothermal energy systemyesyesnoyesnonononono
              A2P023: Waste heat recoveryyesyesyesnoyesnononono
              A2P023: Waste to energyyesnononononononono
              A2P023: Polygenerationnonononononononono
              A2P023: Co-generationnonononononononono
              A2P023: Heat Pumpyesyesyesyesyesnonoyesno
              A2P023: Hydrogennonononononononono
              A2P023: Hydropower plantnonononononononono
              A2P023: Biomassnonononoyesnononono
              A2P023: Biogasnonononononononono
              A2P023: Other
              A2P024: Technological Solutions / Innovations - Energy Flexibility
              A2P024: A2P024: Information and Communication Technologies (ICT)yesyesyesnononononoyes
              A2P024: Energy management systemyesnoyesnoyesnonoyesyes
              A2P024: Demand-side managementyesnoyesnononononono
              A2P024: Smart electricity gridnonononononononono
              A2P024: Thermal Storageyesyesnonoyesnononono
              A2P024: Electric Storageyesnonoyesyesnononoyes
              A2P024: District Heating and Coolingyesyesyesnoyesnononono
              A2P024: Smart metering and demand-responsive control systemsyesnoyesnononononono
              A2P024: P2P – buildingsnononononononoyesno
              A2P024: Other
              A2P025: Technological Solutions / Innovations - Energy Efficiency
              A2P025: Deep Retrofittingnoyesyesyesnononoyesno
              A2P025: Energy efficiency measures in historic buildingsyesnonononononoyesno
              A2P025: High-performance new buildingsyesnononoyesnononoyes
              A2P025: Smart Public infrastructure (e.g. smart lighting)yesnononononononono
              A2P025: Urban data platformsyesnoyesnononononono
              A2P025: Mobile applications for citizensnonononononononono
              A2P025: Building services (HVAC & Lighting)noyesyesnononononoyes
              A2P025: Smart irrigationnonononononononono
              A2P025: Digital tracking for waste disposalnonononononononono
              A2P025: Smart surveillancenonononononononono
              A2P025: Other
              A2P026: Technological Solutions / Innovations - Mobility
              A2P026: Efficiency of vehicles (public and/or private)nonononononononono
              A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nonononononononono
              A2P026: e-Mobilityyesnononoyesnononoyes
              A2P026: Soft mobility infrastructures and last mile solutionsnonononononononono
              A2P026: Car-free areanonononononononono
              A2P026: Other
              A2P027: Mobility strategies - Additional notes
              A2P027: Mobility strategies - Additional notesTest-Concept for bidirectional charging.
              A2P028: Energy efficiency certificates
              A2P028: Energy efficiency certificatesYesNoYesYesYes
              A2P028: If yes, please specify and/or enter notesEnergy Performance CertificateNational standards apply.Energy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwelling
              A2P029: Any other building / district certificates
              A2P029: Any other building / district certificatesNoNoNoYes
              A2P029: If yes, please specify and/or enter notes
              A3P001: Relevant city /national strategy
              A3P001: Relevant city /national strategy
              • Energy master planning (SECAP, etc.),
              • New development strategies,
              • National / international city networks addressing sustainable urban development and climate neutrality
              • Promotion of energy communities (REC/CEC),
              • Climate change adaption plan/strategy (e.g. Climate City contract)
              • Smart cities strategies,
              • Energy master planning (SECAP, etc.),
              • Promotion of energy communities (REC/CEC),
              • National / international city networks addressing sustainable urban development and climate neutrality
              • Energy master planning (SECAP, etc.),
              • New development strategies
              • Energy master planning (SECAP, etc.),
              • Promotion of energy communities (REC/CEC)
              • Promotion of energy communities (REC/CEC)
              A3P002: Quantitative targets included in the city / national strategy
              A3P002: Quantitative targets included in the city / national strategyThe study aligns closely with the decarbonisation and energy reduction pathways of residential multi family buildings with 1.5°C global warming target in Sweden. This study will also contribute to the achievement of the carbon neturality of whole Borlänge city by 2030.Carbon neutrality 2050
              A3P003: Strategies towards decarbonization of the gas grid
              A3P003: Strategies towards decarbonization of the gas grid
              • Electrification of Heating System based on Heat Pumps,
              • Electrification of Cooking Methods,
              • Biogas
              • Electrification of Heating System based on Heat Pumps
              • Electrification of Heating System based on Heat Pumps
              • Biogas
              • Electrification of Heating System based on Heat Pumps
              A3P003: Other
              A3P004: Identification of needs and priorities
              A3P004: Identification of needs and prioritiesIn our project, we carried out a comprehensive exploration of strategies to achieve positive energy districts in a Swedish residential portfolio. The focus on urban energy transitions necessitates a holistic approach that integrates building retrofit, solar technology exploration, and heating supply optimisation. Exploration of Local Solar Sources: The analysis reveals varying solar irradiance resources throughout the year, emphasizing the importance of strategic placement. Integration of combined photovoltaic and thermal panels into building envelopes demonstrates the potential to cover a significant portion of the energy demand even in Sweden. Heating Supply Optimisation with Solar Technologies: Despite the surplus energy production from on-site solar technology, challenges arise due to temporal energy asymmetry. The introduction of heat pumps emerges as a feasible solution to balance energy gaps, utilising both rejected and free heat. Optimisation scenarios, utilising a combination of geothermal heat pumps, water source heat pumps, and PVT, showcase remarkable reductions in emissions and primary energy consumption. Urban Form and Energy Infrastructure Design: We realised the importance of returning to urban form and energy infrastructure design to optimise future residential portfolio potential. Building layout design, influenced by zoning regulations and innovative typologies, plays a crucial role in achieving district level energy efficiency. Future challenges, including demographic shifts, e-mobility, and climate change, necessitate a more holistic approach to energy infrastructure design, addressing not only heating and electricity demands but also cooling requirements.
              A3P005: Sustainable behaviour
              A3P005: Sustainable behaviourIn Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.While our investigation primarily centres on technical optimisation within Positive Energy District (PED) development, it is essential to acknowledge the broader scope encompassing social and governance dimensions. Specifically, understanding stakeholders' willingness to embrace technical recommendations upon project completion is important. Several potential influencing factors merit exploration, including economic considerations, technical optimisation-associated embodied carbon balance, the general public's technical perceptions, and operational feasibility. Evaluating these aspects holistically not only enhances the efficacy of PED initiatives but also fosters greater acceptance and participation within the communities they serve.
              A3P006: Economic strategies
              A3P006: Economic strategies
              • Innovative business models,
              • Blockchain
              • Open data business models,
              • Life Cycle Cost,
              • Circular economy models,
              • Local trading
              • Innovative business models,
              • PPP models,
              • Existing incentives
              • Innovative business models,
              • Other
              • Local trading,
              • Existing incentives
              A3P006: Otheroperational savings through efficiency measures
              A3P007: Social models
              A3P007: Social models
              • Strategies towards (local) community-building,
              • Co-creation / Citizen engagement strategies,
              • Citizen Social Research,
              • Prevention of energy poverty,
              • Citizen/owner involvement in planning and maintenance
              • Strategies towards (local) community-building,
              • Behavioural Change / End-users engagement,
              • Social incentives,
              • Affordability,
              • Digital Inclusion
              • Strategies towards (local) community-building,
              • Affordability
              • Co-creation / Citizen engagement strategies,
              • Behavioural Change / End-users engagement,
              • Quality of Life,
              • Prevention of energy poverty
              • Strategies towards (local) community-building,
              • Co-creation / Citizen engagement strategies,
              • Quality of Life
              • Behavioural Change / End-users engagement
              • Strategies towards (local) community-building,
              • Co-creation / Citizen engagement strategies,
              • Behavioural Change / End-users engagement,
              • Quality of Life,
              • Citizen/owner involvement in planning and maintenance,
              • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
              • Affordability
              A3P007: Other
              A3P008: Integrated urban strategies
              A3P008: Integrated urban strategies
              • Strategic urban planning,
              • District Energy plans,
              • City Vision 2050,
              • SECAP Updates
              • Strategic urban planning,
              • Digital twinning and visual 3D models,
              • District Energy plans,
              • Building / district Certification
              • Strategic urban planning,
              • City Vision 2050,
              • SECAP Updates
              • Strategic urban planning,
              • City Vision 2050,
              • SECAP Updates
              • Building / district Certification
              A3P008: Other
              A3P009: Environmental strategies
              A3P009: Environmental strategies
              • Energy Neutral
              • Low Emission Zone,
              • Net zero carbon footprint,
              • Life Cycle approach,
              • Sustainable Urban drainage systems (SUDS)
              • Net zero carbon footprint
              • Pollutants Reduction,
              • Greening strategies
              • Energy Neutral,
              • Net zero carbon footprint
              • Other
              • Low Emission Zone,
              • Net zero carbon footprint,
              • Carbon-free
              A3P009: OtherPositive Energy Balance for the demo site
              A3P010: Legal / Regulatory aspects
              A3P010: Legal / Regulatory aspectsAt national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricity
              B1P001: PED/PED relevant concept definition
              B1P001: PED/PED relevant concept definitionThe Rymdgatan's Residential Portfolio in Sweden presents a compelling case study for its classification as a PED-related research, given its alignment with sustainable behaviours and overarching PED development principles as follows: Inclusivity and Social Equity: The residential portfolio situated in Rymdgatan caters primarily to a low-income community. By focusing on this demographic, the project addresses critical aspects of social equity within sustainable urban development. Ensuring access to energy-efficient housing and amenities for economically disadvantaged populations not only fosters social cohesion but also mitigates energy poverty, a pressing concern in many urban contexts. Multifamily Residential Building: The inclusion of multifamily residential buildings within the portfolio underscores a commitment to density and efficient land use, both essential components of sustainable urban design. Such developments promote resource optimisation by consolidating housing units, thereby reducing per capita energy consumption and infrastructure demands. Moreover, multifamily dwellings often facilitate community engagement and shared resource management, fostering a culture of sustainability among residents. Low Carbon Retrofitting and Transition: The overarching initiative to transition the entire Jakobsgårdarna district. The included Rymdgatan portfolio, towards low carbon retrofitting, represents a significant example of decarbonization and climate resilience. By integrating energy-efficient technologies and renewable energy solutions into existing infrastructure, the project not only reduces carbon emissions but also serves as a blueprint for revitalising old urban environments sustainably. This holistic approach to retrofitting demonstrates a systemic commitment to environmental stewardship and long-term sustainability. Climate Adaptation and Renewable Energy Integration: Despite Sweden's climatic challenges, including lower solar resources during winter months, the Rymdgatan project leverages its geographical context to optimize renewable energy utilization. Sweden's greater solar resource availability during summer and geothermal potentials complement the design's emphasis on seasonal energy planning, where surplus energy generated during peak periods can be stored or redistributed efficiently. By embracing climate-responsive design strategies, the project demonstrates resilience in the face of climate variability while harnessing renewable energy potential effectively.Onsite Energy Ratio > 1
              B1P002: Motivation behind PED/PED relevant project development
              B1P002: Motivation behind PED/PED relevant project developmentBorlänge city has committed to become the carbon-neutral city by 2030.Strategic, economic
              B1P003: Environment of the case study area
              B2P003: Environment of the case study areaUrban areaUrban areaUrban areaRuralRurbanRural
              B1P004: Type of district
              B2P004: Type of district
              • Renovation
              • New construction,
              • Renovation
              • Renovation
              • New construction
              • Renovation
              • New construction,
              • Renovation
              B1P005: Case Study Context
              B1P005: Case Study Context
              • Re-use / Transformation Area,
              • Retrofitting Area
              • New Development,
              • Retrofitting Area
              • Retrofitting Area
              • New Development
              • Preservation Area
              • Retrofitting Area,
              • Preservation Area
              • New Development
              B1P006: Year of construction
              B1P006: Year of construction1990
              B1P007: District population before intervention - Residential
              B1P007: District population before intervention - Residential100
              B1P008: District population after intervention - Residential
              B1P008: District population after intervention - Residential100
              B1P009: District population before intervention - Non-residential
              B1P009: District population before intervention - Non-residential6
              B1P010: District population after intervention - Non-residential
              B1P010: District population after intervention - Non-residential6
              B1P011: Population density before intervention
              B1P011: Population density before intervention000000000
              B1P012: Population density after intervention
              B1P012: Population density after intervention00.0106586224233280000000
              B1P013: Building and Land Use before intervention
              B1P013: Residentialnoyesyesyesnononoyesno
              B1P013 - Residential: Specify the sqm [m²]436064 787,57
              B1P013: Officenonoyesnonononoyesno
              B1P013 - Office: Specify the sqm [m²]
              B1P013: Industry and Utilitynonononononononono
              B1P013 - Industry and Utility: Specify the sqm [m²]
              B1P013: Commercialnononoyesnonononono
              B1P013 - Commercial: Specify the sqm [m²]262,33
              B1P013: Institutionalnonononononononono
              B1P013 - Institutional: Specify the sqm [m²]
              B1P013: Natural areasnonononoyesnononono
              B1P013 - Natural areas: Specify the sqm [m²]
              B1P013: Recreationalnonoyesnononononono
              B1P013 - Recreational: Specify the sqm [m²]
              B1P013: Dismissed areasnonononononononono
              B1P013 - Dismissed areas: Specify the sqm [m²]
              B1P013: Othernoyesnonononononono
              B1P013 - Other: Specify the sqm [m²]706
              B1P014: Building and Land Use after intervention
              B1P014: Residentialnoyesyesnoyesnonoyesno
              B1P014 - Residential: Specify the sqm [m²]4360
              B1P014: Officenonoyesnoyesnonoyesno
              B1P014 - Office: Specify the sqm [m²]
              B1P014: Industry and Utilitynonononononononono
              B1P014 - Industry and Utility: Specify the sqm [m²]
              B1P014: Commercialnonononononononono
              B1P014 - Commercial: Specify the sqm [m²]
              B1P014: Institutionalnononoyesnonononono
              B1P014 - Institutional: Specify the sqm [m²]35322.21
              B1P014: Natural areasnonononoyesnononono
              B1P014 - Natural areas: Specify the sqm [m²]
              B1P014: Recreationalnonoyesnononononono
              B1P014 - Recreational: Specify the sqm [m²]
              B1P014: Dismissed areasnonononononononono
              B1P014 - Dismissed areas: Specify the sqm [m²]
              B1P014: Othernoyesnonononononono
              B1P014 - Other: Specify the sqm [m²]706
              B2P001: PED Lab concept definition
              B2P001: PED Lab concept definitionGroningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.
              B2P002: Installation life time
              B2P002: Installation life timeThe MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.
              B2P003: Scale of action
              B2P003: ScaleDistrict
              B2P004: Operator of the installation
              B2P004: Operator of the installationThe Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.
              B2P005: Replication framework: Applied strategy to reuse and recycling the materials
              B2P005: Replication framework: Applied strategy to reuse and recycling the materialsGroningen does not have a strategy to reuse and recyle materials
              B2P006: Circular Economy Approach
              B2P006: Do you apply any strategy to reuse and recycling the materials?No
              B2P006: Other
              B2P007: Motivation for developing the PED Lab
              B2P007: Motivation for developing the PED Lab
              • Civic
              B2P007: Other
              B2P008: Lead partner that manages the PED Lab
              B2P008: Lead partner that manages the PED LabMunicipality
              B2P008: Other
              B2P009: Collaborative partners that participate in the PED Lab
              B2P009: Collaborative partners that participate in the PED Lab
              • Academia,
              • Private,
              • Industrial,
              • Other
              B2P009: Otherresearch companies, monitoring company, ict company
              B2P010: Synergies between the fields of activities
              B2P010: Synergies between the fields of activities
              B2P011: Available facilities to test urban configurations in PED Lab
              B2P011: Available facilities to test urban configurations in PED Lab
              • Buildings,
              • Demand-side management,
              • Energy storage,
              • Energy networks,
              • Waste management,
              • Lighting,
              • E-mobility,
              • Information and Communication Technologies (ICT),
              • Social interactions,
              • Business models
              B2P011: Other
              B2P012: Incubation capacities of PED Lab
              B2P012: Incubation capacities of PED Lab
              • Tools for prototyping and modelling
              B2P013: Availability of the facilities for external people
              B2P013: Availability of the facilities for external people
              B2P014: Monitoring measures
              B2P014: Monitoring measures
              • Execution plan,
              • Available data,
              • Type of measured data,
              • Equipment,
              • Level of access
              B2P015: Key Performance indicators
              B2P015: Key Performance indicators
              • Energy,
              • Social,
              • Economical / Financial
              B2P016: Execution of operations
              B2P016: Execution of operations
              B2P017: Capacities
              B2P017: Capacities
              B2P018: Relations with stakeholders
              B2P018: Relations with stakeholders
              B2P019: Available tools
              B2P019: Available tools
              • Energy modelling,
              • Social models,
              • Business and financial models
              B2P019: Available tools
              B2P020: External accessibility
              B2P020: External accessibility
              C1P001: Unlocking Factors
              C1P001: Recent technological improvements for on-site RES production3 - Moderately important4 - Important4 - Important4 - Important1 - Unimportant5 - Very important4 - Important1 - Unimportant
              C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock3 - Moderately important5 - Very important4 - Important5 - Very important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
              C1P001: Energy Communities, P2P, Prosumers concepts4 - Important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
              C1P001: Storage systems and E-mobility market penetration4 - Important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant4 - Important1 - Unimportant
              C1P001: Decreasing costs of innovative materials5 - Very important4 - Important3 - Moderately important2 - Slightly important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
              C1P001: Financial mechanisms to reduce costs and maximize benefits5 - Very important5 - Very important4 - Important3 - Moderately important1 - Unimportant4 - Important5 - Very important1 - Unimportant
              C1P001: The ability to predict Multiple Benefits3 - Moderately important4 - Important2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant
              C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important4 - Important3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
              C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important5 - Very important3 - Moderately important5 - Very important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
              C1P001: Social acceptance (top-down)3 - Moderately important5 - Very important2 - Slightly important4 - Important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
              C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)4 - Important4 - Important2 - Slightly important5 - Very important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant
              C1P001: Presence of integrated urban strategies and plans3 - Moderately important5 - Very important4 - Important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
              C1P001: Multidisciplinary approaches available for systemic integration2 - Slightly important5 - Very important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
              C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects3 - Moderately important4 - Important5 - Very important5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
              C1P001: Availability of RES on site (Local RES)4 - Important5 - Very important4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
              C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders3 - Moderately important2 - Slightly important4 - Important4 - Important1 - Unimportant4 - Important4 - Important1 - Unimportant
              C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
              C1P001: Any other UNLOCKING FACTORS (if any)Collaboration with the local partners
              C1P002: Driving Factors
              C1P002: Climate Change adaptation need2 - Slightly important5 - Very important3 - Moderately important4 - Important1 - Unimportant4 - Important5 - Very important1 - Unimportant
              C1P002: Climate Change mitigation need (local RES production and efficiency)3 - Moderately important5 - Very important4 - Important5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
              C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P002: Urban re-development of existing built environment4 - Important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
              C1P002: Economic growth need2 - Slightly important4 - Important4 - Important5 - Very important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant
              C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
              C1P002: Territorial and market attractiveness2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant
              C1P002: Energy autonomy/independence2 - Slightly important2 - Slightly important4 - Important2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
              C1P002: Any other DRIVING FACTOR4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P002: Any other DRIVING FACTOR (if any)Earthquakes due to gas extraction
              C1P003: Administrative barriers
              C1P003: Difficulty in the coordination of high number of partners and authorities3 - Moderately important4 - Important4 - Important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
              C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important4 - Important5 - Very important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
              C1P003: Lack of public participation1 - Unimportant3 - Moderately important4 - Important5 - Very important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
              C1P003: Lack of institutions/mechanisms to disseminate information2 - Slightly important4 - Important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
              C1P003:Long and complex procedures for authorization of project activities4 - Important5 - Very important4 - Important5 - Very important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
              C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important4 - Important3 - Moderately important5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
              C1P003: Complicated and non-comprehensive public procurement3 - Moderately important5 - Very important3 - Moderately important5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
              C1P003: Fragmented and or complex ownership structure4 - Important4 - Important5 - Very important5 - Very important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant
              C1P003: City administration & cross-sectoral attitude/approaches (silos)5 - Very important5 - Very important5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant
              C1P003: Lack of internal capacities to support energy transition1 - Unimportant5 - Very important4 - Important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
              C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P003: Any other Administrative BARRIER (if any)Fragmented financial support; lack of experimental budget for complex projects, etc.
              C1P004: Policy barriers
              C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
              C1P004: Lacking or fragmented local political commitment and support on the long term1 - Unimportant5 - Very important5 - Very important5 - Very important1 - Unimportant4 - Important4 - Important1 - Unimportant
              C1P004: Lack of Cooperation & support between national-regional-local entities2 - Slightly important4 - Important4 - Important5 - Very important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
              C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P004: Any other Political BARRIER (if any)Different priorities; overall problematic system od decentralization powers; non-fuctioning model of local development funding, etc.
              C1P005: Legal and Regulatory barriers
              C1P005: Inadequate regulations for new technologies4 - Important4 - Important3 - Moderately important5 - Very important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant
              C1P005: Regulatory instability3 - Moderately important2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
              C1P005: Non-effective regulations3 - Moderately important2 - Slightly important4 - Important4 - Important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
              C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important4 - Important4 - Important5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant
              C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant2 - Slightly important4 - Important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
              C1P005: Insufficient or insecure financial incentives3 - Moderately important3 - Moderately important5 - Very important5 - Very important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
              C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation2 - Slightly important2 - Slightly important3 - Moderately important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
              C1P005: Shortage of proven and tested solutions and examples2 - Slightly important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P005: Any other Legal and Regulatory BARRIER (if any)
              C1P006: Environmental barriers
              C1P006: Environmental barriers2 - Slightly important
              C1P007: Technical barriers
              C1P007: Lack of skilled and trained personnel4 - Important4 - Important4 - Important5 - Very important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
              C1P007: Deficient planning2 - Slightly important4 - Important4 - Important5 - Very important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
              C1P007: Retrofitting work in dwellings in occupied state2 - Slightly important4 - Important4 - Important5 - Very important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
              C1P007: Lack of well-defined process3 - Moderately important2 - Slightly important5 - Very important5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
              C1P007: Inaccuracy in energy modelling and simulation4 - Important2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant
              C1P007: Lack/cost of computational scalability1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
              C1P007: Grid congestion, grid instability4 - Important5 - Very important4 - Important2 - Slightly important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant
              C1P007: Negative effects of project intervention on the natural environment1 - Unimportant2 - Slightly important3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
              C1P007: Energy retrofitting work in dense and/or historical urban environment3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
              C1P007: Difficult definition of system boundaries1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
              C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P007: Any other Thecnical BARRIER (if any)Inadequate regulation towards energy transition
              C1P008: Social and Cultural barriers
              C1P008: Inertia2 - Slightly important2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
              C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important5 - Very important4 - Important5 - Very important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
              C1P008: Low acceptance of new projects and technologies2 - Slightly important5 - Very important5 - Very important4 - Important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
              C1P008: Difficulty of finding and engaging relevant actors2 - Slightly important4 - Important4 - Important4 - Important1 - Unimportant5 - Very important4 - Important1 - Unimportant
              C1P008: Lack of trust beyond social network4 - Important5 - Very important3 - Moderately important4 - Important1 - Unimportant4 - Important4 - Important1 - Unimportant
              C1P008: Rebound effect2 - Slightly important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important1 - Unimportant
              C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
              C1P008: Exclusion of socially disadvantaged groups5 - Very important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant
              C1P008: Non-energy issues are more important and urgent for actors4 - Important3 - Moderately important5 - Very important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
              C1P008: Hostile or passive attitude towards energy collaboration2 - Slightly important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
              C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P008: Any other Social BARRIER (if any)
              C1P009: Information and Awareness barriers
              C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant
              C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important3 - Moderately important4 - Important4 - Important1 - Unimportant4 - Important1 - Unimportant
              C1P009: Lack of awareness among authorities2 - Slightly important5 - Very important4 - Important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant
              C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important5 - Very important3 - Moderately important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant
              C1P009: High costs of design, material, construction, and installation4 - Important5 - Very important5 - Very important5 - Very important1 - Unimportant4 - Important1 - Unimportant
              C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P009: Any other Information and Awareness BARRIER (if any)
              C1P010: Financial barriers
              C1P010: Hidden costs2 - Slightly important5 - Very important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
              C1P010: Insufficient external financial support and funding for project activities3 - Moderately important5 - Very important4 - Important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant
              C1P010: Economic crisis1 - Unimportant5 - Very important3 - Moderately important5 - Very important1 - Unimportant4 - Important1 - Unimportant
              C1P010: Risk and uncertainty3 - Moderately important5 - Very important4 - Important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant
              C1P010: Lack of consolidated and tested business models3 - Moderately important5 - Very important4 - Important5 - Very important1 - Unimportant4 - Important1 - Unimportant
              C1P010: Limited access to capital and cost disincentives2 - Slightly important5 - Very important1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant
              C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P010: Any other Financial BARRIER (if any)
              C1P011: Market barriers
              C1P011: Split incentives5 - Very important4 - Important5 - Very important5 - Very important1 - Unimportant4 - Important1 - Unimportant
              C1P011: Energy price distortion4 - Important4 - Important5 - Very important5 - Very important1 - Unimportant4 - Important1 - Unimportant
              C1P011: Energy market concentration, gatekeeper actors (DSOs)4 - Important3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant
              C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P011: Any other Market BARRIER (if any)
              C1P012: Stakeholders involved
              C1P012: Government/Public Authorities
              • Planning/leading,
              • Design/demand aggregation,
              • Construction/implementation
              • Monitoring/operation/management
              • Planning/leading,
              • Design/demand aggregation
              • Planning/leading,
              • Monitoring/operation/management
              C1P012: Research & Innovation
              • Planning/leading,
              • Design/demand aggregation,
              • Monitoring/operation/management
              • Planning/leading
              • Planning/leading,
              • Design/demand aggregation
              • None
              • Design/demand aggregation
              C1P012: Financial/Funding
              • Design/demand aggregation,
              • Construction/implementation
              • None
              • Construction/implementation,
              • Monitoring/operation/management
              • Planning/leading
              C1P012: Analyst, ICT and Big Data
              • Design/demand aggregation,
              • Monitoring/operation/management
              • None
              • None
              • Planning/leading
              C1P012: Business process management
              • Planning/leading
              • None
              • None
              • Planning/leading
              C1P012: Urban Services providers
              • Design/demand aggregation,
              • Monitoring/operation/management
              • None
              • Design/demand aggregation
              • Planning/leading
              C1P012: Real Estate developers
              • Construction/implementation
              • Design/demand aggregation
              • Design/demand aggregation
              • Planning/leading
              C1P012: Design/Construction companies
              • Construction/implementation
              • None
              • Design/demand aggregation,
              • Construction/implementation
              • Planning/leading
              C1P012: End‐users/Occupants/Energy Citizens
              • None
              • Monitoring/operation/management
              • Design/demand aggregation
              • Construction/implementation
              • Monitoring/operation/management
              C1P012: Social/Civil Society/NGOs
              • Planning/leading,
              • Design/demand aggregation
              • Monitoring/operation/management
              • Design/demand aggregation
              • Construction/implementation
              C1P012: Industry/SME/eCommerce
              • Planning/leading,
              • Design/demand aggregation,
              • Construction/implementation,
              • Monitoring/operation/management
              • None
              • Design/demand aggregation,
              • Construction/implementation
              • Design/demand aggregation
              C1P012: Other
              C1P012: Other (if any)
              Summary

              Authors (framework concept)

              Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

              Contributors (to the content)

              Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

              Implemented by

              Boutik.pt: Filipe Martins, Jamal Khan
              Marek Suchánek (Czech Technical University in Prague)