Filters:
NameProjectTypeCompare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Uncompare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Uncompare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Uncompare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Uncompare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Uncompare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Uncompare
TitleGroningen, PED North
Innsbruck, Campagne-Areal
Barcelona, SEILAB & Energy SmartLab
Oulu, Kaukovainio
Leipzig, Baumwollspinnerei district
Istanbul, Ozyegin University Campus
Barcelona, Santa Coloma de Gramenet
Uden, Loopkantstraat
Kifissia, Energy community
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabGroningen, PED NorthInnsbruck, Campagne-ArealBarcelona, SEILAB & Energy SmartLabOulu, KaukovainioLeipzig, Baumwollspinnerei districtIstanbul, Ozyegin University CampusBarcelona, Santa Coloma de GramenetUden, LoopkantstraatKifissia, Energy community
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynononoyesyesnoyesnono
PED relevant case studynoyesnononoyesnoyesyes
PED Lab.yesnoyesnononononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesnoyesyesyesyesyesno
Annual energy surplusyesnononononoyesyesno
Energy communityyesnoyesnononononoyes
Circularityyesnonoyesnonononono
Air quality and urban comfortnonononoyesyesyesnoyes
Electrificationnonoyesyesyesyesnoyesyes
Net-zero energy costnonononononononono
Net-zero emissionyesyesyesnononononono
Self-sufficiency (energy autonomous)nonoyesnononononono
Maximise self-sufficiencynonononononononono
Othernonoyesnoyesyesnonono
Other (A1P004)Green ITNet-zero emission; Annual energy surplusalmost nZEB district
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabImplementation PhaseCompletedIn operationIn operationImplementation PhaseImplementation PhaseImplementation PhaseIn operationPlanning Phase
A1P006: Start Date
A1P006: Start date12/1804/1601/201110/2406/17
A1P007: End Date
A1P007: End date12/2304/2202/201310/2805/23
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
  • Monitoring data available within the districts
  • General statistical datasets
  • General statistical datasets
  • Monitoring data available within the districts
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • TNO, Hanze, RUG,
  • Ped noord book
      • Inger Andresen, Tonje Healey Trulsrud, Luca Finocchiaro, Alessandro Nocente, Meril Tamm, Joana Ortiz, Jaume Salom, Abel Magyari, Linda Hoes-van Oeffelen, Wouter Borsboom, Wim Kornaat, Niki Gaitani, Design and performance predictions of plus energy neighbourhoods – Case studies of demonstration projects in four different European climates, Energy and Buildings, Volume 274, 2022, 112447, ISSN 0378-7788, https://doi.org/10.1016/j.enbuild.2022.112447. (https://www.sciencedirect.com/science/article/pii/S0378778822006181),
      • Deliverable, Report: Integrated Energy Design for Sustainable Plus Energy Neighbourhoods (syn.ikia),
      • Deliverable, Report: DEMONSTRATION CASE OF SUSTAINABLE PLUS ENERGY NEIGHBOURHOODS IN MARINE CLIMATE (syn.ikia),
      • https://www.synikia.eu/no/bibliotek/
        A1P011: Geographic coordinates
        X Coordinate (longitude):6.53512111.4243467381402562.125.51759508409350712.31845829.2583002.165.619123.814588
        Y Coordinate (latitude):53.23484647.27147078672910441.364.9928809817313251.32649241.03060041.3951.660638.077349
        A1P012: Country
        A1P012: CountryNetherlandsAustriaSpainFinlandGermanyTurkeySpainNetherlandsGreece
        A1P013: City
        A1P013: CityGroningenInnsbruckBarcelona and TarragonaOuluLeipzigIstanbulBarcelonaUdenMunicipality of Kifissia
        A1P014: Climate Zone (Köppen Geiger classification)
        A1P014: Climate Zone (Köppen Geiger classification).CfaDfbCsaDfcDfbCfaCsaCfbCsa
        A1P015: District boundary
        A1P015: District boundaryFunctionalGeographicVirtualFunctionalGeographicGeographicGeographicVirtual
        OtherRegional (close to virtual)GeographicThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhood
        A1P016: Ownership of the case study/PED Lab
        A1P016: Ownership of the case study/PED Lab:MixedMixedPublicMixedPrivatePrivatePrivate
        A1P017: Ownership of the land / physical infrastructure
        A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersSingle OwnerSingle OwnerSingle OwnerSingle OwnerSingle Owner
        A1P018: Number of buildings in PED
        A1P018: Number of buildings in PED7406215161
        A1P019: Conditioned space
        A1P019: Conditioned space [m²]1.01222771970017000215422360
        A1P020: Total ground area
        A1P020: Total ground area [m²]17.132113516000030000285.4003860
        A1P021: Floor area ratio: Conditioned space / total ground area
        A1P021: Floor area ratio: Conditioned space / total ground area020010010
        A1P022: Financial schemes
        A1P022a: Financing - PRIVATE - Real estateyesnonoyesnoyesnoyesno
        A1P022a: Add the value in EUR if available [EUR]7804440
        A1P022b: Financing - PRIVATE - ESCO schemenonononononononono
        A1P022b: Add the value in EUR if available [EUR]
        A1P022c: Financing - PRIVATE - Otheryesnononononononono
        A1P022c: Add the value in EUR if available [EUR]
        A1P022d: Financing - PUBLIC - EU structural fundingnonononononononono
        A1P022d: Add the value in EUR if available [EUR]
        A1P022e: Financing - PUBLIC - National fundingyesnononononononono
        A1P022e: Add the value in EUR if available [EUR]
        A1P022f: Financing - PUBLIC - Regional fundingnonononononononono
        A1P022f: Add the value in EUR if available [EUR]
        A1P022g: Financing - PUBLIC - Municipal fundingyesnonoyesnonononono
        A1P022g: Add the value in EUR if available [EUR]
        A1P022h: Financing - PUBLIC - Othernonononononononono
        A1P022h: Add the value in EUR if available [EUR]
        A1P022i: Financing - RESEARCH FUNDING - EUyesnonoyesnoyesyesnono
        A1P022i: Add the value in EUR if available [EUR]503903
        A1P022j: Financing - RESEARCH FUNDING - Nationalnoyesnonononononono
        A1P022j: Add the value in EUR if available [EUR]
        A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononononono
        A1P022k: Add the value in EUR if available [EUR]
        A1P022l: Financing - RESEARCH FUNDING - Othernonononononononono
        A1P022l: Add the value in EUR if available [EUR]
        A1P022: Other
        A1P023: Economic Targets
        A1P023: Economic Targets
        • Boosting local businesses,
        • Boosting local and sustainable production
        • Job creation,
        • Other
        • Job creation,
        • Boosting local and sustainable production
        • Positive externalities,
        • Boosting local and sustainable production
        • Positive externalities,
        • Boosting local and sustainable production,
        • Boosting consumption of local and sustainable products
        • Positive externalities
        A1P023: OtherCreate affordable appartments for the citizensDeveloping and demonstrating new solutionsSustainable and replicable business models regarding renewable energy systems
        A1P024: More comments:
        A1P024: More comments:Owners are two local social housing companies. The complete district will consist 4 building blocks, from which only the first one with 4 building is ready built and occupied. At the end, it would be a district of ca. 1100 flats in 16 buildings with 78000 m2Semi-Virtual Energy Integration Laboratory (SEILAB) The Energy Smart Lab is an infrastructure conceived as a flexible and versatile platform for innovative technological developments for both industry and competitive R+D projects. The areas of expertise of this laboratory pivot around the following technologies: – Power Electronics for the integration and control of the elements within a building or community: Renewable Energy Sources (RES), Energy Storage Systems and Electric Vehicles (EV) – ICT Platform for smart communications and energy management of systems, building, networks and communities. – Energy System Integration technologies for smart and flexible buildings and grids including RES and EV. The laboratory operation is based on the hardware emulation approach, which allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation. The laboratory is pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.In addition to having the most energy efficient academic building in Turkey, the university campus also has 3 buildings with LEED NC Campus certificate and LEED BD+C Gold certificate. In addition, it aims to continuously improve the energy efficiency objectives on campus in an innovative way. For this purpose, energy management and storage systems are being installed in the Dormitory 6 building, which is used as the demo area of the LEGOFIT project, for the purpose of turning it into a PED project.The project is a follow-up from the “Social Beautiful” concept which was developed in collaboration between Labyrint (Support in sheltered housing), Area (housing company), the municipality of Uden, and Hendriks Coppelmans (developer). The concept aims to provide an answer to changes in various policy areas and the changing demands of society. The Social Beautiful concept consists of the following elements: 1. Living, working, and community services are brought together in one location. A multifunctional residential and service centre is being realized at the location. 2. Housing is shaped by the realization of financially accessible homes suitable for the target group. The housing design is tailored to the target group. it may also include sheltered / protected living. 3. Work takes place at the location or from the same location. The work has a social function within the neighbourhood. Wage-related work must contribute to providing structure in the daily activities of the residents. 4. Neighbourhood management is organized from the location in the surrounding neighbourhood. A service package is provided from the residential and service centre that contributes to the ability of neighbourhood residents to live independently for longer, to strengthen the social network, and to improve the quality of life and safety in the neighbourhood. 5. The houses are suitable for use at all times for regular rental. Communal facilities must be realized within the contours of a regular apartment. The objective is to offer a suitable living and working situation to a group of vulnerable citizens. In this way they become a fully-fledged part of society. They not only make use of the facilities themselves, but also give substance to the level of facilities in the municipality. Due to the integrated approach, they experience a greater sense of well-being and security.
        A1P025: Estimated PED case study / PED LAB costs
        A1P025: Estimated PED case study / PED LAB costs [mil. EUR]517804440
        Contact person for general enquiries
        A1P026: NameJasper Tonen, Elisabeth KoopsGeorgios DermentzisDr. Jaume Salom, Dra. Cristina CorcheroSamuli RinneSimon BaumCem KeskinJaume SalomTonje Healey TrulsrudArtemis Giavasoglou, Kleopatra Kalampoka
        A1P027: OrganizationMunicipality of GroningenUniversity of InnsbruckIRECCity of OuluCENERO Energy GmbHCenter for Energy, Environment and Economy, Ozyegin UniversityIRECNorwegian University of Science and Technology (NTNU)Municipality of Kifissia – SPARCS local team
        A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversityMunicipality / Public BodiesOtherResearch Center / UniversityResearch Center / UniversityResearch Center / UniversityMunicipality / Public Bodies
        A1P028: OtherCENERO Energy GmbH
        A1P029: EmailJasper.tonen@groningen.nlGeorgios.Dermentzis@uibk.ac.atJsalom@irec.catsamuli.rinne@ouka.fisib@cenero.decem.keskin@ozyegin.edu.trjsalom@irec.cattonje.h.trulsrud@ntnu.nogiavasoglou@kifissia.gr
        Contact person for other special topics
        A1P030: NameSamuli RinneSimon BaumM. Pınar MengüçJoan Estrada AliberasStavros Zapantis - vice mayor
        A1P031: Emailsamuli.rinne@ouka.fisib@cenero.depinar.menguc@ozyegin.edu.trj_estrada@gencat.catstavros.zapantis@gmail.com
        Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYes
        A2P001: Fields of application
        A2P001: Fields of application
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Waste management
        • Energy efficiency,
        • Energy production,
        • Indoor air quality
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies,
        • Water use,
        • Indoor air quality
        • Energy efficiency,
        • Energy flexibility,
        • Energy production
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies,
        • Waste management,
        • Indoor air quality,
        • Construction materials
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • Digital technologies
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • Waste management,
        • Indoor air quality,
        • Construction materials
        • Energy production
        A2P001: Other
        A2P002: Tools/strategies/methods applied for each of the above-selected fields
        A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streamsThe buildings are designed based on Passive House standards and dynamic building and system simulations are performed to optimise the HVAC systems, that are a ground-water heat pump for space heating and district heating for domestic hot water preparation. Photovoltaic systems are installed in the available roof spaces, however, more renewable sources are required due to very large number of apartments (very high density) to reach PED, and thus, simulation studies are performed.Energy SmartLab capacities - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. Energy SmartLab systems - SAFT Li-ion battery: maximum stored energy 20000 Wh, rated power 150 kW, rated discharge current 200 A, rated charge current 34 A, operating voltage 189 V – 227 V – 254 V, capacity 82 Ah. – Ultracapacitors: maximum stored energy 57 Wh, rated power 10 kW, rated current 20 A, peak current (<1s) 200 Apk, operating voltage 250 V – 500 V, capacity 1,65 F. – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah - 5 microgrid emulators (emulated power 5.5 kVA, max generation connected 10kVA, max consumption connected 10 kVA) - 1 grid emulator (Rated power: 200 kVA, Rated current per phase: 350 A, Rated current per neutral conductor: 35)Different kinds of waste heat streams are utilized by heat pumps. These are district heating return water (actually this is an indirect way to cool down the flue gas in the scrubber), ventilation exhaust air and sewage water. As a normal case, in ventilation also air-to-air heat exchanges are used. PV power is harvested also, in vertical and more horizontal panels. Buildings are well insulated to decrease the needed amount of heating energy in the first place.LEED NC Campus + LEGOFIT Project Energy Efficiency: Tri- generation, Compliance with ISO 50001, ASHRAE 90.1, energy efficient appliances, HVAC and lighting Energy flexibility: Energy demand management Energy production: Solar PVs Onsite + (to be installed more) E-mobility: EV Charging stations Indoor Air Quality: Energy Management System, Compliance with ASHRAE 62.1, ASHRAE 55 Construction materials: Passive systems, LEED certified buildings, innovative materials such as PCM Waste Management: Zero waste document- Integrated energy design process of both active and passive elements - Multicriteria analysis of energy system, environmental variables, indoor comfort and economic parameters - Energy modelling - Predictive control to optimize performance within the neighbourhoodEnergy efficiency: Energy efficient envelope, with good insulation, triple glazing windows and airtight envelope. (EPC = 0) Energy Flexibility: MCP controls for the heat pump in the apartments. Energy production: PV panels on the roof, Ground source heat pumps Waste management: construction waste was kept to a minimum and sorted and collected separately as much as possible. Indoor air quality: Exhaust ventilation and opening of windows Construction materials: low carbon emission building materials
        A2P003: Application of ISO52000
        A2P003: Application of ISO52000NoNoNoYesYes
        A2P004: Appliances included in the calculation of the energy balance
        A2P004: Appliances included in the calculation of the energy balanceNoYesYesNoYesNoNo
        A2P005: Mobility included in the calculation of the energy balance
        A2P005: Mobility included in the calculation of the energy balanceNoNoYesNoNoNoNo
        A2P006: Description of how mobility is included (or not included) in the calculation
        A2P006: Description of how mobility is included (or not included) in the calculationMobility, till now, is not included in the energy model.– Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 AhNot included. However, there is a charging place for a shared EV in one building.Not included, the campus is a non car area except emergenciesnot included
        A2P007: Annual energy demand in buildings / Thermal demand
        A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]2.30.392.11.650.148
        A2P008: Annual energy demand in buildings / Electric Demand
        A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.330.6550.20.109
        A2P009: Annual energy demand for e-mobility
        A2P009: Annual energy demand for e-mobility [GWh/annum]00
        A2P010: Annual energy demand for urban infrastructure
        A2P010: Annual energy demand for urban infrastructure [GWh/annum]
        A2P011: Annual renewable electricity production on-site during target year
        A2P011: PVnoyesyesyesyesyesyesyesyes
        A2P011: PV - specify production in GWh/annum [GWh/annum]0.420.10.050.058
        A2P011: Windnonononononononono
        A2P011: Wind - specify production in GWh/annum [GWh/annum]
        A2P011: Hydrononononononononono
        A2P011: Hydro - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_elnonononononononono
        A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_peat_elnonononononononono
        A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
        A2P011: PVT_elnonononononononono
        A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
        A2P011: Othernonononononoyesnono
        A2P011: Other - specify production in GWh/annum [GWh/annum]
        A2P012: Annual renewable thermal production on-site during target year
        A2P012: Geothermalyesnonononononoyesno
        A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Solar Thermalyesnononononononono
        A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_heatyesnononononononono
        A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.1
        A2P012: Waste heat+HPyesnonoyesnonononono
        A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]2.2
        A2P012: Biomass_peat_heatnonononononononono
        A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: PVT_thyesnononononononono
        A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_firewood_thnonononononononono
        A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Othernonononononononono
        A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
        A2P013: Renewable resources on-site - Additional notes
        A2P013: Renewable resources on-site - Additional notesGeothermal heatpump systems, Waste heat from data centersHeat is produced from DH return, refrigeration and exhaust air. The mentioned 2200 MWh/a includes HP el. consumption (about 1/6 of that)-Rooftop PV 39.1 kWp -4 pipe air-to-water heat pump to cover heating and cooling*Annual energy use below is presentedin primary energy consumption
        A2P014: Annual energy use
        A2P014: Annual energy use [GWh/annum]0.962.32.4213.50.0330.194
        A2P015: Annual energy delivered
        A2P015: Annual energy delivered [GWh/annum]-20.0300.0368
        A2P016: Annual non-renewable electricity production on-site during target year
        A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]00
        A2P017: Annual non-renewable thermal production on-site during target year
        A2P017: Gasnonoyesnononononono
        A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Coalnonononononononono
        A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Oilnonononononononono
        A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Othernonononononononono
        A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P018: Annual renewable electricity imports from outside the boundary during target year
        A2P018: PVnononoyesnoyesnonono
        A2P018 - PV: specify production in GWh/annum if available [GWh/annum]0.00045547
        A2P018: Windnononoyesnonononono
        A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
        A2P018: Hydronononoyesnonononono
        A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_elnononoyesnonononono
        A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_peat_elnononoyesnonononono
        A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: PVT_elnonononononononono
        A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Othernonononononononono
        A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
        A2P019: Annual renewable thermal imports from outside the boundary during target year
        A2P019: Geothermalnonononononononono
        A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Solar Thermalnonononononononono
        A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_heatnononoyesnonononono
        A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]0.7
        A2P019: Waste heat+HPnonononononononono
        A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_peat_heatnonononononononono
        A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: PVT_thnonononononononono
        A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_firewood_thnonononononononono
        A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Othernonononononononono
        A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
        A2P020: Share of RES on-site / RES outside the boundary
        A2P020: Share of RES on-site / RES outside the boundary0003.285714285714300000
        A2P021: GHG-balance calculated for the PED
        A2P021: GHG-balance calculated for the PED [tCO2/annum]0-0.00043
        A2P022: KPIs related to the PED case study / PED Lab
        A2P022: Safety & SecurityPersonal Safety
        A2P022: Healthindoor air quility (indoor CO2 concentration) - measured on the extract air of the mechanical ventilation system. Relative humidity to avoid mold.Encouraging a healthy lifestyleCarbon Dioxide (CO2) levels, Predicted Mean Vote,Predicted Percentage of Dissatisfied, Temperature, Relative Humidity, Illuminance, Daylight factor, Sound pressure levelsHealthy community
        A2P022: Education
        A2P022: MobilityModal Split, Fuel mix in mobility, Energy use for transportation, Access to public transport, Public infrastructure promoting low-carbon mobility, Number of public EV charging stations, Energy delivered for EV chargingSustainable mobility
        A2P022: EnergySpace heating demand, thermal energy delivered by district heating, electricity of the heat pump, thermal losses of the pipes, and PV production.Final energy consumption, Primary energy consumption, Energy imported to PED, Energy exported from PED, RES production, PED energy balance, Energy savings in the PED, GHG emissions, Reduction of emissions, Final energy consumption per capita, Primary energy consumption per capita, Primary energy sources (shares), Buildings connected to DH-network or renewable energy grid, GHG emissions per capita, System flexibility for energy players, RES storage usage, Peak load reductionapplyNon-renewable primary energy balance, Renewable energy ratio, Grid Purchase factor, Load cover factor/Self-generation, Supply cover factor/Self-consumption, Net energy/Net power, Peak delivered/exported power, Connection capacity credit, Total greenhouse gas emissionsNOn-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/self-consumption, net energy/net power, peak delivered/peak expoted, total greenhouse gas emission
        A2P022: Water
        A2P022: Economic developmentTotal investments, Payback time, Economic value of savings: Investment costs, Share of investments covered by grants, Maintenance-related costs, Requirement-related costs, Operation-related costs, Other costs, Net Present Value, Internal Rate of Return, Economic Value Added, Payback Period, nZEB Cost Comparisoncapital costs, operational cots, overall economic performance (5 KPIs)
        A2P022: Housing and CommunityDevelopment of housing prices, Housing cost overburden rate, Citizen engagement/empowerment to climate conscious actions, Inhabitants in dense areas, Energy poverty: Access to services, Affordability of energy, Affordability of housing, Democratic legitimacy, Living conditions, Social cohesion, Personal safety, Energy consciousnessdemographic composition, diverse community, social cohesion
        A2P022: WasteRecycling rate
        A2P022: OtherSmart Cities strategies, Quality of open dataSmartness and flecibility, Indoor Environmental Quality, Social performance - Equity (affordable housing, access to servicees and amenitioes, afforability of energy, living conditions, sustinable mobility, universal design)
        A2P023: Technological Solutions / Innovations - Energy Generation
        A2P023: Photovoltaicsyesyesyesyesnoyesyesyesno
        A2P023: Solar thermal collectorsyesnononononononono
        A2P023: Wind Turbinesnononononoyesnonono
        A2P023: Geothermal energy systemyesnonononononoyesno
        A2P023: Waste heat recoveryyesnonoyesnonononono
        A2P023: Waste to energyyesnononononononono
        A2P023: Polygenerationnonononononononono
        A2P023: Co-generationnononoyesnoyesnonono
        A2P023: Heat Pumpyesyesnoyesnoyesyesyesno
        A2P023: Hydrogennonononononononono
        A2P023: Hydropower plantnonononononononono
        A2P023: Biomassnononoyesnonononono
        A2P023: Biogasnonononononononono
        A2P023: Other
        A2P024: Technological Solutions / Innovations - Energy Flexibility
        A2P024: A2P024: Information and Communication Technologies (ICT)yesnoyesyesnoyesnonono
        A2P024: Energy management systemyesnoyesyesnoyesyesyesno
        A2P024: Demand-side managementyesnonononoyesyesyesno
        A2P024: Smart electricity gridnonoyesnononononono
        A2P024: Thermal Storageyesyesnoyesnonononono
        A2P024: Electric Storageyesnoyesnonoyesnonono
        A2P024: District Heating and Coolingyesyesnoyesnoyesnonono
        A2P024: Smart metering and demand-responsive control systemsyesnonononoyesnoyesno
        A2P024: P2P – buildingsnoyesnonononononono
        A2P024: Other
        A2P025: Technological Solutions / Innovations - Energy Efficiency
        A2P025: Deep Retrofittingnononoyesnonononono
        A2P025: Energy efficiency measures in historic buildingsyesnononononononono
        A2P025: High-performance new buildingsyesyesnoyesnoyesyesyesno
        A2P025: Smart Public infrastructure (e.g. smart lighting)yesnononononononono
        A2P025: Urban data platformsyesnonoyesnonononono
        A2P025: Mobile applications for citizensnonononononononono
        A2P025: Building services (HVAC & Lighting)noyesyesyesnoyesyesyesno
        A2P025: Smart irrigationnononononoyesnonono
        A2P025: Digital tracking for waste disposalnonononononononono
        A2P025: Smart surveillancenononononoyesnonono
        A2P025: Other
        A2P026: Technological Solutions / Innovations - Mobility
        A2P026: Efficiency of vehicles (public and/or private)nonoyesyesnonononono
        A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nononoyesnonononono
        A2P026: e-Mobilityyesnonoyesnoyesnonono
        A2P026: Soft mobility infrastructures and last mile solutionsnononoyesnoyesnonono
        A2P026: Car-free areanononononoyesnonono
        A2P026: Other
        A2P027: Mobility strategies - Additional notes
        A2P027: Mobility strategies - Additional notesTest-Concept for bidirectional charging.
        A2P028: Energy efficiency certificates
        A2P028: Energy efficiency certificatesYesYesYesYesYesYes
        A2P028: If yes, please specify and/or enter notesEnergy Performance CertificateTwo buildings are certified "Passive House new build"The obligatory buildijng energy classificationEnergy Performance CertificateEPC = 0, energy neutral buildingEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwelling
        A2P029: Any other building / district certificates
        A2P029: Any other building / district certificatesNoNoYesNoNo
        A2P029: If yes, please specify and/or enter notesLEED BD+C, LEED NC CAMPUS
        A3P001: Relevant city /national strategy
        A3P001: Relevant city /national strategy
        • Energy master planning (SECAP, etc.),
        • New development strategies,
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Smart cities strategies
        • Smart cities strategies,
        • New development strategies
        • Smart cities strategies,
        • Urban Renewal Strategies,
        • Energy master planning (SECAP, etc.),
        • New development strategies,
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Smart cities strategies,
        • Energy master planning (SECAP, etc.),
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Energy master planning (SECAP, etc.),
        • Promotion of energy communities (REC/CEC)
        A3P002: Quantitative targets included in the city / national strategy
        A3P002: Quantitative targets included in the city / national strategyCarbon neutrality by 2035
        A3P003: Strategies towards decarbonization of the gas grid
        A3P003: Strategies towards decarbonization of the gas grid
        • Electrification of Heating System based on Heat Pumps,
        • Electrification of Cooking Methods,
        • Biogas
        • Electrification of Heating System based on Heat Pumps,
        • Other
        • Biogas
        • Electrification of Heating System based on Heat Pumps,
        • Electrification of Cooking Methods
        A3P003: OtherDistrict heating based mainly on heat pumps and renewable sourcesBoiler Automation, Energy Management System, Electric Battery Storage, Demand Management and Flexible Pricing
        A3P004: Identification of needs and priorities
        A3P004: Identification of needs and prioritiesThe priority was to eliminate the CO2 emissions by optimizing the building envelope and the heating systems.-Allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation -Pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.Developing and demonstrating solutions for carbon neutralityCarbon and Energy Neutrality
        A3P005: Sustainable behaviour
        A3P005: Sustainable behaviourIn Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.-Improving the development of Net Zero Energy Buildings and Flexible Energy buildings.E. g. visualizing energy and water consumptionUnder LEGOFIT project, promoting sustainable behavior for better occupant experience is a targeted aim under a work package.
        A3P006: Economic strategies
        A3P006: Economic strategies
        • Innovative business models,
        • Blockchain
        • Demand management Living Lab
        • Open data business models,
        • Innovative business models,
        • PPP models,
        • Life Cycle Cost,
        • Circular economy models
        • Innovative business models,
        • Other
        A3P006: Otheroperational savings through efficiency measures
        A3P007: Social models
        A3P007: Social models
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Citizen Social Research,
        • Prevention of energy poverty,
        • Citizen/owner involvement in planning and maintenance
        • Co-creation / Citizen engagement strategies,
        • Social incentives,
        • Affordability,
        • Prevention of energy poverty,
        • Citizen/owner involvement in planning and maintenance
        • Digital Inclusion,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Citizen Social Research,
        • Policy Forums,
        • Quality of Life,
        • Strategies towards social mix,
        • Affordability,
        • Prevention of energy poverty,
        • Citizen/owner involvement in planning and maintenance,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Behavioural Change / End-users engagement
        • Co-creation / Citizen engagement strategies,
        • Social incentives,
        • Quality of Life
        A3P007: Other
        A3P008: Integrated urban strategies
        A3P008: Integrated urban strategies
        • Strategic urban planning,
        • District Energy plans,
        • City Vision 2050,
        • SECAP Updates
        • Strategic urban planning,
        • District Energy plans,
        • City Vision 2050,
        • SECAP Updates
        • City Vision 2050,
        • SECAP Updates,
        • Building / district Certification
        A3P008: Other
        A3P009: Environmental strategies
        A3P009: Environmental strategies
        • Energy Neutral
        • Energy Neutral,
        • Low Emission Zone
        • Energy Neutral,
        • Low Emission Zone,
        • Pollutants Reduction,
        • Greening strategies
        • Energy Neutral,
        • Net zero carbon footprint
        • Other
        • Energy Neutral,
        • Low Emission Zone,
        • Net zero carbon footprint,
        • Greening strategies,
        • Cool Materials
        A3P009: OtherPositive Energy Balance for the demo site
        A3P010: Legal / Regulatory aspects
        A3P010: Legal / Regulatory aspectsAt national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricity- European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.ISO 45001, ISO 14001, ISO 50001, Zero Waste Policy
        B1P001: PED/PED relevant concept definition
        B1P001: PED/PED relevant concept definitionExtremely low building energy demand, the electric energy of the heat pump used for space heating is significantly lower compared to thermal energy for the domestic hot water preparation.The original idea is that the area produces at least as much it consumes.The campus should be considered a PED case study due to its exemplary commitment to sustainability and energy efficiency, as evidenced by several of its buildings achieving LEED certification. This certification underscores the campus's adherence to rigorous environmental standards and its proactive steps towards reducing carbon footprints. Also, the integration of sustainable practices across the campus aligns with the PED framework, which aims to create urban areas that produce more energy than they consume. Therefore, this campus serves as a model of how educational institutions can lead the way in fostering sustainable communities and advancing the goals of PED.The demonstration projects is a new residential development, which consists of an apartment complex which includes 39 apartments spread over 3 floors. It is a sustainble plus energy neighbouhood, and has reached a plus energy balance on its first year in operation. It has MPC controls on the individual heat pumps to improve the energy flexibility of the apartments. It includes the "social beatiful" concepts with a strong emphasis on the social sustainability of the project.
        B1P002: Motivation behind PED/PED relevant project development
        B1P002: Motivation behind PED/PED relevant project developmentSince it is an urban area, with high building and apartment density, the need for CO2 reduction is quite relevant and thus, in new built, the minimization of CO2 emissions is crucial.Developing systems towards carbon neutrality. Also urban renewal.The purpose of implementing the PED project on this sustainable campus, where several buildings have LEED certification, is to further enhance its energy efficiency and environmental stewardship by creating a district that generates more energy than it consumes. The initiator was motivated by the need to address climate change, reduce greenhouse gas emissions, and promote renewable energy sources. Additionally, the campus's existing commitment to sustainability and the success of its LEED-certified buildings provided a strong foundation for demonstrating the feasibility and benefits of PED development, serving as a model for sustainable urban living and energy self-sufficiency.The need for social housing and the ambition to create a great living environment with a high-performance apartment complex, supplied with renewable energy. It results in lower energy bills for the tenants and high-quality homes.
        B1P003: Environment of the case study area
        B2P003: Environment of the case study areaUrban areaSuburban areaSuburban areaUrban areaSuburban area
        B1P004: Type of district
        B2P004: Type of district
        • New construction
        • New construction,
        • Renovation
        • Renovation
        • New construction
        • New construction
        B1P005: Case Study Context
        B1P005: Case Study Context
        • Re-use / Transformation Area,
        • New Development
        • New Development,
        • Retrofitting Area
        • Preservation Area
        • Retrofitting Area
        • New Development
        • New Development
        B1P006: Year of construction
        B1P006: Year of construction20222024
        B1P007: District population before intervention - Residential
        B1P007: District population before intervention - Residential3500
        B1P008: District population after intervention - Residential
        B1P008: District population after intervention - Residential7803500
        B1P009: District population before intervention - Non-residential
        B1P009: District population before intervention - Non-residential9800
        B1P010: District population after intervention - Non-residential
        B1P010: District population after intervention - Non-residential9800
        B1P011: Population density before intervention
        B1P011: Population density before intervention0000034000
        B1P012: Population density after intervention
        B1P012: Population density after intervention00.06871641265086800.058333333333333034.337771548704000
        B1P013: Building and Land Use before intervention
        B1P013: Residentialnononoyesnonoyesnono
        B1P013 - Residential: Specify the sqm [m²]
        B1P013: Officenonononononononono
        B1P013 - Office: Specify the sqm [m²]
        B1P013: Industry and Utilitynonononononononono
        B1P013 - Industry and Utility: Specify the sqm [m²]
        B1P013: Commercialnononoyesnonononono
        B1P013 - Commercial: Specify the sqm [m²]
        B1P013: Institutionalnononononoyesnonono
        B1P013 - Institutional: Specify the sqm [m²]285.400
        B1P013: Natural areasnononoyesnonononono
        B1P013 - Natural areas: Specify the sqm [m²]
        B1P013: Recreationalnononoyesnonononono
        B1P013 - Recreational: Specify the sqm [m²]
        B1P013: Dismissed areasnonononononononono
        B1P013 - Dismissed areas: Specify the sqm [m²]
        B1P013: Othernonononononononono
        B1P013 - Other: Specify the sqm [m²]
        B1P014: Building and Land Use after intervention
        B1P014: Residentialnoyesnoyesnonoyesyesno
        B1P014 - Residential: Specify the sqm [m²]2394
        B1P014: Officenonononononononono
        B1P014 - Office: Specify the sqm [m²]
        B1P014: Industry and Utilitynonononononononono
        B1P014 - Industry and Utility: Specify the sqm [m²]
        B1P014: Commercialnoyesnoyesnonononono
        B1P014 - Commercial: Specify the sqm [m²]
        B1P014: Institutionalnoyesnononoyesnonono
        B1P014 - Institutional: Specify the sqm [m²]280000
        B1P014: Natural areasnononoyesnonononono
        B1P014 - Natural areas: Specify the sqm [m²]
        B1P014: Recreationalnoyesnoyesnonononono
        B1P014 - Recreational: Specify the sqm [m²]
        B1P014: Dismissed areasnonononononononono
        B1P014 - Dismissed areas: Specify the sqm [m²]
        B1P014: Othernonononononononono
        B1P014 - Other: Specify the sqm [m²]
        B2P001: PED Lab concept definition
        B2P001: PED Lab concept definitionGroningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation
        B2P002: Installation life time
        B2P002: Installation life timeThe MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.
        B2P003: Scale of action
        B2P003: ScaleDistrictVirtual
        B2P004: Operator of the installation
        B2P004: Operator of the installationThe Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.IREC
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P005: Replication framework: Applied strategy to reuse and recycling the materialsGroningen does not have a strategy to reuse and recyle materials
        B2P006: Circular Economy Approach
        B2P006: Do you apply any strategy to reuse and recycling the materials?NoNo
        B2P006: Other
        B2P007: Motivation for developing the PED Lab
        B2P007: Motivation for developing the PED Lab
        • Civic
        • Strategic,
        • Private
        B2P007: Other
        B2P008: Lead partner that manages the PED Lab
        B2P008: Lead partner that manages the PED LabMunicipalityResearch center/University
        B2P008: Other
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Collaborative partners that participate in the PED Lab
        • Academia,
        • Private,
        • Industrial,
        • Other
        B2P009: Otherresearch companies, monitoring company, ict company
        B2P010: Synergies between the fields of activities
        B2P010: Synergies between the fields of activities
        B2P011: Available facilities to test urban configurations in PED Lab
        B2P011: Available facilities to test urban configurations in PED Lab
        • Buildings,
        • Demand-side management,
        • Energy storage,
        • Energy networks,
        • Waste management,
        • Lighting,
        • E-mobility,
        • Information and Communication Technologies (ICT),
        • Social interactions,
        • Business models
        • Demand-side management,
        • Energy storage,
        • Energy networks,
        • Efficiency measures,
        • Information and Communication Technologies (ICT)
        B2P011: Other
        B2P012: Incubation capacities of PED Lab
        B2P012: Incubation capacities of PED Lab
        • Tools for prototyping and modelling
        • Monitoring and evaluation infrastructure,
        • Tools for prototyping and modelling,
        • Tools, spaces, events for testing and validation
        B2P013: Availability of the facilities for external people
        B2P013: Availability of the facilities for external people
        B2P014: Monitoring measures
        B2P014: Monitoring measures
        • Execution plan,
        • Available data,
        • Type of measured data,
        • Equipment,
        • Level of access
        • Equipment
        B2P015: Key Performance indicators
        B2P015: Key Performance indicators
        • Energy,
        • Social,
        • Economical / Financial
        • Energy,
        • Environmental
        B2P016: Execution of operations
        B2P016: Execution of operations
        B2P017: Capacities
        B2P017: Capacities- Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network.
        B2P018: Relations with stakeholders
        B2P018: Relations with stakeholders
        B2P019: Available tools
        B2P019: Available tools
        • Energy modelling,
        • Social models,
        • Business and financial models
        • Energy modelling
        B2P019: Available tools
        B2P020: External accessibility
        B2P020: External accessibility
        C1P001: Unlocking Factors
        C1P001: Recent technological improvements for on-site RES production3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant3 - Moderately important5 - Very important
        C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P001: Energy Communities, P2P, Prosumers concepts4 - Important3 - Moderately important3 - Moderately important2 - Slightly important4 - Important1 - Unimportant3 - Moderately important5 - Very important
        C1P001: Storage systems and E-mobility market penetration4 - Important2 - Slightly important5 - Very important1 - Unimportant4 - Important1 - Unimportant4 - Important
        C1P001: Decreasing costs of innovative materials5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important4 - Important1 - Unimportant4 - Important4 - Important
        C1P001: Financial mechanisms to reduce costs and maximize benefits5 - Very important1 - Unimportant5 - Very important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important4 - Important
        C1P001: The ability to predict Multiple Benefits3 - Moderately important3 - Moderately important4 - Important4 - Important4 - Important1 - Unimportant3 - Moderately important
        C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important3 - Moderately important4 - Important2 - Slightly important4 - Important1 - Unimportant3 - Moderately important
        C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important5 - Very important
        C1P001: Social acceptance (top-down)3 - Moderately important4 - Important1 - Unimportant5 - Very important4 - Important1 - Unimportant5 - Very important5 - Very important
        C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)4 - Important3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant4 - Important3 - Moderately important
        C1P001: Presence of integrated urban strategies and plans3 - Moderately important4 - Important1 - Unimportant4 - Important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important
        C1P001: Multidisciplinary approaches available for systemic integration2 - Slightly important4 - Important4 - Important4 - Important4 - Important1 - Unimportant5 - Very important3 - Moderately important
        C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects3 - Moderately important4 - Important5 - Very important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant4 - Important
        C1P001: Availability of RES on site (Local RES)4 - Important3 - Moderately important4 - Important4 - Important5 - Very important1 - Unimportant5 - Very important
        C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders3 - Moderately important3 - Moderately important5 - Very important4 - Important4 - Important1 - Unimportant4 - Important4 - Important
        C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P001: Any other UNLOCKING FACTORS (if any)
        C1P002: Driving Factors
        C1P002: Climate Change adaptation need2 - Slightly important5 - Very important4 - Important1 - Unimportant5 - Very important1 - Unimportant5 - Very important4 - Important
        C1P002: Climate Change mitigation need (local RES production and efficiency)3 - Moderately important4 - Important4 - Important5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important
        C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant
        C1P002: Urban re-development of existing built environment4 - Important3 - Moderately important4 - Important5 - Very important4 - Important1 - Unimportant4 - Important3 - Moderately important
        C1P002: Economic growth need2 - Slightly important1 - Unimportant4 - Important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important
        C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)1 - Unimportant3 - Moderately important4 - Important3 - Moderately important5 - Very important1 - Unimportant5 - Very important3 - Moderately important
        C1P002: Territorial and market attractiveness2 - Slightly important4 - Important1 - Unimportant5 - Very important4 - Important1 - Unimportant2 - Slightly important2 - Slightly important
        C1P002: Energy autonomy/independence2 - Slightly important4 - Important5 - Very important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P002: Any other DRIVING FACTOR4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
        C1P002: Any other DRIVING FACTOR (if any)Earthquakes due to gas extraction
        C1P003: Administrative barriers
        C1P003: Difficulty in the coordination of high number of partners and authorities3 - Moderately important2 - Slightly important4 - Important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant4 - Important
        C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P003: Lack of public participation1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P003: Lack of institutions/mechanisms to disseminate information2 - Slightly important1 - Unimportant3 - Moderately important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P003:Long and complex procedures for authorization of project activities4 - Important1 - Unimportant5 - Very important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important1 - Unimportant5 - Very important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
        C1P003: Complicated and non-comprehensive public procurement3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant4 - Important
        C1P003: Fragmented and or complex ownership structure4 - Important1 - Unimportant5 - Very important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P003: City administration & cross-sectoral attitude/approaches (silos)5 - Very important1 - Unimportant4 - Important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P003: Lack of internal capacities to support energy transition1 - Unimportant1 - Unimportant4 - Important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important
        C1P003: Any other Administrative BARRIER (if any)Delay in the Environmental Dialogue processing in the municipality
        C1P004: Policy barriers
        C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant4 - Important
        C1P004: Lacking or fragmented local political commitment and support on the long term1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant4 - Important
        C1P004: Lack of Cooperation & support between national-regional-local entities2 - Slightly important1 - Unimportant2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
        C1P004: Any other Political BARRIER (if any)
        C1P005: Legal and Regulatory barriers
        C1P005: Inadequate regulations for new technologies4 - Important1 - Unimportant5 - Very important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant4 - Important
        C1P005: Regulatory instability3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P005: Non-effective regulations3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant4 - Important
        C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant4 - Important
        C1P005: Insufficient or insecure financial incentives3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant4 - Important
        C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation2 - Slightly important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
        C1P005: Shortage of proven and tested solutions and examples2 - Slightly important1 - Unimportant4 - Important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER (if any)
        C1P006: Environmental barriers
        C1P006: Environmental barriersUrban area very high buildings (and apartment) density and thus, less available space for renewable sources.Air Quality Management Importance Level: 5 (Very Important) Energy Efficiency Importance Level: 5 (Very Important) Water Conservation Importance Level: 5 (Very Important) Waste Management Importance Level: 4 (Important) Material Selection Importance Level: 4 (Important) Renewable Energy Integration Importance Level: 5 (Very Important) Heat Island Effect Mitigation Importance Level: 4 (Important) Noise Pollution Control Importance Level: 3 (Moderately Important)
        C1P007: Technical barriers
        C1P007: Lack of skilled and trained personnel4 - Important2 - Slightly important5 - Very important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant4 - Important
        C1P007: Deficient planning2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P007: Retrofitting work in dwellings in occupied state2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
        C1P007: Lack of well-defined process3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important
        C1P007: Inaccuracy in energy modelling and simulation4 - Important1 - Unimportant5 - Very important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant4 - Important
        C1P007: Lack/cost of computational scalability1 - Unimportant1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
        C1P007: Grid congestion, grid instability4 - Important1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important
        C1P007: Negative effects of project intervention on the natural environment1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P007: Energy retrofitting work in dense and/or historical urban environment3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant5 - Very important
        C1P007: Difficult definition of system boundaries1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
        C1P007: Any other Thecnical BARRIER (if any)
        C1P008: Social and Cultural barriers
        C1P008: Inertia2 - Slightly important1 - Unimportant4 - Important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant4 - Important
        C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P008: Low acceptance of new projects and technologies2 - Slightly important1 - Unimportant5 - Very important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P008: Difficulty of finding and engaging relevant actors2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant5 - Very important
        C1P008: Lack of trust beyond social network4 - Important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important
        C1P008: Rebound effect2 - Slightly important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
        C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P008: Exclusion of socially disadvantaged groups5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important
        C1P008: Non-energy issues are more important and urgent for actors4 - Important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P008: Hostile or passive attitude towards energy collaboration2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant
        C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
        C1P008: Any other Social BARRIER (if any)
        C1P009: Information and Awareness barriers
        C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant
        C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant
        C1P009: Lack of awareness among authorities2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
        C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
        C1P009: High costs of design, material, construction, and installation4 - Important5 - Very important5 - Very important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
        C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
        C1P009: Any other Information and Awareness BARRIER (if any)
        C1P010: Financial barriers
        C1P010: Hidden costs2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
        C1P010: Insufficient external financial support and funding for project activities3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant
        C1P010: Economic crisis1 - Unimportant4 - Important4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
        C1P010: Risk and uncertainty3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important5 - Very important1 - Unimportant5 - Very important
        C1P010: Lack of consolidated and tested business models3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
        C1P010: Limited access to capital and cost disincentives2 - Slightly important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant
        C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
        C1P010: Any other Financial BARRIER (if any)
        C1P011: Market barriers
        C1P011: Split incentives5 - Very important1 - Unimportant4 - Important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant
        C1P011: Energy price distortion4 - Important1 - Unimportant5 - Very important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant
        C1P011: Energy market concentration, gatekeeper actors (DSOs)4 - Important1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
        C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
        C1P011: Any other Market BARRIER (if any)
        C1P012: Stakeholders involved
        C1P012: Government/Public Authorities
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        • Planning/leading
        • Planning/leading,
        • Design/demand aggregation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation
        C1P012: Research & Innovation
        • Planning/leading,
        • Design/demand aggregation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Financial/Funding
        • Design/demand aggregation,
        • Construction/implementation
        • Planning/leading,
        • Construction/implementation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Analyst, ICT and Big Data
        • Design/demand aggregation,
        • Monitoring/operation/management
        • Monitoring/operation/management
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Business process management
        • Planning/leading
        • Planning/leading,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Urban Services providers
        • Design/demand aggregation,
        • Monitoring/operation/management
        • Construction/implementation
        • Planning/leading
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Real Estate developers
        • Construction/implementation
        • Planning/leading
        • Design/demand aggregation,
        • Construction/implementation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Design/Construction companies
        • Construction/implementation
        • Design/demand aggregation,
        • Construction/implementation
        • Design/demand aggregation
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation
        C1P012: End‐users/Occupants/Energy Citizens
        • None
        • Planning/leading,
        • Design/demand aggregation
        • Monitoring/operation/management
        • Monitoring/operation/management
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Social/Civil Society/NGOs
        • Planning/leading,
        • Design/demand aggregation
        • Planning/leading
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Industry/SME/eCommerce
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Other
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Other (if any)
        Summary

        Authors (framework concept)

        Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

        Contributors (to the content)

        Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

        Implemented by

        Boutik.pt: Filipe Martins, Jamal Khan
        Marek Suchánek (Czech Technical University in Prague)