Filters:
NameProjectTypeCompare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Compare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Uncompare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Uncompare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr, Geothermal District Heating Project PED Relevant Case Study Compare
Drammen, Jacobs Borchs Gate PED Relevant Case Study Compare
Freiburg im Breisgau, Dietenbach PED Relevant Case Study Compare
Lecce, SmartEnCity SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
Trento, STARDUST STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Malmö, Klimatkontrakt Hyllie PED Relevant Case Study Compare
Kaiserslautern, EnStadt:Pfaff PED Relevant Case Study / PED Lab Compare
Helsinki, mySMARTlife PED Relevant Case Study Compare
Firenze, Novoli-Cascine district on “le PIagge” buildings PED Relevant Case Study Compare
Bolzano, Sinfonia PED Relevant Case Study Compare
Zürich, Hunziker Areal PED Relevant Case Study Compare
Hammarby Sjöstad, Hammarby Sjöstad 2.0 PED Relevant Case Study Compare
Milano, Sharing Cities PED Relevant Case Study Compare
Mieres, District Heating Pozo Barredo PED Relevant Case Study Compare
Lund, Cityfied (demo Linero) PED Relevant Case Study Compare
Espoo, Smart Otaniemi PED Relevant Case Study / PED Lab Compare
Vienna, Zukunftsquartier PED Case Study Compare
Trento, Santa Chiara Open Lab PED Case Study Compare
Paterna, Barrio La Pinada PED Case Study / PED Lab Compare
Bergen, Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru, +CityxChange PED Case Study Compare
Trondheim, NTNU Campus within the Knowledge Axis ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Oslo, Furuset project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Măgurele, Laser Valley – Land of Lights PED Case Study Compare
Elverum, Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Uncompare
Bodø, Airport, NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bærum, Fornebu ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Carquefou, Fleuraye west PED Case Study Compare
Åland, Smart Energy PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Uncompare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleGroningen, PED North
Innsbruck, Campagne-Areal
Borlänge, Rymdgatan’s Residential Portfolio
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona
Elverum, Ydalir project
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabGroningen, PED NorthInnsbruck, Campagne-ArealBorlänge, Rymdgatan’s Residential PortfolioBucharest, The Bucharest University of Economic Studies (ASE) PED LabCerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de BarcelonaElverum, Ydalir project
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynononononoyes
PED relevant case studynoyesyesnonono
PED Lab.yesnonoyesyesno
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesyesyesyes
Annual energy surplusyesnoyesnonono
Energy communityyesnoyesnonono
Circularityyesnonononono
Air quality and urban comfortnononononono
Electrificationnonoyesnonono
Net-zero energy costnononononono
Net-zero emissionyesyesnononoyes
Self-sufficiency (energy autonomous)nononononono
Maximise self-sufficiencynonoyesnonono
Othernononoyesyesyes
Other (A1P004)Smart Buildings: PV generation/home consumption behaviour emulation at LABEnergy efficient; Sustainable neighbourhood; Energy neutral
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabImplementation PhaseCompletedPlanning PhasePlanning PhasePlanning PhaseIn operation
A1P006: Start Date
A1P006: Start date12/1804/1603/2509/2501/16
A1P007: End Date
A1P007: End date12/2304/2212/2712/26
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
  • Monitoring data available within the districts
  • Open data city platform – different dashboards
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • TNO, Hanze, RUG,
  • Ped noord book
        A1P011: Geographic coordinates
        X Coordinate (longitude):6.53512111.42434673814025615.39449526.097394325914982.11214552443609611.580204
        Y Coordinate (latitude):53.23484647.27147078672910460.48660944.4472496751992941.5003086008059260.891878
        A1P012: Country
        A1P012: CountryNetherlandsAustriaSwedenRomaniaSpainNorway
        A1P013: City
        A1P013: CityGroningenInnsbruckBorlängeBucharestCerdanyola del VallesElverum
        A1P014: Climate Zone (Köppen Geiger classification)
        A1P014: Climate Zone (Köppen Geiger classification).CfaDfbDsbCsaCsaDfb
        A1P015: District boundary
        A1P015: District boundaryFunctionalGeographicGeographicGeographicFunctional
        Other
        A1P016: Ownership of the case study/PED Lab
        A1P016: Ownership of the case study/PED Lab:MixedMixedMixedPublicPublicPublic
        A1P017: Ownership of the land / physical infrastructure
        A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersSingle OwnerSingle OwnerSingle OwnerSingle Owner
        A1P018: Number of buildings in PED
        A1P018: Number of buildings in PED7410
        A1P019: Conditioned space
        A1P019: Conditioned space [m²]1.01222773700
        A1P020: Total ground area
        A1P020: Total ground area [m²]17.132113519945485430000
        A1P021: Floor area ratio: Conditioned space / total ground area
        A1P021: Floor area ratio: Conditioned space / total ground area020000
        A1P022: Financial schemes
        A1P022a: Financing - PRIVATE - Real estateyesnonononono
        A1P022a: Add the value in EUR if available [EUR]
        A1P022b: Financing - PRIVATE - ESCO schemenononononono
        A1P022b: Add the value in EUR if available [EUR]
        A1P022c: Financing - PRIVATE - Otheryesnonononono
        A1P022c: Add the value in EUR if available [EUR]
        A1P022d: Financing - PUBLIC - EU structural fundingnononononono
        A1P022d: Add the value in EUR if available [EUR]
        A1P022e: Financing - PUBLIC - National fundingyesnonononono
        A1P022e: Add the value in EUR if available [EUR]
        A1P022f: Financing - PUBLIC - Regional fundingnononononono
        A1P022f: Add the value in EUR if available [EUR]
        A1P022g: Financing - PUBLIC - Municipal fundingyesnonononono
        A1P022g: Add the value in EUR if available [EUR]
        A1P022h: Financing - PUBLIC - Othernononoyesyesno
        A1P022h: Add the value in EUR if available [EUR]
        A1P022i: Financing - RESEARCH FUNDING - EUyesnonononono
        A1P022i: Add the value in EUR if available [EUR]
        A1P022j: Financing - RESEARCH FUNDING - Nationalnoyesnononono
        A1P022j: Add the value in EUR if available [EUR]
        A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononono
        A1P022k: Add the value in EUR if available [EUR]
        A1P022l: Financing - RESEARCH FUNDING - Othernononononono
        A1P022l: Add the value in EUR if available [EUR]
        A1P022: Other
        A1P023: Economic Targets
        A1P023: Economic Targets
        • Boosting local businesses,
        • Boosting local and sustainable production
        • Job creation,
        • Other
        • Positive externalities,
        • Boosting local businesses,
        • Boosting consumption of local and sustainable products
        A1P023: OtherCreate affordable appartments for the citizens
        A1P024: More comments:
        A1P024: More comments:Owners are two local social housing companies. The complete district will consist 4 building blocks, from which only the first one with 4 building is ready built and occupied. At the end, it would be a district of ca. 1100 flats in 16 buildings with 78000 m2
        A1P025: Estimated PED case study / PED LAB costs
        A1P025: Estimated PED case study / PED LAB costs [mil. EUR]
        Contact person for general enquiries
        A1P026: NameJasper Tonen, Elisabeth KoopsGeorgios DermentzisJingchun ShenAdela BaraJose Lopez VicarioChristoph Gollner
        A1P027: OrganizationMunicipality of GroningenUniversity of InnsbruckHögskolan DalarnaThe Bucharest University of Economic StudiesUniversitat Autonoma Barcelona (UAB)FFG
        A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversityResearch Center / UniversityResearch Center / UniversityOther
        A1P028: Other
        A1P029: EmailJasper.tonen@groningen.nlGeorgios.Dermentzis@uibk.ac.atjih@du.seBara.adela@ie.ase.rojose.vicario@uab.catchristoph.gollner@ffg.at
        Contact person for other special topics
        A1P030: NameXingxing Zhang
        A1P031: Emailxza@du.se
        Pursuant to the General Data Protection RegulationYesYesYesYesYesYes
        A2P001: Fields of application
        A2P001: Fields of application
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Waste management
        • Energy efficiency,
        • Energy production,
        • Indoor air quality
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Construction materials
        • Energy efficiency,
        • Energy flexibility,
        • Digital technologies,
        • Indoor air quality
        • Energy efficiency,
        • Energy flexibility,
        • Digital technologies
        • Energy efficiency,
        • Energy production,
        • Construction materials
        A2P001: Other
        A2P002: Tools/strategies/methods applied for each of the above-selected fields
        A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streamsThe buildings are designed based on Passive House standards and dynamic building and system simulations are performed to optimise the HVAC systems, that are a ground-water heat pump for space heating and district heating for domestic hot water preparation. Photovoltaic systems are installed in the available roof spaces, however, more renewable sources are required due to very large number of apartments (very high density) to reach PED, and thus, simulation studies are performed.Load calculation and system optimisation: City Energy Analyst Identification of stranded assets for asset owners and investors to understand the carbon risks: CRREM
        A2P003: Application of ISO52000
        A2P003: Application of ISO52000NoNoNo
        A2P004: Appliances included in the calculation of the energy balance
        A2P004: Appliances included in the calculation of the energy balanceNoYesYes
        A2P005: Mobility included in the calculation of the energy balance
        A2P005: Mobility included in the calculation of the energy balanceNoNoNo
        A2P006: Description of how mobility is included (or not included) in the calculation
        A2P006: Description of how mobility is included (or not included) in the calculationMobility, till now, is not included in the energy model.
        A2P007: Annual energy demand in buildings / Thermal demand
        A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]2.30.390.6777
        A2P008: Annual energy demand in buildings / Electric Demand
        A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.330.6550.03656
        A2P009: Annual energy demand for e-mobility
        A2P009: Annual energy demand for e-mobility [GWh/annum]00
        A2P010: Annual energy demand for urban infrastructure
        A2P010: Annual energy demand for urban infrastructure [GWh/annum]0
        A2P011: Annual renewable electricity production on-site during target year
        A2P011: PVnoyesnononono
        A2P011: PV - specify production in GWh/annum [GWh/annum]0.42
        A2P011: Windnononononono
        A2P011: Wind - specify production in GWh/annum [GWh/annum]
        A2P011: Hydronononononono
        A2P011: Hydro - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_elnononononono
        A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_peat_elnononononono
        A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
        A2P011: PVT_elnonoyesnonono
        A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.01818
        A2P011: Othernononononono
        A2P011: Other - specify production in GWh/annum [GWh/annum]
        A2P012: Annual renewable thermal production on-site during target year
        A2P012: Geothermalyesnonononono
        A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Solar Thermalyesnonononono
        A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_heatyesnonononono
        A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.1
        A2P012: Waste heat+HPyesnonononono
        A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_peat_heatnononononono
        A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: PVT_thyesnoyesnonono
        A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]0.0825
        A2P012: Biomass_firewood_thnononononono
        A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Othernononononono
        A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
        A2P013: Renewable resources on-site - Additional notes
        A2P013: Renewable resources on-site - Additional notesGeothermal heatpump systems, Waste heat from data centers
        A2P014: Annual energy use
        A2P014: Annual energy use [GWh/annum]0.960.318
        A2P015: Annual energy delivered
        A2P015: Annual energy delivered [GWh/annum]-20.2055
        A2P016: Annual non-renewable electricity production on-site during target year
        A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]0
        A2P017: Annual non-renewable thermal production on-site during target year
        A2P017: Gasnononononono
        A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Coalnononononono
        A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Oilnononononono
        A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Othernonoyesnonono
        A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]0
        A2P018: Annual renewable electricity imports from outside the boundary during target year
        A2P018: PVnononononono
        A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
        A2P018: Windnononononono
        A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
        A2P018: Hydronononononono
        A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_elnononononono
        A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_peat_elnononononono
        A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: PVT_elnononononono
        A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Othernonoyesnonono
        A2P018 - Other: specify production in GWh/annum if available [GWh/annum]0.187
        A2P019: Annual renewable thermal imports from outside the boundary during target year
        A2P019: Geothermalnononononono
        A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Solar Thermalnononononono
        A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_heatnononononono
        A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Waste heat+HPnononononono
        A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_peat_heatnononononono
        A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: PVT_thnononononono
        A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_firewood_thnononononono
        A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Othernonoyesnonono
        A2P019 Other: Please specify imports in GWh/annum [GWh/annum]0
        A2P020: Share of RES on-site / RES outside the boundary
        A2P020: Share of RES on-site / RES outside the boundary000.53839572192513000
        A2P021: GHG-balance calculated for the PED
        A2P021: GHG-balance calculated for the PED [tCO2/annum]6.93
        A2P022: KPIs related to the PED case study / PED Lab
        A2P022: Safety & Securitynone
        A2P022: Healthindoor air quility (indoor CO2 concentration) - measured on the extract air of the mechanical ventilation system. Relative humidity to avoid mold.thermal comfort diagram
        A2P022: Educationnone
        A2P022: MobilitynoneMode of transport; Access to public transport
        A2P022: EnergySpace heating demand, thermal energy delivered by district heating, electricity of the heat pump, thermal losses of the pipes, and PV production.normalized CO2/GHG & Energy intensityYesYesEnergy efficiency in buildings; Net energy need; Gross energy need; Total energy need
        A2P022: Water
        A2P022: Economic developmentcost of excess emissions
        A2P022: Housing and CommunityDelivery and proximity to amenities
        A2P022: Waste
        A2P022: OtherGHG emissions; Power/load; Life cycle cost (LCC); Demographic needs and consultation plan; Public Space
        A2P023: Technological Solutions / Innovations - Energy Generation
        A2P023: Photovoltaicsyesyesyesnoyesno
        A2P023: Solar thermal collectorsyesnoyesnonoyes
        A2P023: Wind Turbinesnononononono
        A2P023: Geothermal energy systemyesnoyesnonono
        A2P023: Waste heat recoveryyesnoyesnonono
        A2P023: Waste to energyyesnonononono
        A2P023: Polygenerationnononononono
        A2P023: Co-generationnononononono
        A2P023: Heat Pumpyesyesyesnonono
        A2P023: Hydrogennononononono
        A2P023: Hydropower plantnononononono
        A2P023: Biomassnononononono
        A2P023: Biogasnononononono
        A2P023: OtherPhotovoltaics are considered for the next years
        A2P024: Technological Solutions / Innovations - Energy Flexibility
        A2P024: A2P024: Information and Communication Technologies (ICT)yesnoyesyesyesno
        A2P024: Energy management systemyesnonoyesyesno
        A2P024: Demand-side managementyesnonoyesyesno
        A2P024: Smart electricity gridnononononono
        A2P024: Thermal Storageyesyesyesnonono
        A2P024: Electric Storageyesnonononono
        A2P024: District Heating and Coolingyesyesyesnonoyes
        A2P024: Smart metering and demand-responsive control systemsyesnonononono
        A2P024: P2P – buildingsnoyesnononono
        A2P024: Other
        A2P025: Technological Solutions / Innovations - Energy Efficiency
        A2P025: Deep Retrofittingnonoyesyesyesno
        A2P025: Energy efficiency measures in historic buildingsyesnonoyesnono
        A2P025: High-performance new buildingsyesyesnononono
        A2P025: Smart Public infrastructure (e.g. smart lighting)yesnonononono
        A2P025: Urban data platformsyesnonononono
        A2P025: Mobile applications for citizensnononononono
        A2P025: Building services (HVAC & Lighting)noyesyesyesnono
        A2P025: Smart irrigationnononononono
        A2P025: Digital tracking for waste disposalnononononono
        A2P025: Smart surveillancenononoyesnono
        A2P025: Other
        A2P026: Technological Solutions / Innovations - Mobility
        A2P026: Efficiency of vehicles (public and/or private)nononononono
        A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nononononoyes
        A2P026: e-Mobilityyesnonononono
        A2P026: Soft mobility infrastructures and last mile solutionsnononononono
        A2P026: Car-free areanononononono
        A2P026: Other
        A2P027: Mobility strategies - Additional notes
        A2P027: Mobility strategies - Additional notes
        A2P028: Energy efficiency certificates
        A2P028: Energy efficiency certificatesYesYesNo
        A2P028: If yes, please specify and/or enter notesEnergy Performance CertificateTwo buildings are certified "Passive House new build"
        A2P029: Any other building / district certificates
        A2P029: Any other building / district certificatesNoNo
        A2P029: If yes, please specify and/or enter notes
        A3P001: Relevant city /national strategy
        A3P001: Relevant city /national strategy
        • Energy master planning (SECAP, etc.),
        • New development strategies,
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Smart cities strategies
        • Promotion of energy communities (REC/CEC),
        • Climate change adaption plan/strategy (e.g. Climate City contract)
        • Smart cities strategies
        A3P002: Quantitative targets included in the city / national strategy
        A3P002: Quantitative targets included in the city / national strategyThe study aligns closely with the decarbonisation and energy reduction pathways of residential multi family buildings with 1.5°C global warming target in Sweden. This study will also contribute to the achievement of the carbon neturality of whole Borlänge city by 2030.
        A3P003: Strategies towards decarbonization of the gas grid
        A3P003: Strategies towards decarbonization of the gas grid
        • Electrification of Heating System based on Heat Pumps,
        • Electrification of Cooking Methods,
        • Biogas
        • Electrification of Heating System based on Heat Pumps,
        • Other
        A3P003: OtherDistrict heating based mainly on heat pumps and renewable sources
        A3P004: Identification of needs and priorities
        A3P004: Identification of needs and prioritiesThe priority was to eliminate the CO2 emissions by optimizing the building envelope and the heating systems.In our project, we carried out a comprehensive exploration of strategies to achieve positive energy districts in a Swedish residential portfolio. The focus on urban energy transitions necessitates a holistic approach that integrates building retrofit, solar technology exploration, and heating supply optimisation. Exploration of Local Solar Sources: The analysis reveals varying solar irradiance resources throughout the year, emphasizing the importance of strategic placement. Integration of combined photovoltaic and thermal panels into building envelopes demonstrates the potential to cover a significant portion of the energy demand even in Sweden. Heating Supply Optimisation with Solar Technologies: Despite the surplus energy production from on-site solar technology, challenges arise due to temporal energy asymmetry. The introduction of heat pumps emerges as a feasible solution to balance energy gaps, utilising both rejected and free heat. Optimisation scenarios, utilising a combination of geothermal heat pumps, water source heat pumps, and PVT, showcase remarkable reductions in emissions and primary energy consumption. Urban Form and Energy Infrastructure Design: We realised the importance of returning to urban form and energy infrastructure design to optimise future residential portfolio potential. Building layout design, influenced by zoning regulations and innovative typologies, plays a crucial role in achieving district level energy efficiency. Future challenges, including demographic shifts, e-mobility, and climate change, necessitate a more holistic approach to energy infrastructure design, addressing not only heating and electricity demands but also cooling requirements.
        A3P005: Sustainable behaviour
        A3P005: Sustainable behaviourIn Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.While our investigation primarily centres on technical optimisation within Positive Energy District (PED) development, it is essential to acknowledge the broader scope encompassing social and governance dimensions. Specifically, understanding stakeholders' willingness to embrace technical recommendations upon project completion is important. Several potential influencing factors merit exploration, including economic considerations, technical optimisation-associated embodied carbon balance, the general public's technical perceptions, and operational feasibility. Evaluating these aspects holistically not only enhances the efficacy of PED initiatives but also fosters greater acceptance and participation within the communities they serve.
        A3P006: Economic strategies
        A3P006: Economic strategies
        • Innovative business models,
        • Blockchain
        • Open data business models,
        • Life Cycle Cost,
        • Circular economy models,
        • Local trading
        • Innovative business models,
        • Demand management Living Lab
        • Innovative business models
        A3P006: Other
        A3P007: Social models
        A3P007: Social models
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Citizen Social Research,
        • Prevention of energy poverty,
        • Citizen/owner involvement in planning and maintenance
        • Co-creation / Citizen engagement strategies,
        • Social incentives,
        • Affordability,
        • Prevention of energy poverty,
        • Citizen/owner involvement in planning and maintenance
        • Strategies towards (local) community-building,
        • Behavioural Change / End-users engagement,
        • Social incentives,
        • Affordability,
        • Digital Inclusion
        • Digital Inclusion,
        • Citizen/owner involvement in planning and maintenance,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Digital Inclusion,
        • Citizen/owner involvement in planning and maintenance,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Co-creation / Citizen engagement strategies,
        • Citizen/owner involvement in planning and maintenance
        A3P007: Other
        A3P008: Integrated urban strategies
        A3P008: Integrated urban strategies
        • Strategic urban planning,
        • District Energy plans,
        • City Vision 2050,
        • SECAP Updates
        • Strategic urban planning,
        • Digital twinning and visual 3D models,
        • District Energy plans,
        • Building / district Certification
        • Digital twinning and visual 3D models
        • District Energy plans
        A3P008: Other
        A3P009: Environmental strategies
        A3P009: Environmental strategies
        • Energy Neutral
        • Energy Neutral,
        • Low Emission Zone
        • Low Emission Zone,
        • Net zero carbon footprint,
        • Life Cycle approach,
        • Sustainable Urban drainage systems (SUDS)
        • Energy Neutral,
        • Net zero carbon footprint,
        • Carbon-free
        A3P009: Other
        A3P010: Legal / Regulatory aspects
        A3P010: Legal / Regulatory aspectsAt national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricity
        B1P001: PED/PED relevant concept definition
        B1P001: PED/PED relevant concept definitionExtremely low building energy demand, the electric energy of the heat pump used for space heating is significantly lower compared to thermal energy for the domestic hot water preparation.The Rymdgatan's Residential Portfolio in Sweden presents a compelling case study for its classification as a PED-related research, given its alignment with sustainable behaviours and overarching PED development principles as follows: Inclusivity and Social Equity: The residential portfolio situated in Rymdgatan caters primarily to a low-income community. By focusing on this demographic, the project addresses critical aspects of social equity within sustainable urban development. Ensuring access to energy-efficient housing and amenities for economically disadvantaged populations not only fosters social cohesion but also mitigates energy poverty, a pressing concern in many urban contexts. Multifamily Residential Building: The inclusion of multifamily residential buildings within the portfolio underscores a commitment to density and efficient land use, both essential components of sustainable urban design. Such developments promote resource optimisation by consolidating housing units, thereby reducing per capita energy consumption and infrastructure demands. Moreover, multifamily dwellings often facilitate community engagement and shared resource management, fostering a culture of sustainability among residents. Low Carbon Retrofitting and Transition: The overarching initiative to transition the entire Jakobsgårdarna district. The included Rymdgatan portfolio, towards low carbon retrofitting, represents a significant example of decarbonization and climate resilience. By integrating energy-efficient technologies and renewable energy solutions into existing infrastructure, the project not only reduces carbon emissions but also serves as a blueprint for revitalising old urban environments sustainably. This holistic approach to retrofitting demonstrates a systemic commitment to environmental stewardship and long-term sustainability. Climate Adaptation and Renewable Energy Integration: Despite Sweden's climatic challenges, including lower solar resources during winter months, the Rymdgatan project leverages its geographical context to optimize renewable energy utilization. Sweden's greater solar resource availability during summer and geothermal potentials complement the design's emphasis on seasonal energy planning, where surplus energy generated during peak periods can be stored or redistributed efficiently. By embracing climate-responsive design strategies, the project demonstrates resilience in the face of climate variability while harnessing renewable energy potential effectively.
        B1P002: Motivation behind PED/PED relevant project development
        B1P002: Motivation behind PED/PED relevant project developmentSince it is an urban area, with high building and apartment density, the need for CO2 reduction is quite relevant and thus, in new built, the minimization of CO2 emissions is crucial.Borlänge city has committed to become the carbon-neutral city by 2030.
        B1P003: Environment of the case study area
        B2P003: Environment of the case study areaUrban areaUrban areaSuburban area
        B1P004: Type of district
        B2P004: Type of district
        • New construction
        • Renovation
        • New construction
        B1P005: Case Study Context
        B1P005: Case Study Context
        • Re-use / Transformation Area,
        • New Development
        • Re-use / Transformation Area,
        • Retrofitting Area
        • New Development
        B1P006: Year of construction
        B1P006: Year of construction20221990
        B1P007: District population before intervention - Residential
        B1P007: District population before intervention - Residential100
        B1P008: District population after intervention - Residential
        B1P008: District population after intervention - Residential780100
        B1P009: District population before intervention - Non-residential
        B1P009: District population before intervention - Non-residential6
        B1P010: District population after intervention - Non-residential
        B1P010: District population after intervention - Non-residential6
        B1P011: Population density before intervention
        B1P011: Population density before intervention0000
        B1P012: Population density after intervention
        B1P012: Population density after intervention00.0687164126508680.0106586224233280
        B1P013: Building and Land Use before intervention
        B1P013: Residentialnonoyesnonono
        B1P013 - Residential: Specify the sqm [m²]4360
        B1P013: Officenononononono
        B1P013 - Office: Specify the sqm [m²]
        B1P013: Industry and Utilitynononononono
        B1P013 - Industry and Utility: Specify the sqm [m²]
        B1P013: Commercialnononononono
        B1P013 - Commercial: Specify the sqm [m²]
        B1P013: Institutionalnononononono
        B1P013 - Institutional: Specify the sqm [m²]
        B1P013: Natural areasnononononono
        B1P013 - Natural areas: Specify the sqm [m²]
        B1P013: Recreationalnononononono
        B1P013 - Recreational: Specify the sqm [m²]
        B1P013: Dismissed areasnononononono
        B1P013 - Dismissed areas: Specify the sqm [m²]
        B1P013: Othernonoyesnonono
        B1P013 - Other: Specify the sqm [m²]706
        B1P014: Building and Land Use after intervention
        B1P014: Residentialnoyesyesnonoyes
        B1P014 - Residential: Specify the sqm [m²]4360100000
        B1P014: Officenononononono
        B1P014 - Office: Specify the sqm [m²]
        B1P014: Industry and Utilitynononononono
        B1P014 - Industry and Utility: Specify the sqm [m²]
        B1P014: Commercialnoyesnononono
        B1P014 - Commercial: Specify the sqm [m²]
        B1P014: Institutionalnoyesnononoyes
        B1P014 - Institutional: Specify the sqm [m²]2000
        B1P014: Natural areasnononononono
        B1P014 - Natural areas: Specify the sqm [m²]
        B1P014: Recreationalnoyesnononono
        B1P014 - Recreational: Specify the sqm [m²]
        B1P014: Dismissed areasnononononono
        B1P014 - Dismissed areas: Specify the sqm [m²]
        B1P014: Othernonoyesnonono
        B1P014 - Other: Specify the sqm [m²]706
        B2P001: PED Lab concept definition
        B2P001: PED Lab concept definitionGroningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.
        B2P002: Installation life time
        B2P002: Installation life timeThe MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.
        B2P003: Scale of action
        B2P003: ScaleDistrict
        B2P004: Operator of the installation
        B2P004: Operator of the installationThe Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P005: Replication framework: Applied strategy to reuse and recycling the materialsGroningen does not have a strategy to reuse and recyle materials
        B2P006: Circular Economy Approach
        B2P006: Do you apply any strategy to reuse and recycling the materials?No
        B2P006: Other
        B2P007: Motivation for developing the PED Lab
        B2P007: Motivation for developing the PED Lab
        • Civic
        B2P007: Other
        B2P008: Lead partner that manages the PED Lab
        B2P008: Lead partner that manages the PED LabMunicipality
        B2P008: Other
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Collaborative partners that participate in the PED Lab
        • Academia,
        • Private,
        • Industrial,
        • Other
        B2P009: Otherresearch companies, monitoring company, ict company
        B2P010: Synergies between the fields of activities
        B2P010: Synergies between the fields of activities
        B2P011: Available facilities to test urban configurations in PED Lab
        B2P011: Available facilities to test urban configurations in PED Lab
        • Buildings,
        • Demand-side management,
        • Energy storage,
        • Energy networks,
        • Waste management,
        • Lighting,
        • E-mobility,
        • Information and Communication Technologies (ICT),
        • Social interactions,
        • Business models
        B2P011: Other
        B2P012: Incubation capacities of PED Lab
        B2P012: Incubation capacities of PED Lab
        • Tools for prototyping and modelling
        B2P013: Availability of the facilities for external people
        B2P013: Availability of the facilities for external people
        B2P014: Monitoring measures
        B2P014: Monitoring measures
        • Execution plan,
        • Available data,
        • Type of measured data,
        • Equipment,
        • Level of access
        B2P015: Key Performance indicators
        B2P015: Key Performance indicators
        • Energy,
        • Social,
        • Economical / Financial
        B2P016: Execution of operations
        B2P016: Execution of operations
        B2P017: Capacities
        B2P017: Capacities
        B2P018: Relations with stakeholders
        B2P018: Relations with stakeholders
        B2P019: Available tools
        B2P019: Available tools
        • Energy modelling,
        • Social models,
        • Business and financial models
        B2P019: Available tools
        B2P020: External accessibility
        B2P020: External accessibility
        C1P001: Unlocking Factors
        C1P001: Recent technological improvements for on-site RES production3 - Moderately important1 - Unimportant4 - Important4 - Important4 - Important1 - Unimportant
        C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P001: Energy Communities, P2P, Prosumers concepts4 - Important3 - Moderately important3 - Moderately important4 - Important4 - Important1 - Unimportant
        C1P001: Storage systems and E-mobility market penetration4 - Important2 - Slightly important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant
        C1P001: Decreasing costs of innovative materials5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P001: Financial mechanisms to reduce costs and maximize benefits5 - Very important1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant
        C1P001: The ability to predict Multiple Benefits3 - Moderately important3 - Moderately important4 - Important2 - Slightly important2 - Slightly important1 - Unimportant
        C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important3 - Moderately important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant
        C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important2 - Slightly important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant
        C1P001: Social acceptance (top-down)3 - Moderately important4 - Important5 - Very important4 - Important4 - Important1 - Unimportant
        C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)4 - Important3 - Moderately important4 - Important4 - Important4 - Important1 - Unimportant
        C1P001: Presence of integrated urban strategies and plans3 - Moderately important4 - Important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant
        C1P001: Multidisciplinary approaches available for systemic integration2 - Slightly important4 - Important5 - Very important4 - Important4 - Important1 - Unimportant
        C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects3 - Moderately important4 - Important4 - Important5 - Very important5 - Very important1 - Unimportant
        C1P001: Availability of RES on site (Local RES)4 - Important3 - Moderately important5 - Very important5 - Very important5 - Very important1 - Unimportant
        C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders3 - Moderately important3 - Moderately important2 - Slightly important4 - Important4 - Important1 - Unimportant
        C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P001: Any other UNLOCKING FACTORS (if any)
        C1P002: Driving Factors
        C1P002: Climate Change adaptation need2 - Slightly important5 - Very important5 - Very important4 - Important4 - Important1 - Unimportant
        C1P002: Climate Change mitigation need (local RES production and efficiency)3 - Moderately important4 - Important5 - Very important4 - Important4 - Important1 - Unimportant
        C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P002: Urban re-development of existing built environment4 - Important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P002: Economic growth need2 - Slightly important1 - Unimportant4 - Important2 - Slightly important2 - Slightly important1 - Unimportant
        C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
        C1P002: Territorial and market attractiveness2 - Slightly important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P002: Energy autonomy/independence2 - Slightly important4 - Important2 - Slightly important5 - Very important5 - Very important1 - Unimportant
        C1P002: Any other DRIVING FACTOR4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P002: Any other DRIVING FACTOR (if any)Earthquakes due to gas extraction
        C1P003: Administrative barriers
        C1P003: Difficulty in the coordination of high number of partners and authorities3 - Moderately important2 - Slightly important4 - Important2 - Slightly important2 - Slightly important1 - Unimportant
        C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important2 - Slightly important4 - Important2 - Slightly important2 - Slightly important1 - Unimportant
        C1P003: Lack of public participation1 - Unimportant1 - Unimportant3 - Moderately important4 - Important4 - Important1 - Unimportant
        C1P003: Lack of institutions/mechanisms to disseminate information2 - Slightly important1 - Unimportant4 - Important4 - Important4 - Important1 - Unimportant
        C1P003:Long and complex procedures for authorization of project activities4 - Important1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant
        C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important1 - Unimportant4 - Important4 - Important4 - Important1 - Unimportant
        C1P003: Complicated and non-comprehensive public procurement3 - Moderately important1 - Unimportant5 - Very important4 - Important4 - Important1 - Unimportant
        C1P003: Fragmented and or complex ownership structure4 - Important1 - Unimportant4 - Important2 - Slightly important2 - Slightly important1 - Unimportant
        C1P003: City administration & cross-sectoral attitude/approaches (silos)5 - Very important1 - Unimportant5 - Very important2 - Slightly important2 - Slightly important1 - Unimportant
        C1P003: Lack of internal capacities to support energy transition1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant
        C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P003: Any other Administrative BARRIER (if any)
        C1P004: Policy barriers
        C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant
        C1P004: Lacking or fragmented local political commitment and support on the long term1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant
        C1P004: Lack of Cooperation & support between national-regional-local entities2 - Slightly important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important1 - Unimportant
        C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P004: Any other Political BARRIER (if any)
        C1P005: Legal and Regulatory barriers
        C1P005: Inadequate regulations for new technologies4 - Important1 - Unimportant4 - Important2 - Slightly important2 - Slightly important1 - Unimportant
        C1P005: Regulatory instability3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important2 - Slightly important1 - Unimportant
        C1P005: Non-effective regulations3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important2 - Slightly important1 - Unimportant
        C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important1 - Unimportant4 - Important2 - Slightly important2 - Slightly important1 - Unimportant
        C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important2 - Slightly important1 - Unimportant
        C1P005: Insufficient or insecure financial incentives3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important2 - Slightly important1 - Unimportant
        C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation2 - Slightly important1 - Unimportant2 - Slightly important2 - Slightly important2 - Slightly important1 - Unimportant
        C1P005: Shortage of proven and tested solutions and examples2 - Slightly important1 - Unimportant4 - Important2 - Slightly important2 - Slightly important1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER (if any)
        C1P006: Environmental barriers
        C1P006: Environmental barriersUrban area very high buildings (and apartment) density and thus, less available space for renewable sources.2 - Slightly important
        C1P007: Technical barriers
        C1P007: Lack of skilled and trained personnel4 - Important2 - Slightly important4 - Important2 - Slightly important2 - Slightly important1 - Unimportant
        C1P007: Deficient planning2 - Slightly important1 - Unimportant4 - Important2 - Slightly important2 - Slightly important1 - Unimportant
        C1P007: Retrofitting work in dwellings in occupied state2 - Slightly important1 - Unimportant4 - Important2 - Slightly important2 - Slightly important1 - Unimportant
        C1P007: Lack of well-defined process3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important2 - Slightly important1 - Unimportant
        C1P007: Inaccuracy in energy modelling and simulation4 - Important1 - Unimportant2 - Slightly important2 - Slightly important2 - Slightly important1 - Unimportant
        C1P007: Lack/cost of computational scalability1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important2 - Slightly important1 - Unimportant
        C1P007: Grid congestion, grid instability4 - Important1 - Unimportant5 - Very important2 - Slightly important2 - Slightly important1 - Unimportant
        C1P007: Negative effects of project intervention on the natural environment1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important2 - Slightly important1 - Unimportant
        C1P007: Energy retrofitting work in dense and/or historical urban environment3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant
        C1P007: Difficult definition of system boundaries1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant
        C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Any other Thecnical BARRIER (if any)
        C1P008: Social and Cultural barriers
        C1P008: Inertia2 - Slightly important1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant
        C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important1 - Unimportant5 - Very important5 - Very important5 - Very important1 - Unimportant
        C1P008: Low acceptance of new projects and technologies2 - Slightly important1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant
        C1P008: Difficulty of finding and engaging relevant actors2 - Slightly important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important1 - Unimportant
        C1P008: Lack of trust beyond social network4 - Important1 - Unimportant5 - Very important2 - Slightly important2 - Slightly important1 - Unimportant
        C1P008: Rebound effect2 - Slightly important1 - Unimportant4 - Important2 - Slightly important2 - Slightly important1 - Unimportant
        C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant1 - Unimportant3 - Moderately important4 - Important4 - Important1 - Unimportant
        C1P008: Exclusion of socially disadvantaged groups5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant
        C1P008: Non-energy issues are more important and urgent for actors4 - Important1 - Unimportant3 - Moderately important2 - Slightly important2 - Slightly important1 - Unimportant
        C1P008: Hostile or passive attitude towards energy collaboration2 - Slightly important1 - Unimportant3 - Moderately important2 - Slightly important2 - Slightly important1 - Unimportant
        C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Any other Social BARRIER (if any)
        C1P009: Information and Awareness barriers
        C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important2 - Slightly important1 - Unimportant
        C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant
        C1P009: Lack of awareness among authorities2 - Slightly important1 - Unimportant5 - Very important4 - Important4 - Important1 - Unimportant
        C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important2 - Slightly important1 - Unimportant
        C1P009: High costs of design, material, construction, and installation4 - Important5 - Very important5 - Very important2 - Slightly important2 - Slightly important1 - Unimportant
        C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P009: Any other Information and Awareness BARRIER (if any)
        C1P010: Financial barriers
        C1P010: Hidden costs2 - Slightly important1 - Unimportant5 - Very important2 - Slightly important2 - Slightly important1 - Unimportant
        C1P010: Insufficient external financial support and funding for project activities3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important2 - Slightly important1 - Unimportant
        C1P010: Economic crisis1 - Unimportant4 - Important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant
        C1P010: Risk and uncertainty3 - Moderately important1 - Unimportant5 - Very important4 - Important4 - Important1 - Unimportant
        C1P010: Lack of consolidated and tested business models3 - Moderately important1 - Unimportant5 - Very important4 - Important4 - Important1 - Unimportant
        C1P010: Limited access to capital and cost disincentives2 - Slightly important1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant
        C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P010: Any other Financial BARRIER (if any)
        C1P011: Market barriers
        C1P011: Split incentives5 - Very important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important1 - Unimportant
        C1P011: Energy price distortion4 - Important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important1 - Unimportant
        C1P011: Energy market concentration, gatekeeper actors (DSOs)4 - Important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant
        C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P011: Any other Market BARRIER (if any)
        C1P012: Stakeholders involved
        C1P012: Government/Public Authorities
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        • Planning/leading
        • Monitoring/operation/management
        C1P012: Research & Innovation
        • Planning/leading,
        • Design/demand aggregation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Monitoring/operation/management
        • Planning/leading
        C1P012: Financial/Funding
        • Design/demand aggregation,
        • Construction/implementation
        • Planning/leading,
        • Construction/implementation
        • None
        C1P012: Analyst, ICT and Big Data
        • Design/demand aggregation,
        • Monitoring/operation/management
        • Monitoring/operation/management
        • None
        C1P012: Business process management
        • Planning/leading
        • None
        C1P012: Urban Services providers
        • Design/demand aggregation,
        • Monitoring/operation/management
        • Construction/implementation
        • None
        C1P012: Real Estate developers
        • Construction/implementation
        • Planning/leading
        • Design/demand aggregation
        C1P012: Design/Construction companies
        • Construction/implementation
        • Design/demand aggregation,
        • Construction/implementation
        • None
        C1P012: End‐users/Occupants/Energy Citizens
        • None
        • Planning/leading,
        • Design/demand aggregation
        • Monitoring/operation/management
        C1P012: Social/Civil Society/NGOs
        • Planning/leading,
        • Design/demand aggregation
        • Planning/leading
        • Monitoring/operation/management
        C1P012: Industry/SME/eCommerce
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • None
        C1P012: Other
        C1P012: Other (if any)
        Summary

        Authors (framework concept)

        Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

        Contributors (to the content)

        Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

        Implemented by

        Boutik.pt: Filipe Martins, Jamal Khan
        Marek Suchánek (Czech Technical University in Prague)